
Developer's Guide and Technical Reference 
Version 11.0.2180.1635

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketTools™ and SocketWrench™ are trademarks of Catalyst Development Corporation.



 Introduction  

 

The SocketTools ActiveX Edition includes ActiveX controls (OCXs) which can be used in a wide variety of
programming languages such as Visual Basic, Visual Basic.NET, Visual C++ and Visual C#. The ActiveX
Edition is ideal for the developer who requires the flexibility, ease of use and rapid development features of
a component without the complexities of working with the Windows Sockets API or in-depth knowledge of
how the various Internet protocols are implemented. The SocketTools ActiveX Edition consists of fourteen
core networking components which can be used to develop applications that meet a wide range of needs.
SocketTools covers it all, including uploading and downloading files, sending and retrieving email, remote
command execution, terminal emulation, and much more.

The SocketTools ActiveX Edition includes support for the industry standard Transport Security Layer (TLS)
and Secure Shell (SSH) protocols which are used to ensure that data exchanged between the local system
and a server is secure and encrypted. The ActiveX Edition implements the major secure protocols such as
HTTPS, FTPS, SFTP, SMTPS, POP3S, IMAPS and more. Your data is protected with TLS 1.2 using 256-bit
encryption and full support for client certificates. SocketTools also includes an FTP and HTTP server
component, as well as a general purpose TCP server component that can be used to create custom server
applications. There's no need for you to understand the details of certificate management, data encryption
or how the security protocols work. All it takes is a few lines of code to enable the security features, and
SocketTools handles the rest.

The following are just some of the features in the SocketTools 11 ActiveX Edition:

ATL based ActiveX controls with no additional runtime library dependencies
Support for Windows 11 and Windows Server 2022
Fully compatible with Visual Basic 6.0 and current versions of Visual Studio
Includes both high level and lower level interfaces for maximum flexibility
Support for both synchronous and asynchronous network connections
Includes controls that can be used to create custom client and server applications
Provides cloud-based application storage and geographical IP location services
Support for the TLS 1.2 protocol and later with 256-bit AES encryption
Support for both implicit and explicit TLS connections
Support for the SSH protocol and integrated support for SFTP as part of the FTP control
Support for standard and secure proxy servers using FTP and HTTP
Support for using client and server certificates in PKCS #12 format
Thread-safe implementation with full support for multithreaded applications
An extensive Developer's Guide and online Technical Reference
Easy redistribution for any number of applications and end users

Developer's Guide 
To help you get started using SocketTools, the Developer's Guide covers a variety of programming topics
related to SocketTools, as well an overview of each of the controls included in the product. Even if you
have experience working with previous versions of SocketTools, we recommend that you review the
Developer's Guide. If you are using a language other than Visual Basic, you'll also find some very helpful
information about how to make the most of SocketTools in other programming languages such as Visual
C++ and Visual C#.

Technical Reference 
The Technical Reference provides extensive documentation on all of the functions in each of the

 



SocketTools controls. It's here that you'll find information on the various properties, methods and events
provided by the component. If it is your first time using a particular control, we recommend that you first
read the overview of that control in the Developer's Guide.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketTools Licensing Information  

 

The SocketTools ActiveX Edition License Agreement provides you with a single developer license and the
right to redistribute the ActiveX components (OCXs) included with this product without any additional
royalties or runtime licensing fees.

Evaluation Licenses
When you install SocketTools, you are given the option of entering a serial number or proceeding with the
installation without a serial number. If you install SocketTools without a serial number, an evaluation
development license will be created which is valid for a period of thirty (30) days from the date of
installation. The product is fully functional during this evaluation period; however the SocketTools
components may not be redistributed to third-parties. After the evaluation period has ended, you must
either purchase a development license or remove SocketTools from your computer system.

Runtime Licensing
Most languages which use ActiveX components automatically manage the licensing requirements for those
components, and it does not require any additional coding on the part of the developer. For example,
placing a control on a form in Visual Basic will cause the control's license information to automatically be
embedded in the executable. However, in some cases it may be necessary for you to explicitly initialize the
control by calling its Initialize method and passing a runtime license key. For example, if an instance of the
control is created using the CreateObject function or through a reference, you will need to explicitly call the
Initialize method.

The runtime license key is a null terminated string that is unique to your licensed copy of SocketTools. The
runtime license key is not the same as your serial number and should only be embedded in your compiled
application. If you provide source code for your product, you cannot include the runtime key with the
source code. The same runtime license key should be used for all of the controls.

If you install SocketTools with an evaluation license, then the runtime license key will be defined as an
empty string. This will allow the controls to function on a system with a valid evaluation license, but they will
not function on any other system. You must purchase a license and generate a runtime license key before
redistributing an application which uses one or more of the SocketTools controls.

License Manager
Included with your copy of SocketTools is a License Manager utility. This program enables you to see what
components have been installed and registered on your system, as well as display information about your
SocketTools license. If you need to create a new runtime license key, you can use this utility to do so. Select
License | Header File from the menu and choose the type of file that you wish to create. For more
information about how the License Manager can be used, please refer to the online help file that is
included with the utility.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketTools 11 Upgrade Information  

This section will help you upgrade an application written using a previous version of the SocketTools
ActiveX Edition. In most cases, the modifications required will be minimal and may only require a few edits
and recompiling the program. However, it is recommended that you review this entire guide so that you
understand what changes were made and how those changes can be implemented in your software.

Supported Platforms
SocketTools 11 is supported on Windows 7, Windows Server 2008 R2 and later versions. Earlier versions of
the operating system, including Windows XP and Windows Vista are no longer supported by Microsoft and
cannot be used with SocketTools. We recommend using the lasted release of either Windows 10 or
Windows 11.

Developers who are redistributing applications which target Windows 11 or Windows Server 2022 should
upgrade to ensure compatibility with the platform and current development tools. Secure connections
require TLS 1.2 or later and most services will no longer accept connections from a client using SSL 3.0 or
TLS 1.0.

Development Tools
The SocketTools 11 ActiveX controls may be used with any programming language that supports the
Component Object Model (COM) and ActiveX control interface. This includes languages such as Visual
Basic 6.0, Visual FoxPro and PowerBuilder. Although the ActiveX controls may be used with Visual Basic
.NET and Visual C#, it is recommended you use the SocketTools .NET Edition if you are creating
applications for the .NET Framework.

The Visual Basic 6.0 runtime is supported on Windows 11, however the IDE is no longer supported by
Microsoft. To use the Visual Basic 6.0 IDE in Windows 11, you will need to run it with elevated privileges.
Visual Studio 2022 supports the use of ActiveX controls, although we generally recommend using Visual
Studio 2022 and the .NET Edition for development on the current Windows platforms.

Upgrading Projects
If you are upgrading from version 10, applications will be source code compatible with the SocketTools 11
ActiveX controls. In most cases, all you will need to do is install the current version, update the control
references in your project and recompile your application. It is important to note that the control file
names, class IDs and interfaces have changed and are not binary compatible with previous versions.

If you are upgrading from an earlier version of SocketTools, you should find that most projects which have
used SocketTools 8.0 or later will require minimal code changes. If you have used hard-coded values
instead of constant names for options, then you should review those values and update them
appropriately. Some option values will have changed over the versions as new features have been added. If
you are upgrading from a very early version of SocketTools, you may find that there have been changes to
method names and parameters which will need to be updated.

The runtime license key has changed for SocketTools 11, which may require you to redefine the value in
your application when calling the control's Initialize method. As with previous versions of SocketTools, you
can use the License Manager utility to generate a file which contains the runtime key you should use. The
version 10 and earlier runtime license keys are not valid for the version 11 controls and an error will be
returned if an invalid runtime key is specified.

Your application should not attempt to reference the current version of a control and an earlier version of
the control within the same application. When upgrading to version 11, first remove all references to the
earlier version of the control, save the project and reload it. Then add the reference to the version 11
control, ensuring that the same object name is used. If you are creating an instance of the control
dynamically by specifying its ProgID, such as using the CreateObject function, then it is recommended that



 

you specify the version number as part of the ID. For example, to create an instance of the FTP control, use
"SocketTools.FtpClient.11" and not simply "SocketTools.FtpClient". If the major version number is omitted,
the latest version of the control will always be loaded.

With SocketTools 11, secure connections will use TLS 1.2 or later. By default, the controls will not support
connections to servers which use older, less secure versions of TLS or any version of SSL. They will also no
longer use weaker cipher suites that incorporate insecure algorithms, such as RC4 or MD5. For applications
that require secure connections, it is recommended you use the current build of Windows 10 or Windows
11 with all security updates applied.

It is possible to force the controls to use earlier versions of TLS for backwards compatibility with older
servers. This is done by explicitly setting the SecureProtocol property to specify the protocol version
required. However, this is not generally recommended because using an older version of TLS (or any
version of SSL) may cause servers to immediately reject the connection attempt.

Most of the networking APIs have an option to force the controls to establish an IPv6 network connection.
By default, the controls will still give preference to using IPv4 for backwards compatibility. Note that using
options which only establish connections using IPv6 may prevent applications from working correctly on
older versions of Windows.

Control File Names
The file names of the ActiveX controls and their IDs have changed with the new version. The following table
lists the new values which should be used in your application. For more information, refer to the
Redistribution section.

File Name ProgID Description

csdnsx11.ocx SocketTools.DnsClient.11 Domain Name Service Control

csftpx11.ocx SocketTools.FtpClient.11 File Transfer Protocol Control

csftsx11.ocx SocketTools.FtpServer.11 File Transfer Server Control

cshtpx11.ocx SocketTools.HttpClient.11 Hypertext Transfer Protocol Control

cshtsx11.ocx SocketTools.HttpServer.11 Hypertext Transfer Server Control

csicmx11.ocx SocketTools.IcmpClient.11 Internet Control Message Protocol Control

csmapx11.ocx SocketTools.ImapClient.11 Internet Message Access Protocol Control

csmsgx11.ocx SocketTools.MailMessage.11 Mail Message Control

csmtpx11.ocx SocketTools.SmtpClient.11 Simple Mail Transfer Protocol Control

csncdx11.ocx SocketTools.FileEncoder.11 File Encoding Control

csnvtx11.ocx SocketTools.Terminal.11 Terminal Emulation Control

csnwsx11.ocx SocketTools.NntpClient.11 Network News Transfer Protocol Control

cspopx11.ocx SocketTools.PopClient.11 Post Office Protocol Control

csrasx11.ocx SocketTools.Dialer.11 Remote Access Services Dialer Control

csrshx11.ocx SocketTools.RshClient.11 Remote Command Protocol Control

csrssx11.ocx SocketTools.NewsFeed.11 Syndicated News Feed Control

cstimx11.ocx SocketTools.TimeClient.11 Time Protocol Control

cstntx11.ocx SocketTools.TelnetClient.11 Telnet Protocol Control

 



cstshx11.ocx SocketTools.SshClient.11 Secure Shell Protocol Control

cstxtx11.ocx SocketTools.TextMessage.11 Text Messaging Control

cswebx11.ocx SocketTools.WebStorage.11 Web Storage Control

cswhox11.ocx SocketTools.WhoisClient.11 Whois Protocol Control

cswipx11.ocx SocketTools.WebLocation.11 Web Location Control

cswskx11.ocx SocketTools.SocketWrench.11 Windows Sockets (SocketWrench) Control

cswsvx11.ocx SocketTools.InternetServer.11 Windows Sockets Server Control

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketTools Product Evaluation  

 

If you install SocketTools without registering a serial number, the product will be installed with an evaluation
license that is valid for a period of thirty (30) days. During this trial period, the SocketTools controls are fully
functional and can be used on the development system where the product was installed. If you need to
extend the evaluation period, please contact the Catalyst Development sales office by email at
sales@sockettools.com or by telephone at +1 760-228-9653, Monday through Friday during normal
business hours.

Redistribution Restrictions
When using an evaluation copy of SocketTools, you cannot redistribute the controls to another system. If
you build an application using an evaluation license, it will function correctly on the development system
but will fail with an error on any system that does not have a license. Once you have purchased a
development license, you should recompile your application before redistributing it to an end-user. If you
need to test your application on another system during the evaluation period, you must install an
evaluation copy of SocketTools on that system.

Runtime Licensing
When you purchase a development license, a runtime license key will be generated for you which will be
included in your applications. Normally this runtime key is managed automatically when the control is
placed on a form or referenced in a project. However, there are situations in which the key must be
explicitly passed to the control's Initialize method. In all cases, if the product is installed as an evaluation
copy, the runtime license key will be defined as an empty string. If you have previously installed an
evaluation copy of SocketTools and then purchased a license, you can create the runtime license key using
the License Manager utility.

For more information, refer to the Licensing and Control Initialization sections.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketTools Component Redistribution  

The SocketTools license permits the use of the ActiveX controls to build application software and
redistribute that software to end-users. There are no restrictions on the number of products in which the
controls may be used. However, if SocketTools has been installed with an evaluation license, any products
created using its components cannot be redistributed to another system until a licensed copy of the toolkit
has been purchased.

System Requirements
SocketTools is supported on Windows 32-bit and 64-bit desktop and server platforms. The minimum
required desktop platform is Windows 7 with Service Pack 1 (SP1) installed. The minimum required server
platform is Windows Server 2008 R2 with Service Pack 1 (SP1) installed. It is recommended that the current
service pack be installed for the operating system, along with the latest Windows updates available from
Microsoft. Some features may require Windows 10 or later versions of the platform. When this is the case, it
will be noted in the documentation.

Windows 2000, Windows XP and Windows Vista are no longer supported. SocketTools is designed for
Windows 7 as the minimum operating system version and will not work correctly on earlier versions of
Windows. Although Windows 7 is no longer supported by Microsoft, and Windows 8 has limited support,
SocketTools components will continue to function on those platforms.

Control Redistribution
For those applications created using the SocketTools ActiveX controls, the control must be distributed
along with the application and the control must be registered by the installation program. The process of
registration means that specific entries must be created in the system registry which provide information
about the control such as the location of the OCX file. Fortunately, ActiveX controls are self-registering,
which means that the control has the ability to create or update those registry entries itself.

To automatically register a control when your application is being installed, the installation program must
be capable of loading the control and calling specific functions which will update the registry. Most
installation tools are capable of automatically handling control registration. For custom installations, refer to
the article Self Registration for Controls for information on how ActiveX controls implement self-registering.

It is possible to register ActiveX controls manually without the use of an installation program. This may be
desirable in those situations where an application is being deployed internally or the developer does not
want to create a setup program for a limited distribution. The tool used to manually register a control is
named RegSvr32. This utility accepts a command line argument which specifies the name of the control to
register. For example, the following command would register the 32-bit SocketTools FtpClient control on a
64-bit Windows system:

%WINDIR%\SysWOW64\regsvr32 %WINDIR%\SysWOW64\csftpx11.ocx

A message box would be displayed indicating that the control was registered successfully. To prevent the
message box from being displayed, use the /S option which tells the utility to function silently. If an error is
reported, typically the reason is that a required system DLL is missing or out of date.

COM registration requires account elevation because it modifies the system registry. To register
controls from the command prompt, you must run it with administrative privileges. If a registration
error occurs, it is likely because you are attempting to register the control without the appropriate
privileges.

If the ActiveX controls are installed on a 64-bit version of Windows, the 32-bit controls, which are used with
Visual Basic 6.0 and other 32-bit development tools, are installed in the C:\Windows\SysWOW64 folder and
the 64-bit controls are installed in the C:\Windows\System32 folder. When redistributing the ActiveX

https://docs.microsoft.com/en-us/windows/win32/com/self-registration-for-controls


 

controls, it is important to make sure that you are selecting the correct version, which is determined by the
development tool used and the target platform.

For example, if you are using Visual Basic 6.0, then you should only redistribute the 32-bit ActiveX controls,
regardless if the target system is the 32-bit or 64-bit version of Windows. This is because Visual Basic 6.0
can only create 32-bit programs and therefore can only reference 32-bit controls and libraries. When the
application is installed on 64-bit Windows, it will be executed by the WoW64 subsystem which provides a
32-bit environment for the application.

Version Information
The SocketTools controls have embedded information which provides version information to an installation
utility. This information, called the version resource, specifies the control's version number among other
things. If you are using a third-party or in-house installation program, it is extremely important that the
program knows how to use this information.

For example, if you are deploying an application which uses the control, the setup program must
determine if it has already been installed on the target system. If it has, it must compare the version
resource information in the two files. It should only overwrite the control OCX file if the version that you
have included with your application is later than the one installed on the system. An installation program
which overwrites the file without checking the version number may cause other programs to fail
unexpectedly on the end-user's system, which is obviously not desirable.

Installation Directory
The SocketTools ActiveX controls should typically be installed in the C:\Windows\System32 folder on the
local machine. If you are deploying to a 64-bit system, then the 32-bit controls should be installed in the
C:\Windows\SysWOW64 folder. Some developers may prefer to install the control along with their
application in a private directory. It is not recommended that developers take this approach unless COM
redirection or registration-free activation is used because the full pathname of the control file is stored in
the system registry when it's registered. If multiple applications install the same control in different
directories, the actual control that will be used is the one that was last registered. This means that it is
possible that an application will load an earlier version of the control than it was built with, which may result
in unexpected or fatal errors.

COM redirection enables an application to isolate the controls that it uses, ensuring that the same version
of the control which was used to build the application is loaded when the program is executed. To activate
COM redirection, create an empty file named after the executable with a .local extension. For example, if
the program is named MyProgram.exe then an empty file named MyProgram.exe.local should be created
in the same directory as MyApp.exe. This binds the application to the local version of any controls which
are installed in the same directory as the application. When an instance of the control is created, Windows
will first search the application's directory, and then uses the standard search rules for locating the file.

If your installer package creates a 32-bit executable and you're deploying a 64-bit application, the installer
must be capable of detecting that it is running on a 64-bit system and can disable filesystem redirection to
ensure that the 64-bit controls are installed and registered in the correct location. Consult the
documentation for your installer to determine if it is 64-bit compatible.

Windows Install Packages
To help simplify deployment, SocketTools includes MSI (Windows Installer) packages you can use to install
the SocketTools ActiveX controls on end-user systems. These packages are found in the Redist folder
where you've installed SocketTools.

Package Name Description

cstools11_activex_x86.msi SocketTools 11 redistributable ActiveX controls for 32-bit applications. This

 



installer is what most developers would use, particularly if the application was
created using Visual Basic 6.0. It can be installed on both 32-bit and 64-bit
versions of Windows.

cstools11_activex_x64.msi SocketTools 11 redistributable ActiveX controls for 64-bit applications. This
installer should only be used if 64-bit development tools were used, and can
only be installed on 64-bit versions of Windows.

If you’re redistributing a 32-bit application, then all you need is the x86 installer package. If you’re
redistributing a 64-bit application, then you need the x64 installer package. If you’re developing with Visual
Basic 6.0, you should only use the x86 installer. The installer packages will make sure the SocketTools
controls are installed in the correct location and will perform the appropriate version checking.

If you have your own installer for your software, then you can redistribute those MSI packages with your
installation and use the msiexec command to perform the installation. For example, this would install and
register the 32-bit ActiveX controls with no UI displayed:

msiexec /qn /I cstools11_activex_x86.msi

For the complete list of command line options for msiexec, refer to the Windows App Development
documentation.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

https://learn.microsoft.com/en-us/windows/win32/msi/command-line-options
https://learn.microsoft.com/en-us/windows/win32/msi/command-line-options


 Technical Support  

 

Catalyst Development is committed to providing quality technical support for our products and we offer
several different support options designed to meet the needs of our customers. Technical support by email
is available for installation, development and redistribution issues related to the purchased product. There
are also paid support options available for customers who require additional assistance.

Standard Support 
Registered developers have access to a variety of free technical support resources and we always
encourage developers to review our online documentation and knowledge base to determine if the
question has already been answered.

Frequently Asked Questions  
A collection of answers to the most frequently asked questions about a product. General questions
about features, functionality and platform compatibility are answered here. The product FAQ is
also recommended reading for any developer who is evaluating our software.

Knowledge Base  
A searchable online database of solutions to hundreds of common technical questions and
problems. The articles provide detailed information, including background information,
workarounds and the availability of updates to resolve the problem. This is the first place that most
developers should check to determine if the question or problem that they're having has already
been addressed.

Online Documentation  
A comprehensive collection of online help, tutorials and whitepapers for our products. Our online
help is useful to evaluators who are interested in learning about how our components work and
for developers who would like access to the most current reference material.

Release Notes  
Information about the latest changes, improvements and corrections made to the current version
SocketTools. The release notes can reflect changes that affect all SocketTools editions, as well as
updates to a component in a specific edition. If you are upgrading from a previous release, it's
recommended that you review the release notes.

Priority Support 
For developers who require additional support, Priority Support offers a guaranteed, priority response to
technical support issues on the same business day. Corrections which require a source code change and/or
documentation change to resolve a problem will be made available as a hotfix at no additional charge, and
whenever there is a new product update or hotfix, you will be automatically notified by email.

Premium Support 
For developers who have critical support needs, an annual Premium Support agreement offers priority
email support and a guaranteed four hour response time during business hours. This support option also
includes all of the other benefits of priority support, including hotfixes, source code analysis and assistance
with example code. In addition, Premium Support also includes free upgrades if a new version of the
product is released while your support agreement is active, ensuring that you're always working with the
latest version.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

https://sockettools.com/faq/
https://sockettools.com/knowledgebase/
https://sockettools.com/documentation/
https://sockettools.com/release-notes/


 License Agreement  

This License Agreement is a legal agreement between you, either as an individual or a single entity
("Developer"), and Catalyst Development Corporation ("Catalyst") for the software product identified as
"SocketTools ActiveX Edition" ("Software" or "Software Product"). The Software Product includes executable
programs, redistributable modules, controls, and dynamic link libraries ("Components" or "Software
Components"), electronic documentation, and may include associated media and printed materials.

Installing this Software Product on to a hard disk or any other storage device of a computer, or loading any
of the Components into the memory of any computer, constitutes use of the Software and shall
acknowledge your acceptance of the terms and conditions of this License Agreement and your agreement
to bound thereby.

1. GRANT OF LICENSE
Catalyst Development grants you as an individual, a personal, non-exclusive, non-transferable license to
install the Software Product using an authorized serial number. If you are an entity, Catalyst grants you the
right to appoint an individual within your organization to use and administer the Software Product subject
to the same restrictions enforced on individual users. You may not network the Software or otherwise use it
on more than one workstation or computer at the same time. Contact Catalyst for more information
regarding multi-developer site licensing.

You may install the Software Product on one or more workstations or computers expressly for the purposes
of evaluating the performance of the Software for a period of no more than thirty (30) days. If continued
use of the Software is desired after the evaluation period has expired, then the Software Product must be
purchased and/or registered with Catalyst Development for each computer or workstation. The Software
Product must be removed from all unregistered workstations or computers after the evaluation period has
expired.

2. COPYRIGHT
Except for the licenses granted by this agreement, all right, title, and interest in and to the Software Product
(including, but not limited to, all copyrights in any executable programs, modules, controls, libraries,
electronic documentation, text and example programs), any printed materials and copies of the Software
Product are owned by Catalyst Development. The Software Product is protected by copyright laws and
international treaty provisions. Therefore you must treat the Software Product like any other copyrighted
material except that you may (i) make one copy of the Software solely for backup or archival purposes, or
(ii) transfer the Software to a single hard disk, provided you keep the original solely for backup or archival
purposes. You may not copy any printed materials that may accompany the Software Product. All rights
not specifically granted in this Agreement, including Federal and International Copyrights, are reserved by
Catalyst Development.

3. REDISTRIBUTION
(a) In addition to the rights granted in section 1, you are granted the right to use and modify those
portions of the Software designated as "example code" for the sole purposes of designing, developing, and
testing your software product, and to reproduce and distribute the example code, along with any
modifications thereof, only in object code form, provided that you comply with section 3(c).

(b) In addition to the rights granted in section 1, you are granted a non-exclusive, royalty-free right to
reproduce and distribute the object code version of any portion of the Software Product, along with any
modifications thereof, in accordance with the above stated conditions.

(c) If you redistribute the sample code or redistributable components, you agree to: (i) distribute the
redistributables in object code only, in conjunction with and as a part of a software application product
developed by you which adds significant and primary functionality to the Software; (ii) not use Catalyst
Development's name, logo, or trademarks to market your software application product; (iii) include a valid



 

copyright notice on your software product ; (iv) indemnify, hold harmless, and defend Catalyst
Development from and against any claims or lawsuits, including attorney's fees, that arise or result from the
use or distribution of your software application product; (v) not permit further distribution of the
redistributables by your end user.

4. UPGRADES
If this copy of the Software is an upgrade from an earlier version of the Software, you must possess a valid
full license to a copy of an earlier version of the Software to install and/or use this upgrade copy. You may
continue to use each earlier version copy of the Software to which this upgrade copy relates on your
computer after you receive this upgrade copy, provided that, (i) the upgrade copy and the earlier version
copy are installed and/or used on the same computer only and the earlier version copy is not installed
and/or used on any other computer; (ii) you comply with the terms and conditions of the earlier version's
end user license agreement with respect to the installation and/or use of such earlier version copy; (iii) the
earlier version copy or any copies thereof on any computer are not transferred to another computer unless
all copies of this upgrade copy on such computer are also transferred to such other computer; and (iv) you
acknowledge and agree that any obligation Catalyst may have to support and/or offer support for the
earlier version of the Software may be ended upon availability of the upgrade.

5. LICENSE RESTRICTIONS
You may not rent, lease or transfer the Software. You may not reverse engineer, decompile or disassemble
the Software, except to the extent applicable law expressly prohibits the foregoing restriction. You may not
alter the contents of a hard drive or computer system to enable the use of the evaluation version of the
Software for an aggregate period in excess of the evaluation period for one license. Without prejudice to
any other rights, Catalyst Development may terminate this License Agreement if you fail to comply with the
terms and conditions of the agreement. In such event, you must destroy all copies of the Software Product.

6. CONFIDENTIALITY
(a) The Software contains information or material which is proprietary to Catalyst Development
("Confidential Information"), which is not generally known other than by Catalyst, and which you may
obtain knowledge of through, or as a result of the relationship established hereunder with Catalyst. Without
limiting the generality of the foregoing, Confidential Information includes, but is not limited to, the
following types of information, and other information of a similar nature (whether or not reduced to writing
or still in development): designs, concepts, ideas, inventions, specifications, techniques, discoveries, models,
data, object code, documentation, diagrams, flow charts, research, development, methodology, processes,
procedures, know-how, new product or new technology information, strategies and development plans
(including prospective trade names or trademarks).

(b) Such Confidential Information has been developed and obtained by Catalyst by the investment of
significant time, effort and expense, and provides Catalyst with a significant competitive advantage in its
business.

(c) You agree that you shall not make use of the Confidential Information for your own benefit or for the
benefit of any person or entity other than Catalyst, except for the expressed purposes described in this
section, in accordance with the provisions of this Agreement, and not for any other purpose.

(d) You agree to hold in confidence, and not to disclose or reveal to any person or entity, the Software,
other related documentation, your product Serial Number or any other Confidential Information
concerning the Software other than to such persons as Catalyst shall have specifically agreed in writing to
utilize the Software for the furtherance of the expressed purposes described in this section, in accordance
with the provisions of this Agreement, and not for any other purpose.

(e) You acknowledge the purpose of this section is to protect Catalyst Development's ability to limit the use
of the data and the Software generally to licensees, and to prevent use of Confidential Information
concerning the Software by other developers or vendors of software.

 



7. CONTINUATION OF SERVICE
Some features of the Software may require the use of remote servers under the control of Catalyst
Development to provide specific services. Catalyst makes no warranty as to the availability of these services
and reserves the right to discontinue these services at any time and without warning. These services may
only be accessed using the Application Programming Interfaces (API) provided by the Software Product
and access is limited to licensees and evaluation users of the Software.

We may suspend or terminate your access to these services without liability if (i) we reasonably believe that
the services are being used (or have been or will be used) in violation of the Agreement, (ii) we reasonably
believe that suspending or terminating your access is necessary to protect our network or our other
customers, or (iii) the suspension or termination is required by law. We will give you reasonable advance
notice of suspension or termination under this section and a chance to cure the grounds on which the
suspension or termination is based, unless we determine, in our reasonable commercial judgment, that an
immediate suspension or termination is necessary to protect Catalyst or its other customers from imminent
and significant operational or security risk.

8. LIMITED WARRANTY
If within thirty days of your purchase of this software product, you become dissatisfied with the Software for
any reason, you may return the software to Catalyst Development (or your dealer, if you did not purchase
it directly from Catalyst) for a refund of your purchase price. To return the Software, you must contact
Catalyst Development and obtain a Return Material Authorization (RMA) number. Catalyst will not accept
returns of opened or installed software without an RMA number. Returns may be subject to the deduction
from your purchase price of a restocking fee and all shipping costs.

CATALYST PROVIDES NO REMEDIES OR WARRANTIES, WHETHER EXPRESS OR IMPLIED, FOR ANY
SAMPLE APPLICATION CODE, TRIAL VERSION AND THE NOT FOR RESALE VERSION OF THE SOFTWARE.
ANY SAMPLE APPLICATION CODE, TRIAL VERSION AND THE NOT FOR RESALE VERSION OF THE
SOFTWARE ARE PROVIDED "AS IS".

CATALYST DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WITH RESPECT TO THE SOFTWARE, THE ACCOMPANYING WRITTEN MATERIALS, AND ANY
ACCOMPANYING HARDWARE.

9. LIMITATION OF LIABILITY
IN NO EVENT SHALL CATALYST OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITH LIMITATION, INCIDENTAL, CONSEQUENTIAL, SPECIAL, OR EXEMPLARY DAMAGES OR
LOST PROFITS, BUSINESS INTERRUPTION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OR
INABILITY OF THIS CATALYST PRODUCT, EVEN IF CATALYST HAS BEEN ADVISED OF SUCH DAMAGES.

APART FROM THE FOREGOING LIMITED WARRANTY, THE SOFTWARE PROGRAMS ARE PROVIDED "AS-
IS", WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. THE ENTIRE RISK AS TO THE
PERFORMANCE OF THE PROGRAMS IS WITH THE PURCHASER. CATALYST DOES NOT WARRANT THAT
THE OPERATION OF THE PROGRAMS WILL BE UNINTERRUPTED OR ERROR-FREE. CATALYST ASSUMES
NO RESPONSIBILITY OR LIABILITY OF ANY KIND FOR ERRORS IN THE PROGRAMS OR DOCUMENTATION,
OF/FOR THE CONSEQUENCES OF ANY SUCH ERRORS. THE LAWS OF THE STATE OF CALIFORNIA
GOVERN THIS AGREEMENT.

10. GOVERNMENT-RESTRICTED RIGHTS
United States Government Restricted Rights. The Software and related documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to the restrictions set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights at
48 CFR 52.227-19, as applicable. Manufacturer for such purposes is Catalyst Development Corporation,



56925 Yucca Trail #254, Yucca Valley, CA 92284

11. EXPORT CONTROLS
You agree to comply with all relevant regulations, including but not limited to those, of the United States
Department of Commerce and with the United States Export Administration Act to insure that the Software
is not exported in violation of United States law. You acknowledge that the Software is subject to export
regulations and agree that you will not export, re-export, import or transfer the software in violation of any
United States or other applicable laws, whether directly or indirectly, and you will not assist or facilitate
others in doing so. You acknowledge that you have the responsibility to obtain any export classifications
and licenses as may be required to comply with such laws.

12. PROHIBITED DESTINATIONS
The exportation, re-exportation, sale or supply of Catalyst products, software components or
documentation, directly or indirectly, from the United States or by a United States citizen wherever located,
to Cuba, Iran, North Korea, Sudan, Syria, or any other country to which the United States has embargoed
goods, is strictly prohibited without prior authorization by the United States Government. You represent
and warrant that neither the United States Bureau of Export Administration nor any other federal agency
has suspended, revoked or denied your export privileges. Catalyst products, software components or
documentation may not be exported or re-exported to anyone on the United States Treasury Department's
list of Specially Designated Nationals or the United States Department of Commerce Denied Person's List
or Entity List.

13. GOVERNING LAW
This License is governed by the laws of the State of California, without reference to conflict of laws
principles. Any controversy or claim arising out of or relating to this contract, or the breach thereof, shall be
settled by arbitration administered by the American Arbitration Association (“AAA”) under its Commercial
Arbitration Rules, and judgment on the award rendered by the arbitrator(s) may be entered in any court
having jurisdiction thereof. The arbitrator shall be a retired judge or attorney with at least 15 years
commercial law experience and shall be selected either by mutual agreement of the parties or by AAA’s
selection process. The parties shall be entitled to take discovery in accordance with the provisions of the
California Code of Civil Procedure, including but not limited to CCP §1283.05. The arbitration shall be held
in San Bernardino, California and in rendering the award the arbitrator must apply the substantive law of
the State of California.

14. GENERAL PROVISIONS
This License Agreement contains the complete agreement between the parties with respect to the subject
matter hereof, and supersedes all prior or contemporaneous agreements or understandings, whether oral
or written. You agree that any varying or additional terms contained in any purchase order or other written
notification or document issued by you in relation to the Software licensed hereunder shall be of no effect.
The failure or delay of Catalyst to exercise any of its rights under this Agreement or upon any breach of this
Agreement shall not be deemed a waiver of those rights or of the breach.

If any provision of this agreement shall be held by a court of competent jurisdiction to be contrary to law,
that provision will be enforced to the maximum extent permissible, and the remaining provisions of this
agreement will remain in full force and effect.

SocketTools and other trademarks contained in the Software are trademarks or registered trademarks of
Catalyst Development Corporation in the United States and/or other countries. Third party trademarks,
trade names, product names and logos may be the trademarks or registered trademarks of their respective
owners. You may not remove or alter any trademark, trade names, product names, logo, copyright or
other proprietary notices, legends, symbols or labels in the Software.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 SocketTools 11  

 

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Catalyst Development Corporation™, SocketTools™ and SocketWrench™ are trademarks of Catalyst
Development Corporation. Microsoft™, Windows™, Visual Basic™ and Visual Studio™ are trademarks or
registered trademarks of Microsoft Corporation.

Portions Copyright © 1993, 1994 The Regents of the University of California.
Portions Copyright © 1989 Massachusetts Institute of Technology.
Portions Copyright © 1995 Tatu Ylonen.
Portions Copyright © 1999, 2000 Neil Provos and Markus Friedl.
Portions Copyright © 1997, 2003 Simon Tatham.
Portions Copyright © 1995, 2005 Jean-loup Gailly and Mark Adler
Portions Copyright © 1991, 1992 RSA Data Security, Inc.

Information in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without
the express written permission of Catalyst Development Corporation.

The software described in this document is furnished under a license agreement. The software may be
used only in accordance with the terms of the agreement. It is against the law to copy the software except
as specifically allowed in the license agreement. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal use, without
the express written permission of Catalyst Development Corporation.

 



 SocketTools 11 ActiveX Edition Developers Guide  

 

Introduction
1. Features
2. Getting Started

General Concepts
1. Windows Sockets API
2. Application Protocols
3. Transmission Control Protocol
4. User Datagram Protocol
5. Domain Names
6. Service Ports
7. Sockets
8. Security Protocols
9. Digital Certificates

Development Overview
Application Design
Program Structure
Control Initialization
Asynchronous Connections
Secure Connections
Network Input/Output
Event Handling
Error Handling
Debugging Facilities

Language Support
1. Data Types
2. Unicode
3. Visual C++

1. Microsoft Foundation Classes
2. CWnd Based Controls
3. Importing ActiveX Controls
4. Component Object Model API
5. Control Event Handling

4. Visual C#
5. Visual Basic .NET

Control Overview
Domain Name Service (DNS) Control
File Encoding Control
File Transfer Protocol (FTP) Control
Hypertext Transfer Protocol (HTTP) Control

 



Internet Control Message Protoco (ICMP) Control
Internet Message Access Protocol (IMAP) Control
Internet Server Control
Mail Message (MIME) Control
Network News Transfer Protocol (NNTP) Control
News Feed (RSS) Control
Post Office Protocol (POP3) Control
Remote Access Services (RAS) Control
Remote Command Protocol (RSH) Control
Secure Shell Protocol (SSH) Control
Simple Mail Transfer Protocol (SMTP) Control
SocketWrench (TCP/IP) Control
Telnet Protocol Control
Terminal Emulation Control
Text Message Control
Time Protocol Control
Web Location Control
Web Storage Control
Whois Protocol Control

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Introduction  

 

The SocketTools ActiveX Edition is a collection of ActiveX components (OCXs) which provide application
programming interfaces for a variety of Internet protocols. Using SocketTools, you can quickly and easily
write programs which upload and download files, send and retrieve email messages, execute commands
on servers, establish virtual terminal sessions and perform many other tasks. With the SocketTools ActiveX
Edition it is not required that you be a networking expert or understand the details of how certain
networking or application protocols work.

The Developer's Guide will cover the basics of Internet programming in general, and then move on to the
specific protocols supported by the SocketTools ActiveX Edition. When references are made to the Internet,
the same information can generally be applied to corporate intranets. For example, the SocketTools
Hypertext Transfer Protocol component can be used to communicate with a company's internal web server
as well as web servers over the Internet.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketTools Features  

 

The SocketTools ActiveX controls can be used in a wide variety of programming languages, including
Visual Basic 6.0, Visual Basic .NET, Visual C++ and Visual C#, as well as C++ Builder, Delphi, Visual FoxPro
and a variety of other development environments. Any language which is capable of using ActiveX controls
and/or COM objects can take advantage of the SocketTools ActiveX Edition.

Features of the SocketTools ActiveX Edition include:

The ActiveX controls provide a simple interface that is easy to use and understand. There are no
complicated function calls, and most methods support optional arguments that only need to be
specified if required by the application. Most complex operations can be performed with only a few
lines of code.
There are no external dependencies on third party libraries or components, and each ActiveX
component is completely self-contained. We do not require that you redistribute large shared
libraries like the Microsoft Foundation Classes or Visual C++ runtime libraries. Not only does this
make redistribution of your software easier, it can reduce the overall footprint for applications which
do not need to use these libraries themselves.
The controls provide broad-based compatibility with a variety of programming languages, including
scripting languages such as VBScript. Methods and events are designed to use variant data types to
ensure a high degree of compatibility with all development tools.
A comprehensive design which supports both high-level operations as well as lower-level methods
at the protocol level. For example, the File Transfer Protocol component has methods such as
PutFile and GetFile which allow an application to easily upload and download files in a single
method call. It also includes lower-level methods like OpenFile to open a file on the server and
access it in a fashion similar to traditional file I/O operations.
Support for both synchronous (blocking) and asynchronous (non-blocking) operation depending on
the needs of the application. Asynchronous operation is supported by an event-driven model where
the application is notified of networking events by events generated by the component. Event
notification can be enabled, disabled and resumed completely under the control of the application,
giving developers complete freedom in controlling their behavior of their software. Synchronous
operation is also fully supported, enabling developers to easily write programs using a procedural
programming style without the inherent complexity of an event-driven model.
The ActiveX Edition enables applications to take advantage of complex security features, such as
support for the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) standards and up to
256-bit encryption without requiring any knowledge of data encryption or certificate validation. The
components use the Windows CryptoAPI to provide security services, which means that there are no
third-party security libraries that must be installed by your users. Taking advantage of the security
features in the SocketTools ActiveX Edition is as simple as setting a few properties before connecting
to the server. The protocol negotiation, data encryption and decryption is handled transparently by
the control. From the perspective of the application developer, it is just as if it were a standard
connection to the server.

The SocketTools ActiveX Edition includes everything professional software developers need to create
complex programs that take advantage of the standard Internet protocols, enabling developers to focus on
their core application technology rather than the details of how a particular protocol is implemented or
understanding the specifics of Windows Sockets programming.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Getting Started  

SocketTools is a large collection of components that can be used to create a variety of applications, so
deciding what protocols and controls you'll need to use will be the first step. SocketTools covers several
general categories, and there is some cross-over between the components in terms of functionality. We'll
cover the most common programming needs and discuss what protocols should be used. Note that this
section doesn't cover all of the controls in SocketTools, and more specific information for each component
is available within the technical reference documentation.

One thing you'll discover as you start to use SocketTools is that the interface was intentionally designed to
be consistent between many of the controls. For example, both the File Transfer Protocol and Hypertext
Transfer Protocol controls can be used to upload and download files, and the properties, methods and
events for both of those controls are very similar. Once you've become comfortable working with one of
the controls, you'll find it very easy to use the other, related controls.

File Transfers

File Transfer Protocol
Hypertext Transfer Protocol

One of the most common requirements for an application is the ability to upload and download files, either
over the Internet or between systems on a local intranet. There are two core protocols which are used for
file transfers, the File Transfer Protocol (FTP) and the Hypertext Transfer Protocol (HTTP). The decision as to
which protocol to use largely depends on whether or not the program must also perform any type of file
management on the server. Because many of the methods in the FTP and HTTP components are similar,
you may wish to use both and simply give your users an option as to which protocol they prefer to use.

If your program needs to upload files or manage the files on the server, we recommend that you use FTP.
In addition to uploading and downloading files, FTP can be used to rename or delete files, create
directories, list the files in a directory and perform a variety of other functions. On the other hand, if you
primarily need to just download files, HTTP can be a better choice. The protocol is simpler and you're less
likely to encounter some of the issues that can arise when using FTP from behind a firewall.

It is also an option to use FTP to upload and manage files and HTTP to download files within the same
program. The important thing to keep in mind is that if you want to use HTTP and need to upload files, you
must make sure that the server has been configured for it. Most web servers do not support the ability to
upload files by default; it requires the administrator to specifically enable that functionality.

World Wide Web

Hypertext Transfer Protocol

If you need to access documents or execute scripts on a web server, you'll want to use the Hypertext
Transfer Protocol (HTTP) control. You can use the control to download files and post data to scripts. The
control also supports the ability to upload files, either using the PUT command or by using the POST
command, which is the same method used when selecting a file to upload using a form. The control can
also be used to execute custom commands, allowing your application to take advantage of features like
WebDAV, a distributed authoring extension to HTTP.

Electronic Mail

Domain Name Services Protocol
Internet Message Access Protocol



 

Mail Message Library
Post Office Protocol
Simple Mail Transfer Protocol

There are a number of SocketTools components which can be used by an application that needs to send
email messages or retrieve them from a user's mailbox. The email related controls can be broken into three
groups, those that deal primarily with managing and retrieving messages for a user, those which are used
to send messages and those which can be used for either purpose.

The two principal protocols used to manage a user's email are the Post Office Protocol (POP3) and the
Internet Message Access Protocol (IMAP). POP3 is the protocol that the majority of Internet Service
Providers (ISP) use to give their customers access to their messages. It is primarily designed to enable an
application to download the messages from the mail server and store them on the local system. Once all of
the messages have been downloaded, they are deleted from the server. The user's mailbox is essentially
treated as a temporary storage area.

On the other hand, IMAP is designed to allow the application to manage the messages on the server. You
can create new mailboxes, move messages between mailboxes and search for messages. Because IMAP
can be used to access specific parts of a message, it's not necessary to download the entire message if you
just want to read a specific part of it. In terms of the SocketTools controls, it's useful to think of the
properties, methods and events in the IMAP control as a superset of those in the POP3 control. You'll find
that methods used for accessing messages are very similar, but the IMAP component contains additional
methods for managing mailboxes and performing operations that are specific to that protocol, such as the
ability to search for messages.

To send an email message to someone, the protocol that you'll use is the Simple Mail Transfer Protocol
(SMTP). The SocketTools control supports the standard implementation of this protocol, along with many
of the extensions that have been added since its original design. Extended SMTP (ESMTP) provides features
such as authentication, delivery status notification, secure connections using SSL/TLS and so on. Another
component that you may use is the Domain Name Services (DNS) control, which your application can use
to determine what servers are responsible for accepting mail for a particular user.

Common to both sending and receiving email messages is the need to be able to create and process those
messages. An email message has a specific structure which is defined by a number of standards,
collectively called the Multipurpose Internet Mail Extensions (MIME). The SocketTools Mail Message control
can be used to create messages in the format, as well as parse existing messages so that you application
can access the specific information that it needs. For example, you can use this component to attach files to
a message as well as extract a specific file attachment from a message and store it on the local system.

Terminal Sessions

Rlogin Protocol
Telnet Protocol
Terminal Emulation

If you need to establish an interactive terminal session with a server, there are two protocols that you can
use. The most common is the Telnet Protocol; however, there is also the Rlogin protocol which is part of
the Remote Command control. Either of these protocols are typically used in conjunction with the Terminal
Emulation control, which provides ANSI and DEC VT-220 terminal emulation functionality. Used together,
the user can login and interact with the server in the same way that they would use a console or character
based terminal.

Newsgroups

 



File Encoding Library
Mail Message Library
Network News Transfer Protocol

If you need to access newsgroups, the Network News Transfer Protocol will enable you to connect, list,
retrieve and post articles. Because news articles have a format that is very similar to email messages, the
Mail Message control can be used to parse articles that you've downloaded or create new articles to be
posted. If you need to attach a file to the article that you're posting, the File Encoding control can be used
to encode the file using the yEnc encoding algorithm, which has become the de facto standard on
USENET.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 General Concepts  

 

This section of the developer's guide will cover the core networking protocols along with the general
concepts related to Internet programming. Although it is not necessary to understand the lower level
details of network programming in order to use SocketTools, it is useful to be familiar with the basic
concepts and terminology.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Windows Sockets API  

 

The Windows Sockets specification was created by a group of companies, including Microsoft, in an effort
to standardize the TCP/IP suite of protocols under Windows. Prior to Windows Sockets, each vendor
developed their own proprietary libraries, and although they all had similar functionality, the differences
were significant enough to cause problems for the software developers that used them. The biggest
limitation was that, upon choosing to develop against a specific vendor's library, the developer was
"locked" into that particular implementation. A program written against one vendor's product would not
work with another's. Windows Sockets was offered as a solution, leaving developers and their end-users
free to choose any vendor's implementation with the assurance that the product will continue to work.

There are two general approaches that you can take when creating a program that uses the Windows
Sockets API to exchange information over the Internet or a local intranet. One is to code directly against
the API which requires an in-depth understanding of the sockets interface and the application protocol
being used. The other approach is to use a component which provides a higher-level interface that
implements the various protocols by setting properties, calling methods and responding to events. This can
provide a more natural programming interface for many languages, and it allows you to avoid many of the
complex issues associated with network programming. By simply including the control in a project, setting
some properties and responding to events, you can quickly and easily write an Internet-enabled
application. And because of the design of the SocketTools components in general, the learning curve is low
and experimentation is easy.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Application Protocols  

 

Throughout the documentation, you will see the word "protocols" mentioned. There are two general types
of protocols that will be discussed in this developer's guide. The first type of protocol will be referred to as
networking protocols. They are lower level protocols which define how data is exchanged between two
systems. The two networking protocols that will be discussed are the User Datagram Protocol (UDP) and
the Transmission Control Protocol (TCP).

Then there are what we will call the application protocols, which use the networking protocols to
communicate. Application protocols deal with a specific type of functionality. For example, the File Transfer
Protocol (FTP) is used to upload and download files, while the Simple Mail Transfer Protocol (SMTP) is used
to send email messages. Conceptually, you can think of the networking protocols as defining the rules for
how programs can communicate with one another over the Internet. The application protocols operate at
a higher level, defining the rules for how a specific kind of task can be carried out, such as transferring a file
from one computer to another.

The application protocols are defined in standards documents called RFCs (Request For Comments) which
are maintained by the Internet Engineering Task Force. The following protocols standards are implemented
by the SocketTools components:

RFC Description

792 Internet Control Message Protocol

822 Standard for the Format of ARPA Internet Text Messages

854 Telnet Protocol Specification

868 Time Protocol

954 Nicname/Whois Protocol

959 File Transfer Protocol (FTP)

977 Network News Transfer Protocol

1034 Domain Name Services

1055 Serial Line IP (SLIP)

1282 Rlogin

1288 Finger User Information Protocol

1579 Firewall-Friendly FTP

1661 The Point-to-Point Protocol (PPP)

1738 Uniform Resource Locators

1869  SMTP Service Extensions

1939 Post Office Protocol Version 3

1945 Hypertext Transfer Protocol 1.0

1951 Deflate Compressed Data Format Specification

2045 Multipurpose Internet Mail Extensions (Part One)

2046 Multipurpose Internet Mail Extensions (Part Two)

 

http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc854.txt
http://www.ietf.org/rfc/rfc868.txt
http://www.ietf.org/rfc/rfc954.txt
http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc977.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1055.txt
http://www.ietf.org/rfc/rfc1282.txt
http://www.ietf.org/rfc/rfc1288.txt
http://www.ietf.org/rfc/rfc1579.txt
http://www.ietf.org/rfc/rfc1661.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1869.txt
http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt


2047 Multipurpose Internet Mail Extensions (Part Three)

2048 Multipurpose Internet Mail Extensions (Part Three)

2228 FTP Security Extensions

2616 Hypertext Transfer Protocol 1.1

2821 Simple Mail Transfer Protocol (SMTP)

2980 Common NNTP Extensions

3501 Internet Message Access Protocol Version 4

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.ietf.org/rfc/rfc2228.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc2980.txt
http://www.ietf.org/rfc/rfc3501.txt


 Transmission Control Protocol  

 

When two computers wish to exchange information over a network, there are several components that
must be in place before the data can actually be sent and received. Of course, the physical hardware must
exist, which is typically either a network interface card (NIC) or a serial communications port for dial-up
networking connections. Beyond this physical connection, however, computers also need to use a protocol
which defines the parameters of the communication between them. In short, a protocol defines the "rules
of the road" that each computer must follow so that all of the systems in the network can exchange data.
One of the most popular protocols in use today is TCP/IP, which stands for Transmission Control
Protocol/Internet Protocol.

By convention, TCP/IP is used to refer to a suite of protocols, all based on the Internet Protocol (IP). Unlike
a single local network, where every system is directly connected to each other, an internet is a collection of
networks, combined into a single, virtual network. The Internet Protocol provides the means by which any
system on any network can communicate with another as easily as if they were on the same physical
network. Each system, commonly referred to as a host, is assigned a numeric value which can be used to
identify it over the network. These numeric values are known as IP addresses, and are usually represented
as a string value that contains a series of numbers.

There are two versions of TCP/IP and two different IP address formats based on which version of the
protocol is being used. For Internet Protocol v4 (IPv4), addresses are 32 bits wide and are represented by a
sequence of four 8-bit numbers separated by periods. This is called dot-notation and looks something like
192.168.19.64. This is the address format that many developers are familiar with because IPv4 continues to
be the most commonly used version of the protocol. Internet Protocol v6 (IPv6) is the next generation of IP
and it supports a much larger address space as well as a number of other features. IPv6 addresses are 128
bits wide and represented by a sequence of hexadecimal values separated by colons. As expected, this
format is much longer than the simple dot-notation used by IPv4 address. A typical IPv6 address will look
something like fd7c:2f6a:4f4f:ba34::a32, although there are certain shorthand notations that can be used.
SocketTools supports both IPv4 and IPv6, and can automatically determine which version of the protocol
should be used based on the address. Because IPv4 is still widely used, if given a choice between using IPv4
or IPv6, the SocketTools components will choose IPv4 for backwards compatibility whenever possible.
However, an application can choose to exclusively use IPv6 if required.

When a system sends data over the network using the Internet Protocol, it is sent in discrete units called
datagrams, also commonly referred to as packets. A datagram consists of a header followed by
application-defined data. The header contains the addressing information which is used to deliver the
datagram to its destination, much like an envelope is used to address and contain postal mail. And like
postal mail, there is no guarantee that a datagram will actually arrive at its destination. In fact, datagrams
may be lost, duplicated or delivered out of order during their travels over the network. Needless to say, this
kind of unreliability can cause a lot of problems for software developers. What's really needed is a reliable,
straightforward way to exchange data without having to worry about lost packets or mixed data.

To fill this need, the Transmission Control Protocol (TCP) was developed. Built on top of IP, TCP offers a
reliable, full-duplex byte stream which may be read and written to in a fashion similar to reading and
writing a file. The advantages to this are obvious: the application programmer doesn't need to write code
to handle dropped or out-of-order datagrams, and instead can focus on the application itself. And
because the data is presented as a stream of bytes, existing code can be easily adopted and modified to
use TCP.

TCP is known as a connection-oriented protocol. In other words, before two programs can begin to
exchange data they must establish a connection with each other. This is done with a three-way handshake
in which both sides exchange packets and establishes the initial packet sequence numbers. The sequence
number is important because, as mentioned above, datagrams can arrive out of order; this number is used

 



to ensure that data is received in the order that it was sent. When establishing a connection, one program
must assume the role of the client, and the other the server. The client is responsible for initiating the
connection, while the server's responsibility is to wait, listen and respond to incoming connections. Once
the connection has been established, both sides may send and receive data until the connection is
terminated.

Most of the application protocols which are supported by SocketTools use TCP to communicate over the
Internet or local intranet. However, it is important to remember that it is not necessary for you to
understand how TCP/IP works at the lowest levels in order to use SocketTools. Complex operations such as
performing checksums on packets of data to ensure they arrive intact are handled for you automatically. In
most cases, the SocketTools interface provides methods which are similar to what you would use when
reading or writing to a file.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 User Datagram Protocol  

 

Unlike TCP, the User Datagram Protocol (UDP) does not present data as a stream of bytes, nor does it
require that you establish a connection with another program in order to exchange information. Data is
exchanged in discrete units called datagrams, which are similar to IP datagrams. In fact, the only features
that UDP offers over raw IP datagrams are port numbers and an optional checksum.

UDP is sometimes referred to as an unreliable protocol because when a program sends a UDP datagram
over the network, there is no way for it to know that it actually arrived at its destination. This means that the
sender and receiver must typically implement their own application protocol on top of UDP. Much of the
work that TCP does transparently (such as generating checksums, acknowledging the receipt of packets,
retransmitting lost packets and so on) must be performed by the application itself.

With the limitations of UDP, you might wonder why it's used at all. UDP has the advantage over TCP in two
critical areas: speed and packet overhead. Because TCP is a reliable protocol, it goes through great lengths
to insure that data arrives at its destination intact, and as a result it exchanges a fairly high number of
packets over the network. UDP doesn't have this overhead, and is considerably faster than TCP. In those
situations where speed is paramount, or the number of packets sent over the network must be kept to a
minimum, UDP is the solution.

A few of the SocketTools libraries use UDP as the method of communicating with a server. The Domain
Name Services control and the Time Protocol control both use UDP to request information from a server.
The amount of data exchanged is typically very small, and UDP is well suited for those protocols. In
addition, the Internet Control Message Protocol uses a special type of IP datagram in order to determine
information about a server, such as whether it is reachable and the amount of time that it takes to
exchange data with the local system. More information about these protocols will be presented later in the
Developer's Guide.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Domain Names  

 

An application must have several pieces of information to exchange data with a program running on
another system. The first is the Internet Protocol (IP) address of the computer system on which the other
program is running. Although this address is internally represented by a numeric value (either 32 or 127
bits wide), it is typically identified by a logical name called a host name or fully qualified domain name. Host
names are divided into several parts separated by periods, called domains. The structure is hierarchical,
with the top-level domains defining the type of organization that network belongs to, and sub-domains
further identifying the specific network. Everyone who has used a web browser is familiar with host names
such as www.microsoft.com.

In this figure, the top-level domains are "gov" (government agencies), "com" (commercial organizations),
"edu" (educational institutions) and "net" (Internet service providers). The fully qualified domain name is
specified by naming the host and each parent sub-domain above it, separating them with periods. For
example, the fully qualified domain name for the "jupiter" host would be "jupiter.sockettools.com". In other
words, the system "jupiter" is part of the "catalyst" domain (a company's local network) which in turn is part
of the "com" domain (a domain used by all commercial enterprises).

To use a host name instead of an IP address to identify a specific system or network, there must be some
correlation between the two. This is accomplished by one of two means: a local host table or a name
server. A host table is a text file that lists the IP address of a host, followed by the names by which it is
known. A name server is a system which can be presented with a host name and will return that host's IP
address. This approach is advantageous because the host information for the entire network is maintained
in one centralized location, rather than being scattered over every system on the network.

The standard protocol used to convert a host name into an IP address is called the Domain Name Service
(DNS) protocol. All of the SocketTools networking libraries have the ability to automatically convert
between host names and IP addresses, and in most cases they can be used interchangeably. For example,
those methods which require that you specify the name of a server to connect to, you can use either its
host name or its IP address. In addition, SocketTools has a control that specifically supports the Domain
Name Service protocol, enabling your application to send specialized queries to the name server. Later in
the Developer's Guide there will be information about how DNS can be used in a number of different types
of applications.

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Service Ports  

 

In addition to the IP address of the server, an application also needs to know how to address the specific
program that it wishes to communicate with. This is accomplished by specifying a service port, a number
between 1 and 65535 that uniquely identifies an application running on the system. A port can be referred
to by its number, or by a name that is associated with that number. Like hostnames, service names are
usually matched to port numbers through a local file, commonly called services. This file lists the logical
service name, followed by the port number and protocol used by the server.

A number of standard service names are used by Internet-based applications and these are referred to as
Well Known Services. These services are defined by a standards document and include common
application protocols used for transferring files, accessing documents on a webserver or sending and
receiving email messages. In most cases, when connecting to a service using the SocketTools libraries, they
will default to the appropriate port number for that server. For example, the File Transfer Protocol control
has default port values for standard and secure connections. Specifying a different port number is only
necessary if you know that the server has been configured to use a non-standard port number.

It is important to remember that a service name or port number is a way to address an application running
on a server. Because a particular service name is used, it doesn't guarantee that the service is available, just
as dialing a telephone number doesn't guarantee that there is someone at home to answer the call.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Sockets  

 

The previous sections described what information a program needs to communicate over a TCP/IP
network. The next step is for the program to create what is called a socket, a communications end-point
that can be likened to a telephone. However, creating a socket by itself doesn't let you exchange
information, just like having a telephone in your house doesn't mean that you can talk to someone by
simply taking it off the hook. You need to establish a connection with the other program, just as you need
to dial a telephone number, and to do this you need the address of the application that you want to
connect to. This address consists of three key parts: the protocol family, Internet Protocol (IP) address and
the service port number.

We've already talked about the IP address and service port, but what's the protocol family? It's a number
which is used to logically designate a group of related protocols. Since the socket interface is general
enough to be used with several different protocols, the protocol family tells the underlying network
software which protocol is being used by the socket. In our case, the Internet Protocol family will always be
used when creating sockets. With the protocol family, IP address of the system and the service port number
for the program that you want to exchange data with, you're ready to establish a connection.

For the most part, it is not necessary for applications which use the SocketTools controls to directly make
use of the low-level socket interface in order to communicate over the Internet. Instead, SocketTools
provides a higher level of abstraction where a connection is managed through the control interface.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Security Protocols  

 

Security and privacy is a concern for everyone who uses the Internet, and the ability to provide secure
transactions over the Internet has become one of the key requirements for many business applications. The
SocketTools ActiveX Edition has the ability to establish secure connections with servers. Although most of
the technical issues such as data encryption are handled internally by the control, a general understanding
of the standard security protocols is useful when designing your own applications.

When you establish a connection to a server over the Internet (for example, a web server), the data that
you exchange is typically routed over dozens of computer systems until it reaches its destination. Any one
of these systems may monitor and log the data that it forwards, and there is no way for either the sender
or receiver of that data to know if this has been done. Exchanging information over the Internet could be
likened to talking with someone in a public restaurant. Anyone can choose to listen to what you're saying,
and unless they introduce themselves, you have no idea who they are or if they've even heard what you
said.

To ensure that private information can be securely exchanged over the Internet, two basic requirements
must be met: there must be a way to send that information so that only the sender and the receiver can
understand what is being exchanged, and there must be a way for them to determine that they each are in
fact who they claim to be. The solution to the first problem is to use encryption, where a key is used to
encrypt and decrypt the data using a mathematical formula. The second problem is addressed by using
digital certificates. These certificates are issued by a certificate authority (CA), which is a trusted third-party
organization who verifies the individual or company which is issued a certificate are who they claim to be.
These two concepts, encryption and digital certificates, are combined to provide the means to send and
receive secure information over the Internet.

The Secure Sockets Layer (SSL) protocol was originally developed by Netscape as a way to exchange
information securely over the Internet, and is no longer widely used. Improvements to SSL have resulted in
the Transport Layer Security (TLS) protocol, and it has become the the standard for secure communications
over the Internet. Both of these protocols are designed to allow a private exchange of encrypted data
between the sender and receiver, making it unreadable by an intermediate system. Using the restaurant
analogy, it would be as if two people were speaking in a language that only they could understand.
Although someone sitting at the next table could listen in on the conversation, they wouldn't have any idea
what was actually being said.

A secure connection, for example between a web browser and a server, begins with what is called the
handshake phase where the client and server identify themselves. When the client first connects with the
server it sends a block of data to the server and the server responds with its digital certificate, along with its
public key and information about what type of encryption it would like to use. Next, the client generates a
master key and sends this key to the server, which authenticates it. Once the client and server have
completed this exchange, keys are generated which are used to encrypt and decrypt the data that is
exchanged. With the handshake completed, a secure connection between the client and server is
established. SocketTools handles the handshake phase of the secure connection automatically and does
not require any additional programming. If a secure connection cannot be established, an error is returned
and the network connection is closed.

After the handshake phase has completed, the client may choose to examine the digital certificate that has
been returned by the server. The information contained in the certificate includes the date that it was
issued, the date that it expires, information about the organization who issued the certificate (called the
issuer) and to whom the certificate was issued (called the subject of the certificate). The client may also
validate the status of the certificate, determining if it was issued by a trusted certificate authority and was
returned by the same company or individual it was issued to. There may be certain cases where the client
determines that there's a problem with the certificate (for example, if the certificate's common name does

 



not match the domain name of the server), but chooses to continue communicating with the server. Note
that the connection with the server will still be secure in this case. In other cases, for example if the
certificate has expired, the client may choose to terminate the connection and warn the user.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Digital Certificates  

 

With secure connections, digital certificates are used to exchange public keys for data encryption and to
provide identification information. This information typically includes the organization that was issued the
certificate, its physical location and so on. The certificate itself is used to validate that the public key actually
belongs to the entity it was issued to. The certificate also includes information about the Certification
Authority (CA) who issued the certificate. The CA is responsible for validating the information provided by
that organization, and then digitally signing the certificate. This establishes a relationship between the two
so that when others validate the certificate, they know that it has been issued by a trusted third-party. For
example, let's say that a company wants to implement a secure site so people can order products online.
They would provide information about their company (organizational contacts, financial information and so
on) to a trusted third party organization such as Verisign or Thawte. That organization would then verify
that the information they provided was complete and correct, and then would issue a signed certificate to
them, which they install on their server. When a user connects to their server and checks the certificate,
they see that it was issued by a trusted Certification Authority. In essence, the user is saying that because
they trust the Certificate Authority, and the Certificate Authority trusts the company to whom the certificate
was issued, they will trust the company as well.

To establish this relationship between the Certification Authority and the organization a certificate is issued
to, there needs to be a root certificate which has been signed by the same trusted organization. This serves
as the beginning of the certification path that is used to validate signed certificates. Using the above
example, on the user's system there is a root certificate for Verisign, signed by Verisign. Root certificates are
maintained in the local system's certificate store which is essentially a database of digital certificates. This
database is structured so that different types of certificates can be organized in one central location on the
system, and a standard interface is provided to enumerate and validate these certificates. Certificates are
associated with a store name, allowing them to be easily categorized. For example, root certificates are
stored under the name "Root", while a user's personal certificates (along with their private keys) are stored
under the name "My".

When the Windows operating system is installed, there is a certificate store that contains the root
certificates for the major Certification Authorities. However, there are situations where additional certificates
may need to be added to the system. To facilitate this, there is a tool called CertMgr.exe which allows a
user to install certificates, as well as export or remove certificates from the certificate store. When managing
your system's certificate store, you should take the same care that you do when making changes to the

 



system registry. Inadvertently removing a certificate could result in errors when attempting to access secure
systems.

In general, the one situation where certificate management becomes important is when you want to
develop your own secure server. This is because your server needs to have a signed certificate to send to
the client in order to establish the secure connection. For general-purpose commercial applications, this
generally means you would need to obtain a certificate that has been signed by a Certification Authority
such as Verisign or Thawte. This certificate would then be installed in the certificate store on the server.
However, for development purposes it may be inconvenient to purchase a certificate. There also may be
situations in which an organization wishes to function as its own Certification Authority and issue certificates
themselves. This allows the organization to control how certificates are managed and can be ideal for
secure applications that are designed for the corporate intranet. A utility for creating self-signed root
certificates and server certificates is included with SocketTools.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketTools Development  

 

The SocketTools ActiveX Edition provides a comprehensive collection of ActiveX controls for performing a
variety of Internet related programming tasks. Although the number of properties, methods and events
may appear daunting, once you begin using SocketTools in your own applications you'll find that the
various controls are designed to work together in a cohesive fashion. After you've familiarized yourself with
one control, the others will become much simpler to use.

Throughout the Developer's Guide there are some general concepts and terminology used that are
essential to understanding how SocketTools works. Each of these concepts is explored in detail, however a
general, broad overview can also be useful when you are just getting started.

Protocols
A protocol, in terms of how the word is used in SocketTools, refers to the rules for how programs
communicate with one another over a network. There are low level networking protocols such as
TCP and UDP, as well as high level application protocols like FTP and HTTP. It can be helpful to
think of a protocol as a sort of language; for two programs to communicate with each other, they
must agree upon a protocol and understand how it is implemented.

Connections
The process of establishing a connection enables one program to communicate with another.
Connection requests are made by client applications, and accepted by server applications. When
the server accepts the connection request, the connection is completed. When you use the
Connect method to successfully establish a connection to a server, a client session is created.
SocketTools uses a one-to-one relationship between an instance of a control and a client session.
By creating multiple instances of a control, an application can create multiple client/server sessions
if necessary.

Sessions
A session refers to an active connection between a client and server program. This term is typically
used interchangeably with connection; however in some cases a single session may involve
multiple network connections. For example, the File Transfer Protocol control establishes one
connection, called the command channel, when the client initially connects to the server. However,
when a file is being uploaded or downloaded, a second connection called the data channel is
created just for that transfer. When the transfer completes, the second connection is terminated
while the original command channel connection remains active. Even though there are multiple
connections being made, SocketTools considers it to be a single client session. An active session is
referenced by the instance of the control that was used to create the session. When the session is
no longer needed, the control's Disconnect method will terminate the connection to the server
and release the resources allocated for that session. After that point, the session is no longer valid
and subsequent function calls using the control cannot be made until another connection is
established.

Authentication
Many servers require that clients authenticate themselves by providing user names and passwords.
Different application protocols implement several different types of authentication, and some
protocols may support more than one authentication method. SocketTools provides one of two
general types of authentication methods, depending on the protocol. For protocols which require
the client to authenticate itself, the controls will provide a Login method. For protocols where
authentication is optional, the controls will provide an Authenticate method. Refer to the technical
reference for the specific protocol to determine if authentication is required.

 



Events
Developers who use programming languages such as Visual Basic will find the concept of events
and event handling to be very familiar. In general terms, the SocketTools documentation uses
"event" to refer to a mechanism where the control notifies the application that an operation has
completed, some action has taken place or a change in status has occurred. One example of an
event is a connection event, which is generated whenever an asynchronous network connection is
completed by the client. Another example is a progress event, which is generated periodically by
the control to inform the client of its progress as it sends or receives data. To determine what
events are available in a specific control, refer to the documentation. More specific information
about event handling is provided later in this guide.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Application Design  

 

The SocketTools ActiveX Edition is designed to be flexible enough to address the needs of developers who
have very basic needs, as well as those who have more complex requirements. As a result, the properties
and methods for a control can be broken down into two general categories: a high level interface to
perform common tasks, and a lower level interface which provides more control at the expense of being
somewhat more complicated and requiring more coding. For example, consider the Hypertext Transfer
Protocol (HTTP) control which has a variety of high level methods such as GetFile, PostData and so on.
Using these methods, your application can perform the most common tasks for that protocol with a
minimum of coding. You don't need to even understand the basics of how the protocol works, or what the
control is doing. The high level methods allow you to program against the control as though it is a "black
box", where you can provide the input and process the output without concerning yourself with the details
of what's going on behind the scenes.

However, in some cases it's necessary for an application to have more direct control over how the control
operates or to take advantage of features that aren't explicitly supported by one of the higher level
methods. As an example, the HTTP control also has methods like Command, which enable you to send
custom commands to a web server. Normally, for operations like retrieving a file or posting data to a script,
this isn't necessary. But if your application needs to use WebDAV, a set of extensions to the HTTP protocol
to support distributed web authoring, then the lower level methods like Command enable you to do this.

If you are generally new to Internet programming or are just getting started with SocketTools, we
recommend that you begin familiarizing yourself with the higher level methods using a basic synchronous
(blocking) connection in a single-threaded application. Once you become more familiar with how the
control works, then you can move on to more complex applications which leverage the lower level
methods, taking advantage of asynchronous networking connections and so on.

One of the common pitfalls that developers can encounter with a large toolkit like SocketTools is the
inclination to over-design the application from the start, and then become frustrated because they don't
yet have a clear picture of how all the pieces fit together. Start out with a basic design and then as you
become more familiar with how the SocketTools controls work, expand on it.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Program Structure  

 

Applications which use the SocketTools controls will tend to have a similar structure, regardless of the
specific protocol or programming language. While the details vary based on the control being used, the
implementation can be broken down into several general steps:

Initializing the control
Connecting to the server
Authenticating the client
Performing one or more operations
Disconnecting from the server
Uninitializing the control

Initialization prepares the control to be used by your program, and is the first step that must be performed
before you can use any other methods. Next, a connection is established with the server using the
information provided by your program. For example, most of the connection methods require that you
provide a host name, port number, a timeout period for synchronous operations and any additional
options.

If the protocol requires that you authenticate the client in order to use the service, your application needs
to provide this information. Once the client has been authenticated, it can then perform one or more
operations, such as downloading a file, sending an email message and so on.

After you have finished, you disconnect from the server. Finally, before your program terminates, you
uninitialize the control which causes it to perform any necessary housekeeping prior to releasing any
system resources which were allocated on behalf of your program.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Control Initialization  

 

When you begin developing your application using one of the SocketTools controls, the first thing that
must happen is the control must be initialized. In some development environments, such as Visual Basic,
this is done automatically when the control is inserted into a form. In other languages, this must be done
explicitly by calling the Initialize method for each instance of the control.

The initialization method serves two purposes. It loads the Windows networking libraries required to
establish a connection and it validates the runtime license key that you provide. The runtime license key is a
string of characters which identifies your license to use and redistribute the SocketTools controls. It is
unique to your product serial number and must be used when redistributing your application to an end-
user. Many languages will handle the licensing issue transparently, however some languages may require
that you explicitly provide your runtime licensing key.

Developers who are evaluating SocketTools will not have a runtime license key and must pass an empty
string to the Initialize method. This will enable the control to load on the development system during the
evaluation period, but will prevent the control from being redistributed to an end-user until a license has
been purchased.

If you install the product with a serial number, the runtime license key will be automatically created for you
during the installation process. If you have installed an evaluation copy of SocketTools and then purchased
a license, the license key can be created using the License Manager utility that was included with
SocketTools. Simply select the License | Header File menu option and select the programming language
that you are using. If your language is not listed, select Text File, which will create a simple text file with your
license key.

The runtime license key is normally stored in the Include folder where you installed SocketTools and is
defined in a file named "csrtkey11" which can be included with your application. For example, C/C++
programmers would use the csrtkey11.h header file while Visual Basic programmers would use the
csrtkey11.bas module. The Visual Basic module would define the runtime license key as:

'
' SocketTools 11 Build 2174
' Copyright 2024 Catalyst Development Corporation
' All rights reserved
' 
' This file is licensed to you pursuant to the terms of the
' product license agreement included with the original software
' and is protected by copyright law and international treaties.

'
Public Const CSTOOLS11_LICENSE_KEY As String = ""

This could either be included with your Visual Basic application or you could simply copy the string into
your application. The control could then be initialized like this:

'
' Initialize the control using the specified runtime
' license key; if the key is not specified, the
' development license will be used
'
nError = ftpClient.Initialize(CSTOOLS11_LICENSE_KEY) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

If the Initialize method fails, it will return an error code value that indicates the reason for the failure. A

 



return value of zero indicates that the control was initialized successfully.

An application is only required to call a control's initialization method once, but it must be called for each
control that is used. If both the File Transfer Protocol and Hypertext Transfer Protocol controls were being
used in the same application, it would be required to call the Initialize methods for each control at the
beginning of the program.

It is safe to call the initialization method more than once, but for each time that it is called, you should call
the Uninitialize method for that control before your program terminates. In other words, if you called
Initialize at the beginning of your program, you should call Uninitialize before your program ends. The
Uninitialize method performs any necessary housekeeping operations, such as returning memory
allocated for the control back to the operating system. If there are any open connections at the time that
the Uninitialize method is called, they will be aborted. After the control has been uninitialized, you must
call the Initialize method again in order to use any of the control's other methods.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Synchronous and Asynchronous Sockets  

One of the first issues that you'll encounter when developing your application is the difference between
synchronous (blocking) and asynchronous (non-blocking) connections. Whenever you perform some
operation on a socket, it may not be able to complete immediately and return control back to your
program. For example, a read on a socket cannot complete until some data has been sent by the server. If
there is no data waiting to be read, one of two things can happen: the function can wait until some data
has been written on the socket, or it can return immediately with an error that indicates that there is no
data to be read.

The first case is called a synchronous or blocking socket. In other words, the program is "blocked" until the
request for data has been satisfied. When the server does write some data on the socket, the read
operation will complete and execution of the program will resume. The second case is called an
asynchronous or non-blocking socket, and requires that the application recognize the error condition and
handle the situation appropriately.

Programs that use asynchronous sockets typically use one of two methods when sending and receiving
data. The first method is called polling and the program periodically attempts to read or write data from
the socket, typically using a timer. The second method is to use what is called asynchronous event
notification. This means that the program is notified whenever a socket event takes place, and in turn can
respond to that event. For example, if the remote program writes some data to the socket, an event is
generated so that program knows it can read the data from the socket at that point. Events can be in the
form of Windows messages posted to the application's message queue, or as callback functions. With the
ActiveX control, standard COM events call any event handlers that have been written.

Synchronous Sockets
For historical reasons, the default behavior is for sockets to function synchronously and not return until the
operation has completed. However, blocking sockets in Windows can introduce some special problems in
single-threaded applications. To prevent the program from becoming non-responsive, the blocking
function will enter what is called a "message loop" where it continues to process messages sent to it by
Windows and other applications. Because messages are being processed, this means that the program can
be re-entered at a different point with the blocked operation parked on the program's stack. For example,
consider a program that attempts to read some data from the socket when a button is pressed. Because
no data has been written yet, it blocks and the program goes into a message loop. The user then presses a
different button, which causes code to be executed, which in turn attempts to read data from the socket,
and so on.

To resolve the general problems with blocking sockets, the Windows Sockets standard states that there
may only be one outstanding blocked call per thread of execution. This means that applications that are re-
entered (as in the example above) will encounter errors whenever they try to take some action while a
blocking function is already in progress. If the language supports the creation of threads, it is strongly
recommended that the program create worker threads to perform any socket I/O.

There are significant advantages to using blocking sockets. In most cases, the application design and
implementation is simpler, and raw throughput (the rate at which data is sent and received) is generally
higher with blocking sockets because it does not have to go through an event mechanism to notify the
application of a change in status. If you are using a programming language that supports multithreading,
then the use of synchronous sockets is typically the best choice. However, if your are using an older
language that does not provide support for multithreading, such as Visual Basic 6.0, and your program
needs to establish multiple simultaneous connections, then an asynchronous, event-driven design is more
appropriate.

Asynchronous Sockets



 

SocketWrench facilitates the use of asynchronous sockets by generating events when appropriate. For
example, an OnRead event occurs whenever the server writes on the socket, which tells your application
that there is data waiting to be read. The use of non-blocking sockets will be demonstrated in the next
section, and is one of the key areas in which an ActiveX control has a distinct advantage over coding
directly against the Windows Sockets API.

In general, the use asynchronous sockets is preferred when you have a single-threaded application that
must establish multiple, simultaneous connections with a server. In that situation, the use of non-blocking
sockets avoids the restriction that prevents more than one outstanding socket operation in the thread and
can enable the program to remain more responsive to the user. Practically speaking, there are few
languages today that do not support multithreading, so this limitation tends to apply more to the legacy
languages such as Visual Basic 6.0.

Best Practices
If your programming language of choice does support multithreading, it is recommended that you create
worker threads to manage the sockets in your program. This leaves the main thread responsible for
handling the user interface, and the worker threads can handle the network communications. There are
some significant advantages to this approach:

The networking code is generally isolated from the user interface, only requiring that the main UI
thread be notified of the progress of the operation. For example, updating a progress bar control as
the contents of a file is being downloaded. This tends to minimize any clutter in the UI code and
creates a clear separation of functionality that will make the program easier to modify and maintain.
Isolating the networking code in a worker thread ensures that there are no conflicts between other
threads, including the main UI thread. Each thread effectively owns the sockets that it creates, and
those sockets can be used independently of one another without concern about potential conflicts.
Code written using synchronous sockets is typically easier to update, maintain and debug. The
coding style lends itself to a more straight forward, top-down structure and logical errors are usually
easier to find than with code written using asynchronous sockets.
There is less overhead associated with synchronous sockets because no event mechanism is used,
and handlers don't have to be implemented in callback functions. Event notifications that post
messages to hidden window, as is the case with the ActiveX control, have to be processed through
the message queue which is typically shared by the UI thread.
Polling an asynchronous socket can cause spikes in CPU utilization and is generally not
recommended. Applications which attempt to simulate blocking sockets by creating an
asynchronous socket and then polling it can negatively impact the performance of the application,
and in some cases the overall system.

In summary, there are three general approaches that can be taken when building an application with
regard to blocking or non-blocking sockets:

Use a synchronous (blocking) socket. In this mode, the program will not resume execution until the
socket operation has completed. In a single-threaded application, blocking socket operations can
cause code to be re-entered at a different point, leading to complex interactions (and difficult
debugging) if there are multiple active connections in use by the application. If the programming
language supports multithreading, it is recommended that each connection be isolated within its
own worker thread.
Use an asynchronous (non-blocking) socket, which allows your application to respond to events. For
example, when the server writes data to the socket, an OnRead event is generated for the ActiveX
control. Your application can respond by reading the data from the socket, and perhaps send some
data back, depending on the context of the data received. The code required for managing

 



asynchronous sockets can be more complex, however it is the best solution for single-threaded
applications that must establish simultaneous connections.
Use a combination of synchronous and asynchronous socket operations. The ability to switch
between blocking and non-blocking modes "on the fly" provides a powerful and convenient way to
perform socket operations under some circumstances. However, switching between blocking and
non-blocking mode can make the application more complex and difficult to debug. It is important to
note that the warning regarding blocking sockets also applies here.

If you decide to use asynchronous sockets in your application, it's important to keep in mind that you must
check the return value from every read and write operation. It is possible that your may not be able to send
or receive all of the data specified at that time. Frequently, developers encounter problems when they write
a program that assumes a given number of bytes can always be written to or read from the socket. In
many cases, the program works as expected when developed and tested on a local area network, but fails
unpredictably when the program is released to a user that has a slower network connection (such as a
serial dial-up connection to the Internet). By always checking the return values of these operations, you
insure that your program will work correctly, regardless of the speed or configuration of the network.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Connections  

 

The SocketTools ActiveX Edition supports the ability to create secure connections using the standard SSL
and TLS protocols. For those Internet protocols which support secure connections, it is as simple as setting
the Secure property to True or specifying an additional option when the Connect method is called. In some
cases, certain protocols have additional options that control how the secure session is established. Secure
connections may either be implicit or explicit, depending on the protocol. An implicit connection is one
where the client and server begin negotiating the security options as soon as the connection is established.
In most cases, a server which accepts secure implicit connections listens on a port number that is different
from the default port it uses for standard, non-secure connections. An example of this is the Hypertext
Transfer Protocol (HTTP) which accepts standard connections on port 80 and secure connections on port
443. When a client connects to port 443, the server automatically assumes that the client wants a secure
connection.

On the other hand, an explicit connection requires that the client explicitly specify to the server that it wants
a secure connection. Typically this is done by the client sending a command to the server that causes the
server to begin negotiating with the client to establish a secure session. An example of this is the File
Transfer Protocol, where the client can use the AUTH command to tell the server that it wants a secure
connection. Servers may also support both explicit and implicit secure connections, based on which port
the client connects to. SocketTools supports both implicit and explicit secure connections, and this is also
controlled by the options provided to the Connect method.

In addition to establishing a secure connection, the client may be required to provide additional
authentication information to the server in form a client certificate. A secure server may require that the
client provide a certificate in addition to or instead of a username and password. To support this, your
application must specify the security credentials for the client prior to establishing a connection. For more
information, refer to the CertificateStore and CertificateName properties in the Technical Reference for
the control. Additional information about secure connections and certificates is also available in the
Developer's Guide.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Network Input/Output  

 

Each of the SocketTools networking controls provides methods for exchanging data between your
application and the server. At the lowest level, this is done by calling the Write method for sending data
and the Read method for receiving data. In most cases, these methods exchange data as a stream of bytes
without any regard for the actual content. It is important to note that if the data being read or written is
binary, it is recommended that applications pass byte arrays, not strings, to the Read and Write methods if
possible.

When working at this very low level, it is important to understand how data is exchanged over the network.
Many developers are inclined to think of the data that is sent or received in terms of discrete blocks, or
packets. The expectation is that if they send a certain number of bytes of data in a single write, the server
will receive that number of bytes in a single read. However, this is not how TCP works, and by extension,
not how the SocketTools libraries work with regards to this kind of low level network I/O. The Transmission
Control Protocol (TCP) is called a stream-oriented protocol because data is exchanged between the client
and server as a stream of bytes. While TCP will guarantee that the data will arrive intact, with the bytes
received in the same order that they were written, there is no guarantee that the amount of data received
in a single read operation on the socket will match the amount of data sent by the remote host.

For example, consider a server that sends data to a client in four separate operations, each containing 1024
bytes of data. While it is convenient to think of these as discrete blocks of data, TCP considers it to be a
stream of 4096 bytes. The client may receive that data in a single read on the socket, returning all 4096
bytes. Alternatively, it may read the socket, and only receive the first 1460 bytes; subsequent reads may
return another 1460 bytes, followed by the remaining 1176 bytes. Applications which make assumptions
about the amount of data they can read or write in a single operation may work in some environments,
such as on a local network, but fail on slower connections.

A general rule to use when designing an application using TCP is to consider how the program would
handle the situation where reading n bytes of data only returns a single byte. If the application can
correctly handle this kind of extreme case, then it should function correctly even under adverse network
conditions.

In some situations it may be desirable to design the application to exchange information as discrete
messages or blocks of data. While this isn't directly supported by TCP, it can be implemented on top of the
data stream. There are several methods that can be used to accomplish this, depending on the
requirements of the application:

1. Exchange the data as fixed length structures. This is the simplest approach, and has very
little or no overhead. The client and server can either use predefined values, or negotiate
the size of the data structures when the connection is established.

2. Prefix variable-length data structures with the number of bytes being sent. The length value
could be expressed either as a native integer value, or as a fixed-length string that is
converted to a numeric value by the application. This allows the receiver to read this fixed
length value, and then use that value to determine how many additional bytes must be read
to obtain the complete message or data structure.

3. Prefix the data with a unique byte or byte sequence that would normally not be found in
the data stream. This would be followed by the data itself, with a complete message
received when another unique byte sequence is encountered. Alternatively, a unique byte
sequence could be used to terminate a message. This is the approach that many Internet
application protocols use, such as FTP, SMTP and POP3. Commands are sent as one or
more printable characters, terminated with a carriage-return (CR) and linefeed (LF) byte

 



sequence that tells the server that a complete command has been received.

4. A combination of the above methods, using unique byte sequences, the message length
and even additional information such as a CRC-32 checksum or MD5 hash to validate the
integrity of the data. This would effectively create an "envelope" around the data being
exchanged, and additional checks could be made to ensure that the data has been received
and processed correctly.

Regardless of the method used, for best performance it is recommended that the application buffer the
data received and then process the data out of that buffer. When using asynchronous (non-blocking)
connections, the application should read all of the data available on the socket, typically in a loop which
adds the data to the buffer and exiting the loop when there is no more data available at that time.

It is important to keep in mind that all of this is only required if you decide to use the lower level methods
in the SocketTools controls. The higher level methods automatically handle the lower level network I/O for
you. For example, the GetData method in the File Transfer Protocol control will retrieve a file from the
server and return the entire contents to your application in a single method call. When using the high level
methods, the details of how the data is read and processed is handled by the control and no additional
coding is required on your part.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Event Handling  

 

In SocketTools, event notification provides a mechanism for the component to inform the application of a
change in the status of the current session. Events are generally divided into two general categories,
asynchronous network events and status events.

Asynchronous network events occur when a non-blocking connection is established and a network event
occurs, such as a connection completing or data arriving from the server. Status events are used to indicate
a change in status, such as a blocking operation being canceled or the progress of an operation such as a
file transfer.

Asynchronous network events require that the Blocking property for the control be set to False. This will set
the control into a non-blocking mode. All of the networking controls share the same common set of events
and all function in a similar way. These events are:

OnConnect
This event is generated whenever a connection to a server has completed. Unlike a blocking
connection, when the control is in non-blocking mode, a successful call to the Connect method
does not indicate that you are actually connected to the host. Instead, it means that the
connection process has been started. Your application will not actually be connected until the
OnConnect event fires.

OnDisconnect
This event is generated whenever the server closes its socket and terminates the connection with
your application. Note that this event will not fire when you disconnect from the host by calling the
Disconnect method; it only fires when the server closes its connection to you. It is also important
to keep in mind that although the server has disconnected from you, there still may be data
buffered on your local system, waiting to be read. If you are performing any low-level network I/O,
your program should continue to call the Read method until it returns a value of zero, indicating
that all of the available data has been read.

OnRead
This event is generated whenever the server sends data to your application. Once this event has
fired, it will not be triggered again until you read at least some of the data that has been sent to
you. It is not recommended that any complex operations be performed in the OnError event
handler. Applications should update any state variables or user interface objects and exit the
handler immediately. Performing another operation using the control in an OnError handler can
potentially result in the event handler being called recursively.

OnWrite
This event is generated whenever there is enough memory available in the local send buffers to
accommodate some data. It is generated after a connection has completed, which tells your
application that it may begin sending data to the server. It will also be generated if a call to the
Write method fails with the error that it would cause the application to block. In this case, when
the socket is able to send more data, the OnWrite event will fire.

An important consideration when it comes to event handling is that all asynchronous network events are
level triggered. This means that once an event is fired, it will not be fired again until some action is taken by
the application to handle the event. This is most commonly found with OnRead events, which are
generated when the server sends data to your application, signaling to you that there is data available to
be read. Even though the server may continue sending you more data, another OnRead event will not be
generated until you read at least some of the data that has been sent to you. This is done to prevent the
application from being flooded with event notifications. However, failure to handle an event can cause

 



event notification to appear to stall. It is recommended that you do not do excessive processing in an event
handler that would cause the thread to block or enter a message loop. This can have a significant negative
effect on performance and can lead to unexpected behavior on the part of your application. Instead, it's
recommended that you buffer the data that you receive and then process that data after exiting the event
handler.

Status related events are different because they do not depend on the value of the Blocking property, and
are not directly related to asynchronous network operations. The most typical status event is the
OnProgress event, which is used to provide information to the application about the status of a blocking
operation, such as file transfer using the File Transfer Protocol control. The most common status events are:

OnCommand
This event is used by the control to inform the application of the status of a command sent to the
server. It applies to those protocols which use explicit commands to initiate actions. Examples
would be the File Transfer Protocol (FTP) control, Hypertext Transfer Protocol (HTTP) control and
Internet Message Access Protocol (IMAP) control. Note that the actual result codes returned by
the servers depend on the specific protocol, and can also vary among various server
implementations.

OnError
This event is used by the control to indicate an error has occurred. This event is only generated
when a method is called, never as the result of setting a property value.

OnProgress
This event is used by the control to inform the application of the progress of a blocking operation,
such as a file transfer. Note that in some cases, the control may not be able to determine the total
amount of data to be transferred, which would prevent a percentage from being calculated. For
example, this can occur using the Hypertext Transfer Protocol (HTTP) control if the resource being
downloaded is created dynamically on the server, such as an ASP page. In this case, because the
server is unable to specify the total size of the resource, the control will not be able to calculate a
percentage. Instead, it will simply inform the program of the amount of data copied to the local
host up to that point.

These events are typically used to update a user interface. For example, the OnProgress event may be
used to update a ProgressBar control, or a warning dialog may be displayed if an OnError event occurs.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Error Handling  

 

Error conditions can occur in one of two general circumstances, either when setting a property in the
control or when calling a method. If the error occurs when setting a property, an exception will be
generated which must be caught and handled by the application. Failure to do this will typically result in the
program displaying an error message and then terminating. For example, in Visual Basic, the On Error
statement can be used to establish an error handler.

Methods are a bit different in that errors can be handled in one of two ways. By default, when a method is
called it will return a numeric value. A value of zero indicates that the method completed successfully and
that no error occurred. A non-zero return value specifies an error code which indicates the reason for the
failure. For programmers who prefer to handle exceptions, rather than check return values for each
method, the controls have a property called ThrowError. If set to True, then when a method fails it will
throw an exception that must be caught by the application. Just as an error that occurs when setting a
property, if the ThrowError property is set to true and an error occurs without there being an exception
handler in place, the application will typically terminate.

To determine the error code for the last error generated by the control, use the LastError property. To
display a description of the error to the user, the LastErrorString property will can be used. This returns a
string that describes the error which corresponds to the value of the LastError property. It is permitted to
set the LastError property to a value of zero in order to clear the last error code.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Debugging Facilities  

 

All of the SocketTools networking controls include a built-in facility for generating debugging output in the
form of a log file that provides information about the internal functions that it is using and the data that is
being exchanged between the client and server. This is commonly referred to in the documentation as
generating a trace log or enabling function logging.

To provide logging functionality for your application, you must redistribute the cstrcv11.dll library along
with those SocketTools controls you are using in your program. The cstrcv11.dll library is what performs
the actual logging and must be in a directory where it can be loaded by your application. It is
recommended that you either install it in the Windows system directory or the directory where your
application is installed. Note that this is a standard Windows dynamic link library and it does not need to be
registered.

To create a trace log, your application must set the TraceFile property to the name of a file, the
TraceFlags property to the level of logging desired and then set the Trace property to True. The default
level of logging, zero, specifies that general information about the function calls being made will be
logged. The most detailed logging is provided by specifying a level of four. In that case, all data exchanged
between your application and the server is logged. This provides the most information, however it also
generates the largest log files. To disable logging, set the Trace property to False.

There are two important things that you need to consider when enabling trace logging. The first is that the
log file is always appended to, never overwritten by the control. This means that the files can grow to be
very large, particularly with trace that includes all of the data sent and received by your application. You
can use the standard file I/O functions in your language to manage the log file or even write your own data
out to the file. Each time the file is written to, SocketTools will open the file, append the logging data and
then close the file. The controls will never keep the file open between operations. This is important because
if your application terminates abnormally, it ensures all of the logging data has been written and there are
no open file handles being held by one of the controls. However, this does incur additional overhead and
can impact the performance of your application. When possible, it is recommended that you enable
logging around the code that you feel may be part of the problem you're trying to resolve, and then
disable logging when it is no longer required. Simply enabling logging at the beginning of your application
can result in unnecessarily large log files.

If your application uses multiple SocketTools controls, it is only necessary to enable logging in one of them.
Once enabled, all SocketTools network operations in the current thread will be logged, regardless of which
control has enabled logging.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Language Support  

 

The SocketTools ActiveX Edition can be used with a wide variety of programming languages and software
development tools for Windows. To determine if your development language is capable of using the
ActiveX Edition, it should support all of the following features:

It needs to support the Component Object Model (COM) specification, and support the ability to
create instances of a COM object. This is typically done in one of three ways: a function call to create
an instance of the object, adding the object to a project and referencing it, or placing the object on a
visual form or dialog.
The language must provide support for variant data types. A variant is a special data type which can
be used to represent multiple types of data, including integer, string, date and currency values. All of
the SocketTools methods and events use variant types and the developer is responsible for
converting those variants into the required data type. For example, in Visual C++, this can be
accomplished using the CComVariant class.
The language must support passing method parameters by value and by reference. When a variable
is "passed by value", a copy of its value is passed to the method and the original value remains
unchanged. However, when a variable is "passed by reference", the memory address of the variable
(typically called a pointer) is passed to the method, enabling the method to modify its value. In most
cases, this is handled transparently by the language. Note that some languages may require that you
explicitly specify that a variable will be passed by reference using a specific keyword.
The language must support event handlers which have variants passed by value as event
parameters. If the language incorrectly assumes that all event parameters are passed by reference,
this will prevent event notifications from working correctly. In general this is not an issue with any
current languages, but may present a problem in older versions of a language. If you experience a
problem with event handling in your language, contact the company to make sure that they are
capable of correctly handling event notifications from an ActiveX component that passes parameters
by value.

Microsoft Visual Basic, Visual C++ and C++ Builder are all examples of languages which can use the
SocketTools ActiveX Edition. If your programming language is capable of using ActiveX controls or
indicates that it supports OLE Automation, then you should be able to use SocketTools. Consult your
language technical reference for additional information about how to create an instance of an
ActiveX/COM object and reference its properties, methods and events.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Data Types  

 

Because various languages handle data types in different ways, the SocketTools components have been
designed to use variants. A variant is a special data type which can be used to represent multiple types of
data, including integer, string, date and currency values. All of the SocketTools methods and events use
variant types and the developer is responsible for converting those variants into the required data type. For
example, in Visual C++, this can be accomplished using the CComVariant class.

In addition to variant types, the controls also use numeric data types for many property values. The
following is a list of numeric data types that are used, along with their C and Visual Basic equivalents.

Description Size Range C / C++ VB 6 VB.NET

Byte 1 byte 0 to 255 BYTE Byte Byte

Boolean 4 bytes 0 is False, 1 is True BOOL Long Integer

Integer 4 bytes -2,147,483,648 to 2,147,483,647 INT Long Integer

Integer 4 bytes 0 to 4,294,967,295 UINT Long Integer

Short Integer 2 bytes -32,768 to 32,767 SHORT Integer Short

Short Integer 2 bytes 0 to 65,535 WORD Integer Short

Long Integer 4 bytes -2,147,483,648 to 2,147,483,647 LONG Long Integer

Long Integer 4 bytes 0 to 4,294,967,295 DWORD Long Integer

One problem that is frequently encountered when converting function definitions from C or C++ to other
languages is the size of the integer data type. For example, default integer size for Visual Basic 6 is 16-bits
on 32-bit platforms. However, in Visual Basic.NET, as well as languages like Visual C++, the default integer
size is 32-bits. Also, some languages do not support unsigned integer types. In this case, as with Visual
Basic, the signed type should be used instead.

Boolean Data
Boolean parameters present a special problem for two reasons. Firstly, the data types used to represent
boolean values frequently vary between languages. Secondly, different languages represent the values
"true" and "false" differently. In languages like Visual C++, boolean parameters should always be passed as
32-bit signed integers.

String Data
String arguments can also present a problem when calling methods from languages such as Visual C++. All
strings, regardless of whether they are assigned to property values or to be passed as arguments, must be
specified as BSTRs. A BSTR is essentially a null-terminated Unicode string with the length of the string
prepended to it. Each character in the BSTR is represented as a 16-bit value. With languages such as Visual
Basic, strings are handled transparently. However, in C++ it is required that those strings be allocated and
managed by the application. It is recommended that you use classes like CComBSTR to represent your
string values.

If you are unsure of how your language handles BSTRs, we recommend that you review the language's
technical reference for information on how to assign string values to the property of a COM object, or
when calling a method. If your language supports COM interfaces, it will typically either handle BSTR strings
transparently or provide a collection of functions which can be used to create, modify and delete them.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 Unicode  

 

Unicode is a multi-language character set designed to encompass virtually all of the characters used with
computers today. Unicode characters are represented by a 16-bit value, and differ from other character
sets in two important ways. First, unlike the traditional single-byte (ANSI) character sets, Unicode is capable
of representing significantly more characters in a variety of languages. Second, unlike multi-byte character
sets (where some characters may be one byte in length, while others may be two bytes), the characters are
fixed-width, which makes them easier to work with.

Whenever a string is assigned to a property value or passed to a method, that string is in Unicode. If
necessary, the control will automatically convert that string to ANSI and it does not require any additional
programming on the part of the developer. This is all largely transparent when using the components in
high-level languages like Visual Basic. However, in Visual C++ and other languages that deal with COM
objects on a lower level, it is important to understand that string values must be passed as BSTRs, which are
Unicode strings.

The issue that most commonly confronts developers with regards to how strings are handled by the
SocketTools components are with regards to the Read and Write methods. These methods are used to
send and receive data over the network, and accept several different types of data. Typically, the data is
exchanged as either a string of text characters, or as an array of bytes. Consider the following code:

Dim strMessage As String
Dim strBuffer As String
Dim cbBuffer As Long

Do

  cbBuffer = SocketWrench1.Read(strBuffer, 1024)
  If cbBuffer > 0 Then strMessage = strMessage + strBuffer

Loop Until cbBuffer < 1

In this case, the program expects to receive data from the server which is textual, and it will be stored in the
string strMessage. What happens internally is that the data received from the server is automatically
converted from an array of bytes into a string by the control. This is done because the control knows that
the strBuffer argument is typed as a String, which means it is Unicode. However, what if the data being
returned by the server contains binary data or is already Unicode text? In this case, the data may end up
being corrupted because of the conversion performed by the control. To prevent this, the solution is to
read the data into an array of bytes rather than a string. For example:

Dim byteMessage() As Byte
Dim byteBuffer(1024) As Byte
Dim cbMessage As Long
Dim cbBuffer As Long

Do
  cbBuffer = SocketWrench1.Read(byteBuffer, 1024)

  If cbBuffer > 0 Then
    ReDim Preserve byteMessage(cbMessage + cbBuffer) As Byte

    For nIndex = 0 To cbBuffer - 1
      byteMessage(cbMessage + nIndex) = byteBuffer(nIndex)
    Next
    cbMessage = cbMessage + cbBuffer
  End If

 



Loop Until cbBuffer < 1

In this case, because the data is being read into a byte array, not a string, then no Unicode conversion is
performed and the data is returned exactly as it was sent. Note that Visual Basic also supports the ability to
explicitly convert between Unicode strings and byte arrays using the StrConv function. For more
information, refer to the language reference and online help in Visual Basic.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Microsoft Visual C++  

 

The SocketTools controls can be used in Visual C++ in several ways, depending on the type of program
being developed and the way in which the control will be utilized. Although much of the complexity of
COM can be hidden through the use of wrapper classes and smart pointers, development using COM
objects is still more complex than simply using the MFC classes with which most Windows developers are
familiar.

One of the first things that a C++ developer will encounter when programming with the control is that all
of the methods use a data type called a variant. Most developers aren't familiar with what a variant is or
how it should be used unless they have experience with COM programming, so this is a frequent point of
confusion. The simplest definition is that a variant is a structure which contains type information and a
union of intrinsic data types such as characters, integers and so on. The variant essentially serves as a
generic data type, and the function being called has the responsibility of using or converting that data as
necessary. In addition to the VARIANT structure itself, there are several classes which encapsulate variants,
such as _variant_t, COleVariant and CComVariant. These classes make it easier for C++ programmers to
use variants, and for the most part allows them to be used just as if the variant was an intrinsic type.

Another data type that may be unfamiliar is the BSTR, which is used for string data. Similar to C strings, the
BSTR is a pointer to a null terminated array of characters which make up a string. However, there are some
significant differences between the two. First, a BSTR always uses the Unicode character set, even if the
program itself does not use Unicode. That means that each character in the BSTR is actually 16 bits, so
special care must be taken to not assume that a character in the string is equivalent to a single byte.
Second, although BSTR strings are null terminated, they may actually contain embedded nulls. This is
because the BSTR also has information about the length of the string, so standard string functions (even
the Unicode versions of them) should not be used if there is a chance that the string contains embedded
nulls. Part of the Automation API is a collection of functions which manage BSTR strings, such as
SysAllocString and SysStringLen. However, most programmers prefer to use one of the classes which
encapsulate BSTRs, such as _bstr_t and CComBSTR.

In addition to the COM data types, another aspect of using COM objects is that most COM related
functions return HRESULT values. The HRESULT is a 32-bit unsigned integer which contains status
information about an error or warning returned by a function. Two macros which are commonly used are
FAILED and SUCCEEDED which are used to determine whether or not the HRESULT value indicates that the
function failed or was successful. All COM object methods and property accessor functions return HRESULT
values which must be checked by the caller to ensure that the function was called correctly.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Microsoft Foundation Classes  

The SocketTools controls can be used with MFC based applications by including the control in the project
that is being developed. This is done through the Visual C++ IDE by selecting the menu option Project |
Add to Project | Components and Controls. This will display a dialog which is used to select the
component to add. First select the Registered ActiveX Controls folder, scroll over to the control that you're
interested in using, and press the Insert button. A dialog is then displayed which determines the class name
and files which will be generated to "wrap" the ActiveX control. A new source file will be added to the
project which contains the methods for the wrapper class that was created. A header file will also be
created and included in the header file for the dialog class.

To create an instance of the control, the simplest approach is to create a dialog-based application, in which
case the control can be selected from the dialog component palette, similar to how controls are placed on
forms in Visual Basic. The control is included as a resource and assigned a resource ID.

Then, using the MFC Class Wizard, a member variable for the dialog class is assigned to that instance of
the control. This means that a declaration similar to this will be added to the dialog class:

CFtpClient m_ctlFtpClient;

In the DoDataExchange method, a line will be added which initializes the control when the dialog is
created:

DDX_Control(pDX, IDC_FTPCLIENT1, m_ctlFtpClient);

Now, any of the control's properties or methods may be accessed through the member variable for the
CFtpClient class. For example:

COleVariant varServerName(m_strServerName);
COleVariant varServerPort(m_nServerPort);
COleVariant varUserName(m_strUserName);
COleVariant varPassword(m_strPassword);
COleVariant varAccount(m_strAccount);
COleVariant varTimeout(m_nTimeout);
COleVariant varLocalFile(m_strLocalFile);
COleVariant varRemoteFile(m_strRemoteFile);
COleVariant varOptions;
COleVariant varError;
 
varError = m_ctlFtpClient.Connect(varServerName,
                                  varServerPort,
                                  varUserName,
                                  varPassword,
                                  varAccount,
                                  varTimeout,
                                  varOptions);

varError.ChangeType(VT_I4);

if (V_I4(&varError) != 0)
{
    CString strError;
    strError.Format(_T("Unable to connect to %s\n%s"),
        m_strServerName,
        m_ctlFtpClient.GetLastErrorString());

    AfxMessageBox(strError, MB_ICONEXCLAMATION, 0);
}
else



 {
    CString strMessage;
    LONG nBytes ;
    COleVariant varRestartOffset;
    varError = m_ctlFtpClient.GetFile(varLocalFile, 
                                           varRemoteFile, 
                                           varRestartOffset);
        
    varError.ChangeType(VT_I4);

    if (V_I4(&varError) != 0)
    {
        CString strError;
        strError.Format(_T("Unable to download %s\n%s"),
                m_strRemoteFile,
                m_ctlFtpClient.GetLastErrorString());
        AfxMessageBox(strError, MB_ICONEXCLAMATION, 0);
    }
    else
    {
        nBytes = m_ctlFtpClient.GetTransferBytes();    
        strMessage.Format(_T("Transferred %ld bytes of %s"), 
                                       nBytes, m_strRemoteFile);
        AfxMessageBox(strMessage, MB_ICONINFORMATION, 0);
    }
    m_ctlFtpClient.Disconnect();
}
In this example, the arguments are converted to variants by initializing COleVariant variables which are
then passed to the Connect method. There are two important things to note here. First, even though the
documentation lists some of the arguments as optional, when using the control this way in C++, you must
specify all of them. This is because optional parameters really aren't omitted from the method; they are still
passed as variants, but instead of having a value, they are initialized to tell the control that they were not
specified. This is accomplished here by passing an empty (uninitialized) COleVariant, as with the
varOptions variable. The second important point is that although the method is documented as returning
a long integer, the actual return type is a variant that contains a long integer value. Similar considerations
apply to the GetFile method. By contrast, GetTransferBytes corresponds to the long-valued property
TransferBytes, and not to a method of the control, so it really does return a long integer.

You'll notice that in this code, there are also some macros being used with the variant types. The first one is
used when checking the return value from the method:

varError.ChangeType(VT_I4);

if (V_I4(&varError) != 0)
{
    .
    .
    .
}

The ChangeType method for the COleVariant class changes the type of variant, in this case to a long
integer, specified by the value VT_I4. What this does is coerce the variant data into a long integer if it
already isn't one. If the variant already represents a long integer, then the call to ChangeType doesn't
have any effect. Next, the V_I4 macro is used to obtain the actual value from the long integer. Note that it
expects a pointer to a variant, not the variant itself.

 

  



Copyright © 2024 Catalyst Development Corporation. All rights reserved.



 Instantiating CWnd Based Controls  

 

To create an instance of the control in an MFC application without using a dialog, add the control to the
project using the same method described previously. However, instead of placing the control on a dialog
using the resource editor, declare an instance of the class that will be using the control. Then, call the
Create function to create an instance of the control for that class. For example:

CRect rcNull;
BSTR bstrLicKey;
BOOL bCreated;
USES_CONVERSION;

bstrLicKey = SysAllocString(T2OLE(CSTOOLS11_LICENSE_KEY));
bCreated = m_ctlFtpClient.Create(NULL,         // window name
                                 0,            // window style
                                 rcNull,       // window rect
                                 this,         // parent window
                                 IDC_CONTROL,  // control ID
                                 NULL,         // persistent storage
                                 FALSE,        // IStorage
                                 bstrLicKey);  // license key

if (bCreated == FALSE)
{
    AfxMessageBox(_T("Control creation failed"), MB_ICONEXCLAMATION);
    EndDialog(0);
}

Because the control is not part of the program's resources as in the previous example, an instance of the
control must be explicitly created by calling the Create method. Because the File Transfer control is not
visible at runtime, most of the window arguments are null. However, it is still required that a parent window
be specified; in this case, the this pointer is used. If the class that is using the control is not derived from
CWnd, a hidden window can be created and specified as the parent instead.

Another issue is that to create an instance of the control, the application must pass it a runtime license key.
This is a BSTR string which is used by the control to determine if it can be used in an application. If this
string is NULL, then the control will only load if the current system has a valid development license. If it is
not NULL, then the license key is validated and an instance of the control is created. The license key for
SocketTools is defined in the cstools11.h header file, found in the Include folder where the product was
installed. Note that the key value will be NULL for evaluation versions of the control, which means that the
application cannot be redistributed until a license has been purchased.

The SysAllocString function is used to create the license key BSTR and this requires that the license key be
converted to Unicode. In afxpriv.h there are several string conversion macros that are useful for converting
between ANSI and Unicode. One is OLE2T which converts a Unicode string to an LPTSTR, and the other is
T2OLE which converts an LPTSTR to a Unicode string. The afxpriv.h header file is not usually included in
MFC applications, so it will need to be added to StdAfx.h manually.

The USES_CONVERSION macro is required and must be included in the function prior to using any of the
conversion macros. In this case, T2OLE is used to convert the ANSI license key string to Unicode, and then
that is passed to SysAllocString to create a BSTR. It should be noted that OLE2T and T2OLE allocate
memory from the stack to do the conversion, so they should not be used with very large amounts of data.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Importing ActiveX Controls  

In Visual C++ 6.0 and later versions, using the #import compiler directive is an alternative to adding the
control to a project through the IDE. Similar to how header files are included in an application, this directive
incorporates information from a type library, automatically creating wrapper classes for its interfaces. These
classes use smart pointers which handle things like reference counting automatically, and make actually
using the control's interface much simpler.

To use this method of referencing a control, the first thing that needs to be done is to import the control
into the module where it will be used. This is done using the #import directive which can be placed in an
appropriate header file. For example, to import the File Transfer Protocol control, you would use:

#import "csftpx11.ocx" no_namespace named_guids

The no_namespace attribute specifies that the interface classes should not be defined in a namespace.
Normally, a namespace is created which is based on the name of the control. The named_guids attribute
tells the compiler to initialize the GUID variables using the standard naming convention.

The next step is to declare a variable that is used to reference an instance of the control. For example, the
following could be included in the definition of a class:

IFtpClientPtr m_pIFtpClient;

Note that the member variable is declared as type IFtpClientPtr, which is a specialization of the smart
pointer _com_ptr_t template class. If errors are encountered when compiling the application indicating
that the compiler cannot instantiate an abstract class (because the class contains pure virtual functions)
then most likely the member variable was declared as type IFtpClient, which is incorrect. Don't forget the
"Ptr" on the end of the name.

To use the control, an instance of the control must be created using the CreateInstance function.
However, before that can be done, the COM subsystem must be initialized by the application. For MFC
based applications, this is accomplished by calling the function AfxOleInit which is essentially a wrapper
around CoInitializeEx. This should be done fairly early in the application, typically in the InitInstance
function of the CWinApp derived application class. Next, the control's CreateInstance member function
must be called before it is used:

HRESULT hr;
 
hr = m_pIFtpClient.CreateInstance(CLSID_FtpClient);
if (FAILED(hr))
{
    AfxMessageBox(_T("Control creation failed"), MB_ICONEXCLAMATION);
    return;
}

The HRESULT return value should be 0, which indicates that an instance of the control was created
successfully. If an error is returned, this typically means that AfxOleInit (or CoInitializeEx) was not called
first, or the control has not been registered on the system.

Unlike the previous examples where the initialization of the control was performed automatically or by
calling the Create function, this instance of the control should be explicitly initialized by calling the
Initialize method:

_variant_t varLicKey;
_variant_t varError;
USES_CONVERSION;

// Create the runtime license key defined in csrtkey11.h
varLicKey = SysAllocString(T2OLE(CSTOOLS11_LICENSE_KEY));



 

// Initialize the control
varError = m_pIFtpClient->Initialize(varLicKey);
if (V_I4(&varError) != 0)
{
    AfxMessageBox(_T("Control initialization failed"), MB_ICONEXCLAMATION);
    return;
}

Just as in the previous example using the Create method, the runtime license key is created by converting
it to Unicode and then calling SysAllocString to create a BSTR string. Because the control methods use
variants, this key is assigned to a variant. Note that the _variant_t type is used, which is a COM support
class which encapsulates a variant. The Initialize method returns a long integer variant which specifies an
error code. A value of zero indicates that the control was successfully initialized, while a non-zero value is
an error code.

Once the control has been created and initialized, it can be used in a fashion similar to how the previous
examples were written:

_variant_t varServerName(m_strServerName);
_variant_t varServerPort(m_nServerPort);
_variant_t varUserName(m_strUserName);
_variant_t varPassword(m_strPassword);
_variant_t varAccount(m_strAccount);
_variant_t varTimeout(m_nTimeout);
_variant_t varLocalFile(m_strLocalFile);
_variant_t varRemoteFile(m_strRemoteFile);
_variant_t varOptions;
_variant_t varError;

varError = m_pIFtpClient->Connect(varServerName,
                                  varServerPort,
                                  varUserName,
                                  varPassword,
                                  varAccount,
                                  varTimeout,
                                  varOptions);

if (V_I4(&varError) != 0)
{
    CString strError;
    USES_CONVERSION;

    strError.Format(_T("Unable to connect to %s\n%s"),
                    m_strServerName,
                    OLE2T(m_pIFtpClient->GetLastErrorString()));

    AfxMessageBox(strError, MB_ICONEXCLAMATION, 0);
}
else
{
    CString strMessage;
    _variant_t varRestartOffset;
    LONG nBytes ;
    
    varError = m_pIFtpClient->GetFile(varLocalFile, 
                                      varRemoteFile, 
                                      varRestartOffset);
    if (V_I4(&varError) != 0)

 



    {
        CString strError;
        USES_CONVERSION;

        strError.Format(_T("Unable to get %s\n%s"),
                    m_strRemoteFile,
                    OLE2T(m_pIFtpClient->GetLastErrorString()));

        AfxMessageBox(strError, MB_ICONEXCLAMATION, 0);
    }
    else
    {
        nBytes = m_pIFtpClient->TransferBytes;    
        strMessage.Format(_T("Transferred %ld bytesof %s"), 
                          nBytes, m_strRemoteFile);
        AfxMessageBox(strMessage, MB_ICONINFORMATION, 0);
    }
    m_pIFtpClient->Disconnect();
}

There are two significant differences between the previous examples which use the control as a CWnd
derived class, and this class which is based on COM smart pointers. The first is that methods are accessed
through the m_pIFtpClient object as a pointer to the interface, so the -> operator is used. The second is
that the control's properties, such as TransferBytes, can be accessed as if they are member variables of
the class rather than using accessor functions like GetTransferBytes. This is a bit of slight-of-hand being
performed by the interface class using the __declspec(property) extension. For example, the TransferBytes
member is declared as:

__declspec(property(get=GetTransferBytes)) long TransferBytes;

This tells the compiler whenever the TransferBytes member is read, it should call the GetTransferBytes
function to return the value. So, in effect the above code is changed by the compiler into:

nBytes = m_pIFtpClient->GetTransferBytes();

Either method may be used, so it is generally up to the personal preferences of the developer as to which
is used.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Component Object Model API  

Another approach that can be used to create an instance of an ActiveX control in your C++ program is to
use the COM API directly. Generally speaking this option should only be used if absolutely necessary; it is a
more complex process and involves more coding than either using CWnd derived controls or the #import
directive.

The first step is to create the header file for the interface defined in the control's type library. This will
require two tools that are included with Visual C++ and the Microsoft Windows SDK; the COM Object
Viewer, and the Microsoft Interface Definition Language (MIDL) compiler. These tools can also be
downloaded from Microsoft from their MSDN resources section of the website.

To create the interface definition (IDL) file, start the COM Object Viewer, select the Control folder and then
the control you are interested in. For purposes of this example, we'll use the File Transfer Protocol control.
Right click on the control and select View Type Information. This will open the ITypeLib Viewer window
which contains the interface definition. Select File | Save As and save it as csftpctl.idl in the project
directory. Close the viewer window and exit the COM Object Viewer.

Once the IDL file has been created, open the IDL file in the editor and look for a series of enum typedefs
which define the constants for the control:

typedef [public]
    _ftpOptionsConstants ftpOptionsConstants;

    typedef enum {
        ftpOptionHttpNocache = 1,
        ftpOptionFtpSecureAuth = 8192
    } _ftpOptionsConstants;

These declarations are a side-effect of how the COM Object Viewer generates the IDL file and it needs to
be cleaned up a bit so that the MIDL compiler generates the correct header file. Remove the typedef
[public] section before each typedef enum section in the file. In other words, you would want to remove
each section that looks like:

typedef [public]
    _ftpOptionsConstants ftpOptionsConstants;

The actual enum typedefs can stay in the IDL so that they're included in the header file and can be used by
the application. Note that if these extraneous typedefs aren't removed, the MIDL compiler will generate
duplicate enums in the header file and will cause compiler errors.

Save the IDL file and then use the MIDL compiler to generate the header file which will be included with
your project. From the command line, enter:

midl /Oicf /W1 /Zp8 /h csftpctl.h /iid csftpctl_i.c csftpctl.idl

This will create three files: csftpctl.h, csftpctl_i.c and csftpctl.tlb. The TLB is the compiled type library and
isn't needed for this example. The csftpctl.h header file contains the interface definition for the control,
and the csftpctl.c file is a C source file which defines the GUIDs used by the control. Both of these files
should be included in your project, typically in the source module where the control will be used.

Now that the header file for the control interface has been created, the next step is to create an instance of
the control. Define a member variable that is a pointer to the interface which looks like this:

IFtpClient *m_pIFtpClient;

Safe programming practices would also ensure that the pointer is initialized to NULL in the constructor to
avoid potential errors when referencing the variable. As with the previous examples, the COM subsystem
must be initialized. For MFC based applications, this can be done by calling AfxOleInit in the InitInstance



 

function for the CWinApp derived application class. For other applications, CoInitializeEx should be called
as:

HRESULT hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);
if (FAILED(hr))
{
    // Unable to initialize COM subsystem
    return;
}

Then the following code can be used to create an instance of the control:

HRESULT hr;
BSTR bstrLicKey;
IClassFactory2 *pFactory = NULL;
IUnknown *pUnknown = NULL;
USES_CONVERSION;

m_pIFtpClient = NULL;

hr = CoGetClassObject(CLSID_FtpClient, 
                      CLSCTX_INPROC_SERVER,
                      NULL,
                      IID_IClassFactory2,
                      (LPVOID *)&pFactory);

if (FAILED(hr))
{
    // Unable to get the class factory interface for the
    // control, probably because it isn't registered
    EndDialog(0);
    return FALSE;

}

// Create the runtime license key defined in csrtkey11.h
bstrLicKey = SysAllocString(T2OLE(CSTOOLS11_LICENSE_KEY));

// Create an instance of the control
hr = pFactory->CreateInstanceLic(NULL, NULL, IID_IUnknown,
                                 bstrLicKey,
                                 (LPVOID *)&pUnknown);
pFactory->Release();

if (FAILED(hr))
{
    // Unable to create an instance of the control using
    // the specified license key
    EndDialog(0);
    return FALSE;
}

hr = pUnknown->QueryInterface(IID_IFtpClient,
                              (LPVOID *)&m_pIFtpClient);

if (FAILED(hr))
{
    // Unable to get the interface to the control
    EndDialog(0);
    return FALSE;

 



}

The CoGetClassObject function is used to get an interface pointer to the control's class factory, which
actually does the work of creating an instance of the class. The CreateInstanceLic member function passes
the runtime license key to the control, and an instance is created if the key is valid. Note that if a NULL
value is passed as the license key, then the control will only be created if the system has a development
license installed. The interface to the class factory is released and then QueryInterface is called on the
returned pointer to obtain the interface to the control's properties and methods.

The code to use the interface is similar to the previous examples, however there are several significant
differences:

COleVariant varServerName(m_strServerName);
COleVariant varServerPort(m_nServerPort);
COleVariant varUserName(m_strUserName);
COleVariant varPassword(m_strPassword);
COleVariant varAccount(m_strAccount);
COleVariant varTimeout(m_nTimeout);
COleVariant varLocalFile(m_strLocalFile);
COleVariant varRemoteFile(m_strRemoteFile);
COleVariant varOptions;
COleVariant varError;
HRESULT hr;

hr = m_pIFtpClient->Connect(varServerName,
                            varServerPort,
                            varUserName,
                            varPassword,
                            varAccount,
                            varTimeout,
                            varOptions,
                            &varError);

if (V_I4(&varError) != 0)
{
    CString strError;
    BSTR bstrError;
    USES_CONVERSION;

    hr = m_pIFtpClient->get_LastErrorString(&bstrError);
    if (FAILED(hr))
        return;

    strError.Format(_T("Unable to connect to %s\n%s"),
                    m_strServerName,
                    OLE2T(bstrError));

    AfxMessageBox(strError, MB_ICONEXCLAMATION, 0);
}
else
{
    CString strMessage;
    COleVariant varRestartOffset;
    LONG nBytes = 0;

    hr = m_pIFtpClient->GetFile(varLocalFile, 
                                varRemoteFile, 
                                varRestartOffset,
                                &varError);



    if (V_I4(&varError) != 0)
    {
        CString strError;
        BSTR bstrError;
         USES_CONVERSION;

        hr = m_pIFtpClient->get_LastErrorString(&bstrError);
        if (FAILED(hr))
            return;

        strError.Format(_T("Unable to download %s\n%s"),
                    m_strRemoteFile,
                    OLE2T(bstrError));

        AfxMessageBox(strError, MB_ICONEXCLAMATION, 0);
    }
    else
    {
        hr = m_pIFtpClient->get_TransferBytes(&nBytes);
        if (FAILED(hr))
            return;
        strMessage.Format(_T("Transferred %ld bytes of %s"), 
                           nBytes, m_strRemoteFile);
        AfxMessageBox(strMessage, MB_ICONINFORMATION, 0);
    }
    
    m_pIFtpClient->Disconnect(&varError);
    
    
}

As with the version of the code using the COM smart pointer, p_IFtpClient is a pointer to the interface,
which requires that the -> operator be used to access its member functions. Property values are read using
accessor functions that are prefixed with "get_", while those which set properties are prefixed with "put_".
For example, to get the value of the TransferBytes property, the function name would be
get_TransferBytes. Methods in the control are called using the same name.

Another difference is that all of the functions return HRESULT values, with the actual property value or
return value from the method specified as a function parameter that is passed by reference. This is why the
varError variable is passed as the last argument to the Connect method. If the HRESULT return value is
non-zero, this typically will indicate an error. The error may be specific to the control, or it may be a
general error coming from the COM subsystem.

Once the application is done using the control, the interface must be released with code like this:

if (m_pIFtpClient)
    m_pIFtpClient->Release();

Each control that is created has a reference count which is used to keep track of how many times one of its
interfaces has been requested. When the reference count drops to zero, the control destroys itself and
releases the memory that was allocated. Failing to release the interface will prevent the control from ever
being destroyed and will result in a memory leak.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Control Event Handling  

In languages like Visual Basic, using the events for a control simply involves adding code for the desired
event. Many of the details, such as connecting the control's event interface to the container, are largely
invisible to the programmer. However, when using a control in Visual C++, some extra work does need to
be done. This section will cover two basic methods; one is specific to CWnd derived controls which are
placed in a dialog, the other approach uses a CCmdTarget derived class to handle event notifications.

To create an event handler for a control that has been placed on a dialog form, open the form in the
resource editor, right click the control and select Events. This will open a dialog that lists the available
events for the control. Selecting one of the events adds the event to the dialog class with a name like
OnProgressFtpClient1. In the implementation for the dialog class, a section of code will be added that
looks like this:

BEGIN_EVENTSINK_MAP(CExampleDlg, CDialog)
  //{{AFX_EVENTSINK_MAP(CExampleDlg)
  ON_EVENT(CExampleDlg, IDC_FTPCLIENT1, 4, OnProgressFtpClient1,
           VTS_VARIANT VTS_VARIANT VTS_VARIANT)
  //}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

This is the event sink map which is used to map a function in the dialog class to the control's event dispatch
interface. The ON_EVENT macro defines the event sink with the dialog class name, the control ID, the
dispatch ID for the event, the event handler function and then the parameters that are passed to the event.
The three VTS_VARIANT macros specify that the event handler has three VARIANT arguments. All of this
code is automatically generated with one ON_EVENT for each control event that was selected. Of the two
approaches, this is the simplest but it depends on the fact that the control has been placed on a dialog.

A more general purpose way to implement event handling is to derive a class from the CCmdTarget class
which will act as the event sink for the control. First, edit the StdAfx.h header file to include afxctl.h. Next,
create a new class for the project called CEventSink. It should be derived from CCmdTarget with
Automation support enabled. However, do not make it creatable by type ID. A dialog may be displayed
that it was unable to edit the object definition (ODL) file for the product. Since your project may not have
one, this is only a warning and can be ignored.

Open the EventSink.cpp implementation file and look towards the end of the file where there is a section
that looks something like this:

BEGIN_INTERFACE_MAP(CEventSink, CCmdTarget)
    INTERFACE_PART(CEventSink, IID_IEventSink, Dispatch)
END_INTERFACE_MAP()

This maps the CEventSink class to the event interface. This needs to be changed so that it is mapped to the
control's IFtpClientEvents interface. Change the second argument of the INTERFACE_PART macro to the
value DIID__IFtpClientEvents. This section should now look like:

BEGIN_INTERFACE_MAP(CEventSink, CCmdTarget)
    INTERFACE_PART(CEventSink, DIID__IFtpClientEvents, Dispatch)
END_INTERFACE_MAP()

Next, decide what event handlers should be implemented for the control. This example will implement all
of them, but it isn't necessary if they aren't actually going to be used by the application. The event handlers
will be protected member functions of the CEventSink class. They will be defined in EventSink.h and
implemented in EventSink.cpp:

void OnCancel();
void OnCommand(VARIANT& varResultCode, VARIANT& varResultString);
void OnError(VARIANT& varError, VARIANT& varDescription);



 

void OnProgress(VARIANT& varFileName, VARIANT& varFileSize, VARIANT& 
varBytesCopied,
                VARIANT& varPercent);
void OnTimeout();

Once the event handler functions have been implemented, they need to be added to the dispatch map.
Look for the BEGIN_DISPATCH_MAP section in EventSink.cpp and add the definitions for the events:

DISP_FUNCTION_ID(CEventSink,"OnCancel",1,OnCancel,VT_EMPTY,VTS_NONE)
DISP_FUNCTION_ID(CEventSink,"OnCommand",2,OnCommand,
                 VT_EMPTY,VTS_VARIANT VTS_VARIANT)
DISP_FUNCTION_ID(CEventSink,"OnError",3,OnError,
                 VT_EMPTY,VTS_VARIANT VTS_VARIANT)
DISP_FUNCTION_ID(CEventSink,"OnProgress",4,OnProgress,
                 VT_EMPTY,VTS_VARIANT VTS_VARIANT VTS_VARIANT VTS_VARIANT)
DISP_FUNCTION_ID(CEventSink,"OnTimeout",5,OnTimeout,VT_EMPTY,VTS_NONE)

These declarations are similar to those used with the ON_EVENT macros in the previous example. The
VT_EMPTY type specifies that the event handler does not return a value. VTS_VARIANT specifies a
VARIANT argument. VTS_NONE specifies that the event doesn't have any arguments.

With the event handlers implemented, the next step is to connect them to the control. Include the
EventSink.h header file in the module where the control is being used and create two new member
variables for the class:

DWORD m_dwEventSink; 
CEventSink* m_pEventSink;

Next, an instance of the CEventSink class needs to be created and then the sink dispatch interface needs to
be connected to the control using the AfxConnectionAdvise function:

// Create an instance of the event sink class
m_pEventSink = new CEventSink();

// Get a pointer to the sink IDispatch interface
LPUNKNOWN pUnknownSink = m_pEventSink->GetIDispatch(FALSE);

// Connect the event source to the sink
AfxConnectionAdvise(m_pIFtpClient,
                    DIID__IFtpClientEvents,
                    pUnknownSink,
                    FALSE,
                    &m_dwEventSink);

The last thing that needs to be done is to disconnect the event sink from the control when it is no longer
needed. This is done by calling AfxConnectionUnadvise, typically right before an instance of the control is
deleted:

if (m_pEventSink)
{
    LPUNKNOWN pUnknownSink = m_pEventSink->GetIDispatch(FALSE);

    AfxConnectionUnadvise(m_pIFtpClient,
                          DIID__IFtpClientEvents,
                          pUnknownSink,
                          FALSE,
                          m_dwEventSink);

    delete m_pEventSink;
    m_pEventSink = NULL;
    m_dwEventSink = 0;

 



}

With this code, the application is now wired to receive event notifications from the control. Keep in mind
that because the instance of the CEventSink class was created on the heap, failure to destroy the sink will
cause a memory leak in the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Microsoft Visual Basic .NET  

 

The SocketTools ActiveX components can be easily used with Visual Basic .NET, and it is almost identical to
how they are used in Visual Basic 6.0. The easiest way to create an instance of the control is to add it to
your toolbox and place it on a form. Simply select the Toolbox, and right-click on it to bring up a context
menu, and then select Add/Remove Items. This will display the Customize Toolbox dialog. Select the
COM Components tab, and scroll down to the control or controls that you wish to add, check them and
click Ok. Once the components have been added to your toolbox, you can drag and drop them on your
form, which will add them to your project.

Property Names
In some cases, Visual Basic.NET will rename certain properties to avoid naming conflicts within the
component class. The properties function in the same way, but the prefix 'Ctl' is added to the name. The
two most common properties that this is done for are the Handle and State properties, renamed to
CtlHandle and CtlState respectively. For the File Transfer Protocol control, the System property is also
renamed to CtlSystem.

Event Handlers
SocketTools uses events to notify the application when some change in status occurs, such as when data is
available to be read or a command has been executed. To create an event handler, it is the same as how
you would do it in earlier versions of Visual Basic: select the control from the drop-down listbox on the left
side of the code window, and then select the event in the listbox on the right side. A new event handler will
be added to your code. For example, if you choose the OnCommand event then code like this will be
added:

Private Sub AxFtpClient1_OnCommand( _
    ByVal sender As Object, _
    ByVal e As AxFtpClientCtl._IFtpClientEvents_OnCommandEvent _
    ) Handles AxFtpClient1.OnCommand

End Sub

If you are familiar with Visual Basic 6.0 but new to Visual Basic .NET, the first thing that you'll notice is that
the arguments are not passed individually to the event. Instead, they are passed in the argument 'e', which
is a class that encapsulates all of the event arguments. The technical reference shows that there are two
arguments for the OnCommand event, ResultCode and ResultString. To access their values, you would
write code like this:

Private Sub AxFtpClient1_OnCommand( _
    ByVal sender As Object, _
    ByVal e As AxFtpClientCtl._IFtpClientEvents_OnCommandEvent _
    ) Handles AxFtpClient1.OnCommand

    Dim nResult As Integer = e.resultCode
    Dim strResult As String = e.resultString

    Console.WriteLine("{0}: {1}", nResult, strResult)
End Sub

Note that the arguments passed to the event handler are variants, just as they are with methods. In this
case, the numeric result code and result string are written out to the console for each command that is
executed on the server.

Exception Handlers
When setting a property, it is possible that the control will generate an exception as a result of an error. If

 



these exceptions are not handled in your application, it will cause the program to halt and display a dialog
box. To handle an exception, use the Try..Catch statement, such as:

Try 
    axFtpClient1.HostAddress = "abcd"
Catch comError As System.Runtime.InteropServices.COMException
    Console.WriteLine(comError.Message)
    Exit Sub
End Try

In this example, the HostAddress property is being set to an illegal value (the HostAddress property only
accepts IP addresses in dot notation, such as "192.168.0.1"). As a result, an exception is thrown and the
Catch section of code is executed. The ex argument contains information about the exception that has
occurred, including an error number and a description of the error. In this case, that description is written
to the console and the subroutine is exited.

In addition to exceptions generated when properties are set to invalid values, it is also possible to have
methods generate exceptions instead of returning error codes. To do this, set the ThrowError property to
True. It allows you to write code like this:

Try
    axFtpClient1.ThrowError = True
    axFtpClient1.Connect()
    axFtpClient1.ChangeDirectory(strDirName)
    axFtpClient1.ThrowError = False
Catch comError As System.Runtime.InteropServices.COMException
    axFtpClient1.ThrowError = False
    Console.WriteLine("Error {0}: {1}", Hex(comError.ErrorCode), 
comError.Message)
    If axFtpClient1.IsConnected Then axFtpClient1.Disconnect()
    Exit Sub
End Try

In this example, the ThrowError property is set to True, and then the Connect and ChangeDirectory
methods are called. If either of these methods fail, an exception will be thrown and the code in the Catch
section will be executed. In this case, the error code and description is written to the console, the client is
disconnected and the subroutine returns. By setting the ThrowError property and writing your code to use
exception handling, it enables you to easily group function calls together and handle any potential errors,
rather than individually checking the return value for each method.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Microsoft Visual C#  

The SocketTools ActiveX Edition components can be used with Visual C# much in the same way that the
controls are used in Visual Basic. The easiest way to create an instance of the control is to add it to your
toolbox and place it on a form. Simply select the Toolbox, and right-click on it to bring up a context menu,
and then select Add/Remove Items. This will display the Customize Toolbox dialog. Select the COM
Components tab, and scroll down to the control or controls that you wish to add, check them and click OK.
Once the components have been added to your toolbox, you can drag and drop them on your form,
which will add them to your project.

Another approach is to add the control to the project as a reference, rather than placing the control on a
form. In the Solution Explorer, right click on References and select Add Reference. Then select the
component from the list of COM objects and click OK. Once the control has been added to the project as a
reference, an instance of the control can be created using the new operator.

Variants and Objects
The SocketTools component interface is essentially the same in C# as it is with other languages, however
there are a few differences. In C#, variant data types are represented by the object type. This is important
because all of the component methods and event arguments are typed as variants. This can lead to
unexpected errors when developing your application. For example, consider this code:

int nError;
nError = axFtpClient1.Connect();

Because the Connect method returns a value which indicates success by returning a value of zero, or an
error code, this code looks correct. However, if you would try to compile it, you would get an error
message indicating that the compiler cannot implicitly convert type 'object' to type 'int'. This is because all
of the methods in the SocketTools components return the value as a variant type, which in C# is
represented as an object. To resolve this, all you need to do is simply cast the return value to an int type,
such as:

int nError;
nError = (int)axFtpClient1.Connect();

Another common issue is that some of the methods in the SocketTools components expect arguments to
be passed by reference, and the data is returned in the specified variable. An example of this is the
GetDirectory method in the File Transfer Protocol control. The method expects a single argument, passed
by reference. When the method returns, that argument will contain a string that specifies the current
working directory. Because the method expects a variant type, you simply can't pass a string variable to the
method. Instead, you need to use code like this:

object varDirectory = "";
int nError;

nError = (int)axFtpClient1.GetDirectory(ref varDirectory);
if (nError == 0)
{
    string strDirectory = varDirectory.ToString();
}

The varDirectory object is initialized to an empty string, and the ref keyword tells C# to pass the object by
reference to the method. If the method returns a value of zero, which indicates success, then varDirectory
contains the current working directory and that is assigned to a string variable.

Optional Arguments
Many of the methods in the SocketTools components use optional arguments which may be omitted if the



 

caller wishes to use a default value. Unlike Visual Basic, C# requires that all arguments be specified. To omit
an optional argument, use the special value Type.Missing as a placeholder. For example, the GetFile
method in the FTP control expects four arguments, with the last two arguments being optional. The
method could be called as follows:

nError = (int)axFtpClient1.GetFile(strLocalFile, strRemoteFile, Type.Missing, 
Type.Missing);

In this example, the GetFile method will use default values for the last two arguments. Note that this
should only be used with those arguments which the documentation specifies as optional. If the argument
is required and Type.Missing as passed as the value, a runtime exception will be thrown.

Property Names
In some cases, Visual C# will rename certain properties to avoid naming conflicts within the component
class. The properties function in the same way, but the prefix 'Ctl' is added to the name. The two most
common properties that this is done for are the Handle and State properties, renamed to CtlHandle and
CtlState respectively. For the File Transfer Protocol control, the System property is also renamed to
CtlSystem.

Note that these changes to the property names only occurs when the control is placed on a form, not
when the control is added to the project as a reference.

Event Handlers
SocketTools uses events to notify the application when some change in status occurs, such as when data is
available to be read or a command has been executed. To create an event handler, simply select the
control, click on the Events button in the property browser and then double-click on the event. A new
event handler will be added to your code. For example, if you choose the OnCommand event then code
like this will be added:

private void axFtpClient1_OnCommand(object sender, 
AxFtpClientCtl._IFtpClientEvents_OnCommandEvent e)
{

}

If you are familiar with Visual Basic but new to C#, the first thing that you'll notice is that the arguments are
not passed individually to the event. Instead, they are passed in the argument 'e', which is a class that
encapsulates all of the event arguments. The technical reference shows that there are two arguments for
the OnCommand event, ResultCode and ResultString. To access their values, you would write code like
this:

private void axFtpClient1_OnCommand(object sender, 
AxFtpClientCtl._IFtpClientEvents_OnCommandEvent e)
{
    int nResult = (int)e.resultCode;
    string strResult = e.resultString.ToString();

    Console.WriteLine("{0}: {1}", nResult, strResult);
}

Note that the arguments passed to the event handler are variants, just as they are with methods. This
means that in C# they are treated as the object type, and should be cast or explicitly converted to other
intrinsic types.

Exception Handlers
When setting a property, it is possible that the control will generate an exception as a result of an error. If
these exceptions are not handled in your application, it will cause the program to halt and display a dialog

 



box. To handle an exception, use the try..catch statement, such as:

try 
{
    axFtpClient1.HostAddress = "abcd";
}
catch (System.Runtime.InteropServices.COMException ex)
{
    Console.WriteLine(ex.Message.ToString());
    return;
}

In this example, the HostAddress property is being set to an illegal value (the HostAddress property only
accepts IP addresses in dot notation, such as "192.168.0.1"). As a result, an exception is thrown and the
catch section of code is executed. The ex argument contains information about the exception that has
occurred, including an error number and a description of the error. In this case, that description is written
to the console and the function is exited.

In addition to exceptions generated when properties are set to invalid values, it is also possible to have
methods generate exceptions instead of returning error codes. To do this, set the ThrowError property to
true. It allows you to write code like this:

try
{
    axFtpClient1.ThrowError = true;
    axFtpClient1.Connect();
    axFtpClient1.ChangeDirectory(strDirName);
    axFtpClient1.ThrowError = false;
}
catch (System.Runtime.InteropServices.COMException ex)
{
    axFtpClient1.ThrowError = false;
    Console.WriteLine("Error {0}: {1}", ex.ErrorCode, ex.Message.ToString());

    if (axFtpClient1.IsConnected)
    {
        axFtpClient1.Disconnect();
    }
    return;
}

In this example, the ThrowError property is set to true, and then the Connect and ChangeDirectory
methods are called. If either of these methods fail, an exception will be thrown and the code in the catch
section will be executed. In this case, the error code and description is written to the console, the client is
disconnected and the function returns. By setting the ThrowError property and writing your code to use
exception handling, it enables you to easily group function calls together and handle any potential errors,
rather than individually checking the return value for each method.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketTools Control Overview  

The SocketTools ActiveX Edition includes components that implement fourteen standard Internet
application protocols, as well as libraries which provide support for general TCP/IP networking services,
encoding and compressing files, processing email messages and ANSI terminal emulation. The following
controls are included in the SocketTools ActiveX Edition:

Domain Name Service Control 
The Domain Name Service (DNS) protocol is what applications use to resolve domain names into
Internet addresses, as well as provide other information about a domain, such as the name of the
mail servers which are responsible for receiving email for users in that domain. The DNS control
enables an application to query one or more nameservers directly, without depending on the
configuration of the client system.

File Encoding Control 
The File Encoding control provides methods for encoding and decoding binary files, typically
attachments to email messages. The process of encoding converts the contents of a binary file to
printable text. Decoding reverses the process, converting a previously encoded text file back into a
binary file. The control supports a number of different encoding methods, including support for
the base64, uucode, quoted-printable and yEnc algorithms. The control can also be used to
compress and expand data in a user-supplied buffer or in a file.

File Transfer Protocol Control 
The File Transfer Protocol (FTP) control provides methods for uploading and downloading files
from a server, as well as a variety of remote file management methods. In addition to file transfers,
an application can create, rename and delete files and directories, list files and search for files
using wildcards. The control provides both high level methods, such as the ability to transfer
multiple files in a single method call, as well as access to lower level remote file I/O methods.

Hypertext Transfer Protocol Control 
The Hypertext Transfer Protocol (HTTP) control provides an interface for accessing documents and
other types of files on a server. In some ways it is similar to the File Transfer Protocol in that it can
be used to upload and download files; however, the protocol has expanded to also support
remote file management, script execution and distributed authoring over the World Wide Web.
The SocketTools Hypertext Transfer Protocol control implements version 0.9, 1.0 and 1.1 of the
protocol, including features such as support for proxy servers, persistent connections, user-defined
header fields and chunked data.

Internet Control Message Protocol Control 
The Internet Control Message Protocol (ICMP) is commonly used to determine if a server is
reachable and how packets of data are routed to that system. Users are most familiar with this
protocol as it is implemented in the ping and tracert command line utilities. The ping command is
used to check if a system is reachable and the amount of time that it takes for a packet of data to
make a round trip from the local system, to the server and then back again. The tracert command
is used to trace the route that a packet of data takes from the local system to the server, and can
be used to identify potential problems with overall throughput and latency. The control can be
used to build in this type of functionality in your own applications, giving you the ability to send
and receive ICMP echo datagrams in order to perform your own analysis.

Internet Message Access Protocol Control 
The Internet Message Access Protocol (IMAP) is an application protocol which is used to access a
user's email messages which are stored on a mail server. However, unlike the Post Office Protocol
(POP) where messages are downloaded and processed on the local system, the messages on an



IMAP server are retained on the server and processed remotely. This is ideal for users who need
access to a centralized store of messages or have limited bandwidth. For example, traveling
salesmen who have notebook computers or mobile users on a wireless network would be ideal
candidates for using IMAP. The SocketTools IMAP control implements the current standard for this
protocol, and provides methods to retrieve messages, or just certain parts of a message, create
and manage mailboxes, search for specific messages based on certain criteria and so on. The
interface is designed as a superset of the Post Office Protocol interface, so developers who are
used to working with the POP3 control will find the IMAP control very easy to integrate into an
existing application.

Internet Server Control 
The Internet Server control provides a simplified interface for creating event-driven, multithreaded
server applications using the TCP/IP protocol. The control interface is similar to the SocketWrench
ActiveX control, however it is designed specifically to make it easier to implement a server
application without requiring the need to manage multiple socket controls. In addition, the
Internet Server control supports secure communications using the Secure Sockets Layer (SSL) and
Transport Layer Security (TLS) protocols.

Mail Message Control 
The Mail Message control provides an interface for composing and processing email messages
and newsgroup articles which are structured according to the Multipurpose Internet Mail
Extensions (MIME) standard. Using this control, an application can easily create complex messages
which include multiple alternative content types, such as plain text and styled HTML text, file
attachments and customized headers. It is not required that the developer understand the
complex MIME standard; a single method call can be used to create multipart message, complete
with a styled HTML text body and support for international character sets. The Mail Message
control can be easily integrated with the other mail related protocol libraries, making it extremely
easy to create and process MIME formatted messages.

Network News Transfer Protocol Control 
The Network News Transfer Protocol (NNTP) control is used with servers that provide news
services. This is similar in functionality to bulletin boards or message boards, where topics are
organized hierarchically into groups, called newsgroups. Users can browse and search for
messages, called news articles, which have been posted by other users. On many servers, they can
also post their own articles which can be read by others. The largest collection of public
newsgroups available is called USENET, a world-wide distributed discussion system. In addition,
there are a large number of smaller news servers. For example, Microsoft operates a news server
which functions as a forum for technical questions and announcements. The SocketTools control
provides a comprehensive interface for accessing newsgroups, retrieving articles and posting new
articles. In combination with the Mail Message control to process the news articles, SocketTools
can be used to integrate newsgroup access with an existing email application, or you can
implement your own full-featured newsgroup client.

News Feed Control
The News Feed control enables an application to download and process a syndicated news feed in
in standard RSS format. News feeds can be accessed remotely from a web server, or locally as an
XML formatted text file. The source of the feed is determined by the URI scheme that is specified.
If the http or https scheme is specified, then the feed is retrieved from a web server. If the file
scheme is used, the feed is considered to be local and is accessed from the disk or local network.
The News Feed control provides an interface that enables you to open a feed by URL and iterate
through each of the items in the feed or search for a specific feed item. The control also provides
a method that can be used to parse a string that contains XML data in RSS format, where the feed



 

may have been retrieved from other sources such as a database.

Post Office Protocol Control 
The Post Office Protocol (POP) control provides access to a user's new email messages on a mail
server. Methods are provided for listing available messages and then retrieving those messages,
storing them either in files or in memory. Once a user's messages have been downloaded to the
local system, they are typically removed from the server. This is the most popular email protocol
used by Internet Service Providers (ISPs) and the SocketTools control provides a complete
interface for managing a user's mailbox. This control is typically used in conjunction with the Mail
Message control, which is used to process the messages that are retrieved from the server.

Remote Access Services Control 
The Remote Access Services (RAS) control enables an application to connect to an Internet Service
Provider (ISP) using a standard Dial-Up Networking connection. Using this control, the application
can discover what dial-up devices are available, what dial-up networking entries, known as
"connectoids", are available on the local system and allows the program to manage those
connections. Existing connections can be monitored, new connections created and a single control
can be used to manage multiple dial-up connections if the system has more than one modem.
While Windows can be configured to simply autodial a service provider whenever a network
connection is needed, this component gives your application complete control over the process of
connecting to a service provider, monitoring that connection and then terminating that
connection if needed.

Remote Command Protocol Control 
The Remote Command protocol is used to execute a command on a server and return the output
of that command to the client. The SocketTools control provides an interface to this protocol,
enabling applications to remotely execute a command and process the output. This is most
commonly used with UNIX based servers, although there are implementations of remote
command servers for the Windows operating system. The SocketTools control supports both the
rcmd and rshell remote execution protocols and provides methods which can be used to search
the data stream for specific sequences of characters. This makes it extremely easy to write
Windows applications which serve as light-weight client interfaces to commands being executed
on a UNIX server or another Windows system. The control can also be used to establish a remote
terminal session using the rlogin protocol, which is similar to how the Telnet protocol methods.

Secure Shell Protocol Control 
The Secure Shell (SSH) protocol is used to establish a secure connection with a server which
provides a virtual terminal session for a user. Its functionality is similar to how character based
consoles and serial terminals work, enabling a user to login to the server, execute commands and
interact with applications running on the server. The SSH control provides an interface for
establishing the connection and handling the standard I/O functions needed by the program. The
control also provides methods that enable a program to easily scan the data stream for specific
sequences of characters, making it very simple to write light-weight client interfaces to applications
running on the server.

Simple Mail Transfer Protocol Control 
The Simple Mail Transfer Protocol (SMTP) enables applications to deliver email messages to one or
more recipients. The control provides an interface for addressing and delivering messages, and
extended features such as user authentication and delivery status notification. Unlike Microsoft's
Messaging API (MAPI) or Collaboration Data Objects (CDO), there is no requirement to have
certain third-party email applications installed or specific types of servers installed on the local
system. The SocketTools control can be used to deliver mail through a wide variety of systems,
from standard UNIX based mail servers to Windows systems running Exchange or Lotus Notes and

 



Domino. Using the SocketTools control, messages can be delivered directly to the recipient, or
they can be routed through a relay server, such as an Internet Service Provider's mail system. The
Mail Message control can be integrated with this control in order to provide an extremely simple,
yet flexible interface for composing and delivering mail messages.

SocketWrench Control 
The SocketWrench control provides a higher-level interface to the Windows Sockets API, designed
to be suitable for programming languages other than C and C++. In addition, SocketWrench
supports secure communications using the Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols.

Telnet Protocol Control 
The Telnet protocol is used to establish a connection with a server which provides a virtual
terminal session for a user. Its functionality is similar to how character based consoles and serial
terminals work, enabling a user to login to the server, execute commands and interact with
applications running on the server. The Telnet control provides an interface for establishing the
connection, negotiating certain options (such as whether characters will be echoed back to the
client) and handling the standard I/O functions needed by the program. The control also provides
methods that enable a program to easily scan the data stream for specific sequences of
characters, making it very simple to write light-weight client interfaces to applications running on
the server. This control can be combined with the Terminal Emulation control to provide complete
terminal emulation services for a standard ANSI or DEC-VT220 terminal.

Terminal Emulation Control 
The Terminal Emulation control provides a comprehensive interface for emulating an ANSI or
DEC-VT220 character terminal, with full support for all standard escape and control sequences,
color mapping and other advanced features. The control methods provide both a high level
interface for parsing escape sequences and updating a display, as well as lower level primitives for
directly managing the virtual display, such as controlling the individual display cells, moving the
cursor position and specifying display attributes. This control can be used in conjunction with the
Remote Command or Telnet Protocol control to provide terminal emulation services for an
application, or it can be used independently. For example, this control could also be used to
provide emulation services for a program that provides serial modem connections to a server.

Text Message Control
The Text Message control enables applications to send text messages to mobile devices. It
provides an interface that can be used to obtain information about the wireless service provider
that is associated with the phone number for a smartphone or other mobile device, and can send
a message with a single method call. Messages can be delivered directly to the service provider's
gateway, or can be relayed through a local mail server. With this control, an application can send
text message alerts when certain conditions occur (such as an error) or as a notification
mechanism that's used in addition standard email messages.

Time Protocol Control 
The Time Protocol control provides an interface for synchronizing the local system's time and date
with that of a server. The control enables developers to query a server for the current time and
then update the system clock if desired.

Web Location Control 
The Web Location control provides geographical information about the physical location of the
computer system based on its external IP address. This can enable developers to know where their
application is being used, and provide convenience functionality such as automatically completing
a form based on the location of the user.



Web Storage Control 
The Web Storage control provides private cloud storage for uploading and downloading shared
data files which are available to your application. This is primarily intended for use by developers
to store configuration information and other data generated by the application. For example, you
may want to store certain application settings, and the next time a user or organization installs
your software, those settings can be downloaded and restored.

Whois Protocol Control 
The Whois protocol control provides an interface for requesting information about an Internet
domain name. When a domain name is registered, the organization that registers the domain
must provide certain contact information along with technical information such as the primary
name servers for that domain. The Whois protocol enables an application to query a server which
provides that registration information. The SocketTools control provides an interface for
requesting that information and returning it to the program so that it can be displayed or
processed.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Domain Name Service  

 

The Domain Name Service (DNS) protocol is what applications use to resolve domain names into Internet
addresses, as well as provide other information about a domain, such as the name of the mail servers
which are responsible for receiving email for users in that domain. All of the SocketTools components
provide basic domain name resolution functionality, but the Domain Name Services control gives an
application direct control over what servers are queried, the amount of time spent waiting for a response
and the type of information that is returned.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Reset 
Reset the internal state of the control and re-initialize the component to use the default
nameserver configuration for the local host. This can be useful if your application wishes to discard
any settings made by a user and return to using the local system configuration.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Host Tables
When resolving a host name or IP address, the library will first search the local system's host table, a file
that is used to map host names to addresses. On Windows 95/98 and Windows Me, if the file exists it is
usually found in C:\Windows\hosts. On Windows NT and later versions, it is found in
C:\Windows\system32\drivers\etc\hosts. Note that the file does not have an extension.

HostFile 
Return the full path of the file that contains the default host table for the local system. This can be
useful if you wish to temporarily switch between the default host file and another host file specific
to your application.

Host Name Resolution
The control can be used to resolve host names into IP addresses, as well as perform reverse DNS lookups
converting IP addresses into the host names that are assigned to them. The control will search the local
system's host table first, and then perform a nameserver query if required.

HostAddress 
A property which returns the IP address of the host name specified in the HostName property.
Setting this property to an IP address will cause the control to perform a reverse DNS lookup to
attempt to determine the name of the host that was assigned that address. If successful, the host
name for the specified IP address can be determined by reading the value of the HostName
property.

HostName 
A property which returns the name of the host associated with the IP address specified in the
HostAddress property. Setting this property to a host name will cause the control to perform a
DNS lookup to determine the IP address of that host. If successful, the IP address for the host can

 



be determined by reading the value of the HostAddress property.

Resolve 
A method which resolves a host name into an IP address, returned as a string in dotted notation.
The control first checks the system's local host table, and if the name is not found there, it will
perform a nameserver query for the A (address) record for that host.

Query 
Perform a general nameserver query for a specific record type. This method can be used to
perform queries for the common record types such as A and PTR records, as well as for other
record types such as TXT (text) records. Refer to the Technical Reference for more information
about the specific types of records that can be returned.

Mail Exchange Records
When a system needs to deliver a mail message to someone, it needs to determine what server is
responsible for accepting mail for that user. This is done by looking up the mail exchange (MX) record for
the domain. For example, if a message was addressed to joe@example.com, to determine the name of the
mail server that would accept mail for that recipient, you would perform an MX record query against the
domain example.com. A domain may have more than one mail server, in which case multiple MX records
will be returned.

MailExchange 
A property array which returns the mail exchanges for the domain specified in the HostName
property. This is a zero-based array, with the maximum number of entries returned by the
MailExchanges property

Advanced Properties
In addition to providing host name and IP address resolution, the control can be used to perform
advanced queries for other types of records.

HostInfo 
Return additional information about the specified host name. If the name server has been
configured to provide host information for the domain, this method will return that data. Typically
it is used to indicate what hardware and operating system the host uses.

HostServices 
Return information about the UDP and TCP based services that the host provides. If defined, this
will return a list of service names such as "ftp" and "http". Note that your application should not
depend on this information to be a definitive list of what services a server provides.

NameServer 
A property array which can be used to return the current nameservers that are configured for the
local host, or the values can be changed to specify new nameservers. The maximum number of
nameservers that can be configured for each instance of the control is four.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Encoding  

 

A common requirement for applications which use Internet protocols is the need to encode binary files, as
well as compress data to reduce the bandwidth and time required to send or receive the data. Encoding a
binary file converts the contents of the file into printable characters which can be safely transferred over the
Internet using protocols that only support a subset of 7-bit ASCII characters. This is commonly a restriction
for email, since many mail servers still are not capable of correctly processing messages which contain
control characters, 8-bit data or multi-byte character sequences found in International text. To address this
problem, the sender encodes and sends the data as part of a message; the recipient then extracts and
decodes the data, with the end result being the same as the original, without any potential corruption by
the mail servers which store and/or forward the message. The File Encoding control supports several
encoding and decoding methods, including standard base64 encoding, quoted-printable encoding and
uuencoding. For applications which access USENET newsgroup, the control also supports the yEnc
encoding method, which has become popular for attaching binary files to a message.

In addition to encoding and decoding files, the File Encoding control also can be used to compress files,
reducing their overall size. Two compression algorithms are supported, the standard deflate algorithm
which is commonly used in Zip files, and an algorithm based on the Burrows-Wheeler Transform (BWT)
which can offer improved compression over the deflate algorithm for some types of files. The developer
has control over the type of compression performed, as well as details such as the level of compression
which determines how much memory and CPU time is allocated to compress the data.

Unlike the other SocketTools controls, there are no handles used. All operations are performed either on
files or on memory buffers provided by the application. The control is split into two general areas of
functionality. The first group of methods enables you to encode and decode binary files and the second
group enables you to compress and expand data.

Note that if you are interested in using this control for purposes of attaching files to an email message, it is
not necessary that you use these methods. The Mail Message control has the ability to automatically
encode and decode file attachments without requiring that you use the methods in this control. However,
the File Encoding control is useful if you need the ability to encode and/or compress for other applications.

Encoding Types
There are several different encoding types available, with the default being the standard MIME encoding
called Base64. The following encoding methods are supported by the control:

Base64
Base64 encoding works by representing three bytes of data as four printable characters. Each of
the three bytes is converted into four six-bit numbers, and each six-bit number is converted to one
of 64 printable characters (which is where the encoding method gets its name). Base64 is the
default encoding method used by the control and is the standard encoding used for MIME
formatted email messages as well as many other applications.

Quoted-Printable
Quoted-printable encoding is primarily used in email messages, and is best used when the data
being encoded is text which consists primarily of printable characters. Only characters with the
high-bit set or a certain subset of printable characters are actually encoded by representing them
as their hexadecimal value. All other printable characters are passed through unmodified.

Uucode
One of the original encoding methods used for email, it gets its name from two UNIX command-
line utilities called uuencode and uudecode, which were used to encode and decode files. Like
Base64, uuencoding converts three bytes of data into four six-bit numbers, and then a value of 32

 



is added to ensure that it is printable. Uuencoding also adds some additional characters which are
used to ensure the integrity of the encoded data. This encoding method is still used when posting
files to USENET newsgroups, but has largely been replaced by Base64 when attaching files to
email messages.

yEnc
yEnc is an encoding method that was created specifically for binary newsgroups on USENET.
Because USENET doesn't have the same limitations as email systems in terms of what kind of
characters can be safely used, yEnc only encodes null characters and certain control characters;
the remaining 8-bit data is passed through as is which can significantly reduce the overall size of
the encoded data. yEnc also uses checksums to ensure the integrity of the data and is designed so
that a large file can be split across multiple messages and then recreated.

Data Encoding
Encoding a binary file converts the contents of the file into printable characters which can be safely
transferred over the Internet using protocols that only support a subset of 7-bit ASCII characters. This is
commonly a restriction for email, since many mail servers still are not capable of correctly processing
messages which contain control characters, 8-bit data or multi-byte character sequences found in
International text. To address this problem, the sender encodes and sends the data as part of a message;
the recipient then extracts and decodes the data, with the end result being the same as the original,
without any potential corruption by the mail servers which store and/or forward the message.

EncodeFile 
This method encodes a file using the specified encoding method, storing the encoded data in a
new file. An option also allows you to automatically compress the data prior to encoding it in
order to reduce the overall size of the encoded file.

DecodeFile 
This method decodes a previously encoded file using the specified encoding method, restoring
the original contents. If the encoded data was compressed, this method can also be used to
automatically expand the data after it has been decoded.

Data Compression
In addition to encoding and decoding data, the control can be used to compress data in order to reduce
its size. The compression methods may be used separately, or may be used as part of the process of
encoding a file.

CompressFile 
This method reduces the size of a file using the standard Deflate algorithm. This is the same
algorithm that is commonly used in Zip archives. Note however, that this does not create a Zip file,
it simply uses the same compression method.

ExpandFile 
This method restores the original contents of a file that was previously compressed using the
CompressFile method. Note that this method is not designed to extract files from a Zip archive or
expand data compressed using a different algorithm.

Note that there are advanced options for compressing files, such as the ability to specify the compression
type and level. Please refer to the Technical Reference for more information.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Protocol  

The File Transfer Protocol (FTP) is the most common application protocol used to upload and download
files between a local system and a server. In addition to basic file transfer capabilities, FTP also enables a
client application to perform common file and directory management functions on the server, such as
renaming and deleting files or creating new directories. The SocketTools ActiveX Edition also supports
secure file transfers using SSH (SFTP) and SSL/TLS (FTPS) by simply specifying an option when establishing
the connection.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Connect to the server, using either a host name or IP address. The method has several options
related to security as well as the general operation of the control. If the local system is behind a
firewall or a route which uses Network Address Translation (NAT), it is recommended that you
make sure the Passive property is set to true before establishing the connection. This will ensure
that your application only uses outbound connections to the server.

Login 
Authenticate the client session, providing the server with a user name, password and optionally an
account name. It is also possible to use an anonymous (unauthenticated) session by providing
empty strings as the username and password. If the UserName and Password properties are set
prior to connecting, the user will automatically be logged in. This method is only necessary if the
application needs to access the server using different user accounts during the same session.

Disconnect 
Disconnect from the server and release the memory allocated for that client session. After this
method is called, the client session is no longer valid.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

File Transfers
The control provides several methods which can be used to transfer files between the local and server. This
group of methods are high level, meaning that it is not necessary to actually write the code to read and/or
write the file data. The control automatically handles the lower level file I/O and notifies your application of
the status of the transfer by periodically generating progress events.

GetData 
This method transfers a file from the server to the local system, storing the file data in memory.
This can be useful if your application needs to perform some operation based on the contents of
the file, but does not need to store the file locally. The file data can returned in a string or byte
array.

GetFile 
This method transfers a file from the server and stores it in a file on the local system. This method



 

is similar to how the GET command works for the command-line FTP client in Windows.

GetMultipleFiles 
This method transfers multiple files from the server and stores them in a directory on the local
system. A wildcard may be specified so that only files which a certain name or those that match a
particular file extension are downloaded. This method is similar to how the MGET command works
for the command-line FTP client in Windows.

PutData 
This method creates a file on the server containing the data that you provide. This can be useful if
your application wants to upload dynamically created content without having to create a
temporary file on the local system. The data may be specified either as a string, or as the contents
of a byte array.

PutFile 
This method uploads a file from the local system to the server. This method is similar to how the
PUT command works for the command-line FTP client in Windows.

PutMultipleFiles 
This method transfers multiple files from the local system to a directory on the server. A wildcard
may be specified so that only files with a certain name or those that match a particular file
extension are uploaded. This method is similar to how the MPUT command works for the
command-line FTP client in Windows.

File Management
In addition to performing file transfers, the File Transfer Protocol control can also perform many of the
same kinds of file management methods on the server as you would on the local system.

DeleteFile 
Delete a file from the server. This operation requires that the current user have the appropriate
permissions to delete the file.

GetFileSize 
Return the size of a file on the server without actually downloading the contents of the file.

GetFileStatus 
Return status information about the file in the form of a structure. This typically specifies the
ownership, access permissions, size and modification time for the file. It is similar to opening a
directory on the server and reading information about the file, but with less overhead.

GetFileTime 
Return the modification time for the specified file on the server. This can be used by you
application to determine if the file has been changed since the time that you last uploaded or
downloaded the contents.

RenameFile 
Change the name of a file or move a file to a different directory. This operation requires that the
current user have the appropriate permissions to rename the file. If the file is being moved to
another directory, the user must have permission to access that directory.

SetFileTime 
Update the modification time for a file on the server. This method requires that the current user
have the appropriate permissions to change the last modification timestamp for the file. Note that
this is not supported on all servers and in some cases may be restricted to specific accounts.

GetFilePermissions 
Return the access permissions for a file on the server. This can be used to determine if a file can

 



be read, modified and/or deleted by the current user. For users who are familiar with UNIX file
permissions, it is the same type which is used by the control.

SetFilePermissions 
Change the access permissions for a file. This method is supported on most UNIX based servers,
as well as any other server that supports the site-specific CHMOD command.

Directory Management
The control also provides a set of methods which can be used to access and manage directories or folders,
including the ability to list and search for files, create new directories and remove empty directories from
the server.

ChangeDirectory 
Change the current working directory on the server. This is similar to how the CD command is
used from the command-line to change the current directory in Windows. If a path is not specified
in the file name, the current working directory is where files will be uploaded to and downloaded
from.

MakeDirectory 
Create a new directory on the server. This requires that the current user have the appropriate
access permissions in order to create the directory.

OpenDirectory 
Open the specified directory on the server. This is the first step in returning a list of files in the
directory. After the directory has been opened, information about the files it contains can be
returned to the application. The directory path may also include wildcards to only return
information about a certain subset of files based on the file name or extension.

ReadDirectory 
Return information about the next file in the directory that has been opened. This method is called
repeatedly until it indicates that all of the files have been returned.

RemoveDirectory 
Remove an empty directory from the server. This operation requires that the current user have the
appropriate permissions to delete the directory. For safety, it is required that the directory does
not contain any files or subdirectories or the operation will fail.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Hypertext Transfer Protocol  

The Hypertext Transfer Protocol (HTTP) is the most prevalent application protocol used on the Internet
today. It was originally used for document retrieval, and has grown into a complex protocol which supports
file uploading, script execution, file management and distributed web authoring through extensions such as
WebDAV. The SocketTools Hypertext Transfer Protocol control implements version 0.9, 1.0 and 1.1 of the
protocol, including features such as support for proxy servers, persistent connections, user-defined header
fields and chunked data.

File Transfers 
Similar to the interface used with the File Transfer Protocol control, you can use HTTP to upload
and download files. In addition to the standard method for downloading files, the control supports
two methods for uploading files, using either the PUT or the POST command. When downloading
a file from the server, you can either store the contents in a local file, or you can copy the data
into a memory buffer that you allocate. Similarly, when uploading files, you can either specify a
local file to upload, or you can provide a memory buffer that contains the file data to send to the
server. High level methods such as PutFile and GetFile can be used to transfer files in a single
method call. There are also methods such as OpenFile and CreateFile which provide lower level
file I/O interfaces.

Script Execution 
Another common use for HTTP is to execute scripts on the web server. The application can pass
additional data to the script, which is similar in concept to how arguments are passed to a
command that is entered from the command prompt. This uses the standard POST command,
and the resulting output from the script is returned back to the application where it can be
displayed or processed. An application can use the Command method to execute the script and
then process the output in code, or can use the higher level method PostData which will execute
the script and return the output from that script in a single method call.

Uniform Resource Locators 
Anyone who has used a web browser is familiar with the Uniform Resource Locator (URL); it is the
value that is entered as the address of a website. URLs have a specific format which provides
information about the server, the port number and the name of the resource that is being
accessed:

http://[username : [password] @] hostname [:port] / resource [? parameters ]

The first part of the URL identifies the protocol, also known as the scheme, which will be used.
With web servers, this will be either http or https for secure connections. If a username and
password is required for authentication, then this will be included in the URL before the name of
the server. Next, there is the name of the server to connect to, optionally followed by a port
number. If no port number is given, then the default port for the protocol will be used. This is
followed by the resource, which is usually a path to a file or script on the server. Parameters to the
resource may also be specified, called the query string, which are typically used as arguments to a
script that is executed on the server.

Understanding how a URL is constructed will help in understanding how the different methods in
the control work together. For example, the server name and port number portion of the URL are
the values passed to the Connect method to establish the connection. The user name and
password values are assigned to the UserName and Password properties to authenticate the
client session. And the resource name is passed to the GetData or GetFile methods to transfer it
to the local system.

The following properties, methods and events are available for use by your application:



 

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Establish a connection to the server. Once the connection has been established, the other
methods in the control may be used to access the resources on the server.

Disconnect 
Disconnect from the server and release any resources that have been allocated for the client
session. After this method is called, the client session is no longer valid.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

File Transfers
Using an interface similar to the File Transfer Protocol control, this control provides several methods which
can be used to transfer files between the local and server. This group of methods is high level, meaning
that it is not necessary to actually write the code to read and/or write the file data. The control
automatically handles the lower level file I/O and notifies your application of the status of the transfer by
periodically generating progress events.

GetData 
This method transfers a file from the server to the local system, storing the file data in memory.
This can be useful if your application needs to perform some operation based on the contents of
the file, but does not need to store the file locally.

GetFile 
This method transfers a file from the server and stores it in a file on the local system.

PutData 
This method creates a file on the server containing the data that you provide. This can be useful if
your application wants to upload dynamically created content without having to create a
temporary file on the local system.

PutFile 
This method uploads a file from the local system to the server using the PUT command. Not all
servers support this command, and some may require that the client authenticate prior to calling
this method.

PostFile 
This method uploads a file from the local system to the server using the POST command. This
enables your application to upload a file in the same way that a user would when using a form in a
web browser.

File Management
The control can also perform some basic file management methods as well as send custom commands to
the server. Some web servers also provide more advanced document management methods using
WebDAV, an extension to HTTP for distributed document authoring.

GetFileSize 

 



Return the size of a file on the server without actually downloading the contents of the file. It is
important to note that most servers will only return file size information for actual documents
stored on the server, not for dynamically created content generated by scripts or web pages which
use server-side includes.

GetFileTime 
Return the modification time for the specified file on the server. This can be used by your
application to determine if the file has been changed since the time that you last uploaded or
downloaded the contents.

DeleteFile 
Remove a file from the server. This operation requires that the current user have the appropriate
permissions to delete the file. Not all servers support the use of this command, and it would
typically require that the client authenticate prior to calling this method.

Command 
This method enables the client to send any command directly to the server. This is commonly
used to issue custom commands to servers that are configured to use extensions to the standard
protocol.

Script Execution
The control also provides methods to execute scripts on the web server and return the output from those
scripts back to your application. Your program can pass additional data to the script, typically either as a
query string or as form data, which is similar in concept to how arguments are passed to a command that
is entered from the command prompt.

GetData 
In addition to being used to simply return the contents of a file, this method can also be used to
execute a script on the server and return the output of that script to your program. Arguments to
the script can be specified by passing them as a query string. For example, consider the following
resource name:

/cgi-bin/test.cgi?data1=value1&data2=value2

This would specify that the script /cgi-bin/test.cgi is to be executed, and two arguments will be
passed to that script: data1=value and data2=value2. The ampersand is used to separate the
arguments, and they are grouped as pairs of values separated by an equal sign. Note that the
actual format and value of the query string depends on how the script is written.

PostData 
An alternative method of providing information to a script is to post data to the script. Instead of
the data being part of the resource name itself, posted data is sent separately and is provided as
input to the script. This is the same method that is typically used when a user clicks the Submit
button on a web-based form. This method requires the name of the script and the address of a
buffer that contains the data that will be posted. The resulting output from the script is returned to
the caller in the same way that the GetData method works.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Control Message Protocol  

 

The Internet Control Message Protocol (ICMP) control enables your application to send and receive ICMP
echo datagrams. These are a special type of IP datagram which can be used to determine if a server is
reachable, as well as determine the amount of time it takes for data to be exchanged with the local system.
The ICMP control can also be used to trace the route that data takes from the local system to the server,
which can be useful in determining why a connection to a particular system may be experiencing higher
latency than normal.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Ping and TraceRoute
To determine if a server is reachable, your application can send ICMP echo datagrams. You can also map
the route between the local system and the server by sending a series of echo datagrams to each
intermediate host. This is what the ping.exe and tracert.exe command line utilities do, and you can emulate
that functionality in your own applications.

Echo 
This is the simplest method you can use to send ICMP echo datagrams. Specify the server, the size
of the ICMP datagram you want to send and the number of times you want to send it. The
method will return if the operation was successful along with information such as the average
number of milliseconds it took for the datagram to be returned by the server.

TraceRoute 
This method will map the route that data packets take from your local system to a server.
Whenever you send data over the Internet, that data is routed from one computer system to
another until it reaches its destination. This method returns statistical information about each
system that the data is routed through, and the latency between that system and the local host.
For each intermediate host in the route to the destination server, the OnTrace event will fire.

OnTrace 
This event is generated when the TraceRoute method is called. The event will fire for each
intermediate host in the route from the local system and the server.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Remote Access Services  

The Remote Access Services (RAS) control enables an application to connect to an Internet Service Provider
(ISP) using a standard Dial-Up Networking connection. Using this control, the application can discover what
dial-up devices are available, what dial-up networking entries, known as "connectoids", are available on the
local system and allows the program to manage those connections. Existing connections can be monitored,
new connections created and a single control can be used to manage multiple dial-up connections if the
system has more than one modem. While Windows can be configured to simply autodial a service provider
whenever a network connection is needed, this component gives your application complete control over
the process of connecting to a service provider, monitoring that connection and then terminating that
connection if needed.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control and load the Remote Access Services libraries for the current process. This
method is normally not used if the control is placed on a form in languages such as Visual Basic.
However, if the control is being created dynamically using a function similar to CreateObject, then
the application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Establish a connection to the dial-up networking server. Once the connection has been
established, the control will authenticate the session and the local system will have a network
connection to the service provider.

Disconnect 
Disconnect from the server and release any resources that have been allocated for the dial-up
networking session. After this method is called, the session is no longer valid.

Uninitialize 
Unload the Remote Access Services libraries and release any resources that have been allocated
for the current process. This is the last method call that the application should make prior to
terminating. This is only necessary if the application has previously called the Initialize method.

Connection Properties 
The properties of the control are used to set or return information about the current dial-up networking
connection. To load a dial-up networking connection, called a connectoid or phonebook entry, use the
LoadEntry method. There are a large number of properties, however the most significant of those
properties are as follows:

DeviceName 
This property specifies the name of the device that is used to establish the dial-up networking
connection. In most cases this is the name of an analog modem using a serial communications
port, connected to a standard telephone line. If your application needs to enumerate the available
dial-up networking devices, refer to the DeviceCount, DeviceEntry and DeviceType properties.

DynamicAddress 
This property determines if the dial-up networking connection uses a dynamically assigned IP
address returned by the server, or a specific IP address configured on the local host. In most cases,
this property should be set to True, unless otherwise specified by your service provider.

DynamicNameserver 
This property determines if the dial-up networking connection uses dynamically assigned
nameservers, used to resolve domain names into IP addresses. In most cases, this property should



 

be set to True. If your service provider requires that you explicitly specify the nameservers to use,
then set this property to False and set the NameServer property array to the address of the
nameserver(s) to use.

InternetAddress 
This property returns the IP address assigned to the current dial-up networking session, if a
connection has been established. It can also be used to explicitly specify an IP address if the
DynamicAddress property is set to False.

NameServer 
This is a property array which specifies the IP addresses of the nameservers that are to be used for
the current dial-up networking session. If a connection has been established, this property array
will return the addresses of those nameservers that have been assigned to you. If the
DynamicNameserver property is set to False, this property array can also be used to explicitly
specify the nameservers to be used by the dial-up networking connection.

Password 
This property specifies the password used to authenticate the dial-up networking connection.

PhoneEntry 
This property specifies the name of the connectoid for the current dial-up networking connection.
If no connection is active and no connectoid has been loaded, then this property will return an
empty string.

PhoneNumber 
This property specifies the telephone number for the dial-up networking connection. You should
also check the value of the CountryCode property, which will tell your application if area code
dialing rules are being used. If the CountryCode property is set to zero, then no area code dialing
rules are in effect and the telephone number is dialed as-is. Otherwise you should check the value
of the AreaCode property if you need to determine the area code being used for the connection.

UserName 
This property specifies the username used to authenticate the dial-up networking connection.

Managing Connectoids 
A connectoid contains the information needed to establish a connection, and is represented as the icon in
the Network Connections for the local system. Connectoids are referenced by name and typically are
named after the service provider, such as "EarthLink" or "Verizon". In addition to simply connecting to a
dial-up networking server, the control also enables your application to create, edit and delete these
connectoids. Note that in the control documentation, connectoids are also referred to as "entry names" or
"phonebook entries". The connectoids are stored as entries in a database files called "phonebooks" and in
most cases, we recommend that you simply use the default phonebook.

CreateEntry 
This method displays a dialog box that allows the user to specify the information needed to create
a new connectoid. This is similar to the dialog that is displayed whenever the user chooses to
create a new Dial-Up Networking connection. Note that if you want to create a connectoid
without showing a dialog to the user, use the SaveEntry method instead.

DeleteEntry 
This method deletes an existing dial-up networking connection. Exercise caution when using this
method; once a connectoid has been deleted, there is no way to recover it.

LoadEntry 
This method loads an existing connectoid, and updates the control's properties to reflect the
connectoid's settings. Changing one or more of those properties and then calling the SaveEntry

 



method is how you can modify an existing connectoid.

RenameEntry 
This method renames an existing connectoid.

SaveEntry 
This method modifies or creates a new connectoid based on the current properties of the control.
If the connectoid already exists, it is modified, otherwise a new connectoid is created. Unlike the
CreateEntry method, this method will not display any dialogs, so it is the responsibility of the
application to provide a user interface if needed.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Message Access Protocol  

The Internet Message Access Protocol (IMAP) is an application protocol which is used to access a user's
email messages which are stored on a mail server. However, unlike the Post Office Protocol (POP) where
messages are downloaded and processed on the local system, the messages on an IMAP server are
retained on the server and processed remotely. This is ideal for users who need access to a centralized
store of messages or have limited bandwidth. The SocketTools IMAP control implements the current
standard for this protocol, and provides methods to retrieve messages, create and manage mailboxes, and
search for specific messages based on some user-defined search criteria.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Establish a connection to the IMAP server. Once the connection has been established, the other
methods in the control may be used to access the messages on the server.

Disconnect 
Disconnect from the server and release any resources that have been allocated for the client
session. After this method is called, the client session is no longer valid.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Managing Mailboxes
One of the primary differences between the IMAP and POP3 protocol is that IMAP is designed to manage
messages on the mail server, rather than downloading all of the messages and storing them on the local
system. To support this, IMAP allows the client to maintain multiple mailboxes on the server, which are
similar in concept to message folders used by mail client software. A mailbox can contain messages, and in
some cases a mailbox can contain other mailboxes, forming a hierarchy of mailboxes and messages, similar
to directories and files in a filesystem. A special mailbox named INBOX contains new messages for the user,
and additional mailboxes can be created, renamed and deleted as needed. Here are the most important
methods for managing mailboxes:

CheckMailbox 
Check the mailbox for any new messages which may have arrived. Because messages are
managed on the server, it is possible for new mail to arrive during the client session.

CreateMailbox 
Create a new mailbox on the server with the specified name.

DeleteMailbox 
Delete a mailbox from the server. Most servers will only permit a mailbox to be deleted if it does
not contain any mailboxes itself. Unlike deleting a message, which can be undeleted, deleting a
mailbox is permanent.

ExamineMailbox 



 

Once the session has been established and authenticated, a mailbox should be selected. This
enables the client to manage the messages in that mailbox. This method selects the specified
mailbox in read-only mode so that messages can be read, but not modified. To select the mailbox
in read-write mode, use the SelectMailbox method.

RenameMailbox 
Renames an existing mailbox. One of the interesting uses of this method is the ability to rename
the special INBOX mailbox. Instead of actually renaming it, it moves all of the messages to the new
mailbox and empties the INBOX.

SelectMailbox 
Once the session has been established and authenticated, a mailbox should be selected. Selecting
a mailbox enables the client to manage the messages in that mailbox. This method selects the
specified mailbox in read-write mode so that changes can be made to the mailbox.

UnselectMailbox 
This method unselects the currently selected mailbox, and allows the caller to specify if messages
marked for deletion should be expunged (removed) from the mailbox or reset back to an
undeleted state.

Managing Messages
There are methods in the IMAP control for managing messages which enables the application to create,
delete and move messages. To use these methods, a mailbox must be selected, either by setting the
MailboxName property or calling the SelectMailbox method. Methods which modify the mailbox require
that it be opened in read-write mode. Messages are identified by a number, starting with one for the first
message in the mailbox.

CopyMessage 
Copy a message to a specific mailbox.

DeleteMessage 
Mark the specified message for deletion. Unlike the POP3 protocol, when a message is deleted on
an IMAP server it can still be accessed. The message will not actually be removed from the
mailbox unless the mailbox is expunged, unselected or the client disconnects from the server.

UndeleteMessage 
Remove the deletion flag from the specified message.

Viewing Messages
One of the more powerful features of the IMAP protocol is the ability to precisely select what kinds of
message data you wish to retrieve from the server. It is possible to retrieve only specific headers, or specific
sections of a multipart message. Because IMAP understands MIME formatted messages, it is possible to
only retrieve the textual portion of a message without having to download any attachments that may have
come with it.

GetHeader 
This method returns the value for a specified header field in the message. Using this method, it is
not necessary to download and parse the message header.

GetHeaders 
This method retrieves the complete headers for the specified message and stores it in a string or
byte array provided by the caller.

GetMessage 
This method retrieves the specified message and stores it in a string or byte array provided by the
caller; you can specify the type of message data that you want, a specific part of a multipart

 



message and the amount of data that you want. For example, it is possible to request that only the
first 1500 bytes of the body of the 3rd part of a multipart message should be returned.

OpenMessage 
This method is a lower level method which opens a message for reading from the server. The
application would then call Read to read the contents of the message, followed by CloseMessage
when all the message data has been read. Also see the GetMessage method, which will return
the contents of a message into a string or byte array.

Downloading Messages
In some cases, it may be preferable to download a complete message from the server to the local system.
This can be easily done with a single method call.

StoreMessage 
This method downloads a complete message and stores it as a text file on the local system.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Server  

The Internet Server control provides an interface which is similar to the SocketWrench control, but is
specifically designed to simplify the development of a server application. The control provides a collection
of methods which can be used to easily create an event-driven server application. The server runs on a
separate thread in the background, automatically managing the individual client sessions as servers
connect and disconnect from the server. Events are used to notify the application when the client
establishes a connection with the server, sends data to the server or disconnects. Methods such as Read
and Write are used to exchange data with the clients.

It is important to note that although the server is multithreaded, the ActiveX control specification requires
that event notifications be marshaled across threads. This means that the event handler code that is written
executes in the context of the thread that created the control, typically the main UI thread. For languages
such as Visual Basic 6.0, the Internet Server control can be used to easily create a server which is designed
for a limited number of active client connections. However, for higher volume servers it is recommended
that you use a language that fully supports multithreading.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Start 
This method starts the server, creating the background thread and listening for incoming client
connections on the specified port number. You can specify the local address, port number,
backlog queue size and the maximum number of clients that can establish a connection with the
server.

Restart 
This method will terminate all active client connections, close the listening socket and re-create a
new listening socket bound to the same address and port number.

Suspend 
This method instructs the server to temporarily suspend accepting new client connections. Existing
connections are unaffected, and any incoming client connections are queued until the server is
resumed. It is not recommended that you leave a server in a suspended state for an extended
period of time. Once the connection backlog queue has filled, any subsequent client connections
will be automatically rejected.

Resume 
This function instructs the server to resume accepting client connections after it was suspended.
Any pending client connections are accepted after the server has resumed normal operation.

Throttle 
This method is used to control the maximum number of clients that may connect to the server, the
maximum number of clients that can connect from a single IP address and the rate at which the
server will accept client connections. By default, there are no limits on the number of active client
sessions and connections are accepted immediately. This method can be useful in preventing
denial-of-service attacks where the the attacker attempts to flood the server with connection
attempts.



 

Stop 
This method will terminate all active client connections, close the listening socket and terminate
the background thread that manages the server. Any incoming client connections will be refused,
and all resources allocated for the server will be released.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Input and Output 
When the client establishes a connection with the server, data is sent and received as a stream of bytes.
The following methods can be used to send and receive data over the socket:

Read 
This method reads data from the client and copy it to the string buffer or byte array provided by
the caller. If the client closes its connection, this method will return zero after all the data has been
read. If the method is successful, it will return the actual number of bytes read. This method should
always be used when reading binary data from the client into a byte array.

ReadLine 
Read a line of text from the client, up to an end-of-line character sequence or when the client
closes the connection. This method is useful when the client and server are exchanging textual
data, as is common with most command/response application protocols.

Write 
This method sends data to the client. If the method succeeds, the return value is the number of
bytes actually written. This method should always be used when sending binary data to the client.

WriteLine 
Write a line of text to the socket, terminating it with an end-of-line character sequence. This
method is useful when the client and server are exchanging textual data, as is common with most
command/response application protocols.

Broadcast 
Broadcasts data to each of the clients that are connected to the server. This can be useful when
the application needs to send the same data to each active client session, such as broadcasting a
shutdown message when the server is about to be terminated.

IsReadable 
This property is used to determine if there is data available to be read from the client. If the
property returns a value of True, the Read method will return without causing the application to
block. If the property returns False, there is no data available to read from the current client
session.

IsWritable 
This property is used to determine if data can be sent to the client. In most cases this will return
True, unless the internal socket buffers are full.

Local Host Information 
Several properties are provided to return information about the local host, including its fully qualified
domain name and the IP addresses that are configured on the system.

ServerName 
Return the fully qualified domain name of the local host, if it has been configured. If the system
has not been configured with a domain name, then the machine name is returned instead.

 



ExternalAddress 
Return the IP address assigned to the router that connects the local host to the Internet. This is
typically used by an application executing on a system in a local network that uses a router which
performs Network Address Translation (NAT).

AdapterAddress 
This property array returns the IP addresses that are associated with the local network or remote
dial-up network adapters configured on the system. The AdapterCount property can be used to
determine the number of adapters that are available.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Mail Message  

The Mail Message control can be used to create and process messages in the format defined by the
Multipurpose Internet Mail Extensions (MIME) standard. When a message is parsed, it is broken into parts,
each consisting of two sections. The first part is called the header section and it describes the format of the
data and how it should be represented to the user. The second section is the data itself. A typical mail
message without file attachments has one part, with the body of the message being the data. Messages
with attachments have multiple parts, each with a header describing the type of data. The control can be
then used to extract the data from a multipart message and save it to a file on the local system, delete the
part from the message, or add additional parts to the message, such as attaching a file.

The control can also be used to create new multipart messages with alternative content, such a message
with both plain text and styled HTML text. Once a message has been created, files can be attached to the
message and the application can make any other changes that are needed. The control provides complete
access to all headers and content in a multipart message, including the ability to create your own custom
headers and make modifications to specific sections.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control for the current process. This method is normally not used if the control is
placed on a form in languages such as Visual Basic. However, if the control is being created
dynamically using a function similar to CreateObject, then the application must call this method
to initialize the component before setting any properties or calling any other methods in the
control.

ComposeMessage 
Compose a new message using the specified header field values and content. Using this method,
you can create a message with the From, To, Cc and Subject headers already defined, along with
any text for the message. You can also optionally provide both plain and styled HTML text versions
of the message and the method will automatically create a multipart message.

ClearMessage 
Releases the memory allocated for the current message, including any file attachments, and
creates a new, empty message.

Uninitialize 
Release any resources that have been allocated for the current process. This is the last method call
that the application should make prior to terminating.

Message Headers
Each message has one or more headers fields which provide information about the contents of the
message. For example, the "From" header field specifies the email address of the person who sent the
message. There are a fairly large number of header fields defined by the MIME standard, and applications
can also create their own custom headers if they wish. The control gives the application complete access to
the header fields in a message. Headers can be examined, modified, created or removed from the
message as needed.

GetHeader 
This method copies the value of a header field into a string buffer that you provide. To return the
value of the common header fields such as "From", "To" and "Subject", you should specify a
message part of zero by setting the MessagePart property.

GetFirstHeader 
This method returns the value of the first header defined in the current message part, copying it



into the string buffer that you provide. This is used in conjunction with the GetNextHeader
method to enumerate all of the headers that have been defined.

GetNextHeader 
This method returns the value of the next header defined in the current message part. It should be
called in a loop until it returns a value of zero (False) which indicates that the last message header
has been returned.

SetHeader 
Set a message header field to the specified value in the current message part. If the value is an
empty string, the message header will be deleted from the message.

DeleteHeader 
Delete the specified message header from the current message part.

Message Contents
The content or body of a message contains the text that is to be read or processed by the recipient. It may
be a simple, plain text message or it may be more complex, such as a combination of plain and styled
HTML text or the data for a file attachment. The control provides complete access to the contents of the
message, enabling the application to modify, extract, replace or delete specific sections of the message.

Message 
This property returns the current message, including the headers and all message parts, as a
string. Setting this property will cause the current message to be cleared and replaced by the new
value. The string contents must follow the standard specifications for a message. If the property is
set to an empty string, the current message is cleared.

Text 
This property returns the body of the current message part. Setting this property replaces the
entire message body with the new text.

SelLength, SelStart, SelText 
The SelText property returns the selected message body text as specified by the SelStart and
SelLength properties. Setting this property replaces text in the message body starting at the byte
offset specified by the SelStart property.

Multipart Messages
Most typical messages contain a single part, which consists of the message headers followed by the
contents of the message. However, when files are attached to a message or alternative content types such
as HTML are used, a more complex multipart message is required. With a multipart message, the contents
of the message are split into logical sections with each section containing a specific part of the message.
For example, when a file is attached to a message, one part of the message contains the text to be read by
the recipient and another part contains the data for the file.

The first of a multipart message is called part 0, and contains the main header block. This is what defines
the headers that you are most familiar with, such as "From", "To" and "Subject". The body of this message
part is typically a plain text message that indicates that this is a multipart message. This is done for the
benefit of older mail clients that cannot parse MIME messages correctly. Next part, part 1, typically contains
the actual body of the message that would be displayed by the mail client. Additional parts may contain file
attachments and other information. In the case of a multipart message that contains both plain and styled
HTML text versions of a message, part 1 is typically the plain text version of the message while part 2
contains the HTML version. The mail client can then make a decision based on its own configuration as to
which version of the message it displays.

Part 



 

This property returns the current message part index. All messages have at least one part, which
consists of one or more header fields, followed by the body of the message. The default part, part
0, refers to the main message header and body. If the message contains multiple parts (as with a
message that contains one or more attached files), this property can be set to refer to that specific
part of the message.

PartCount 
This property returns the number of parts in the current message. All messages have at least one
part, referenced as part zero. Multipart messages will consist of additional parts which may be
accessed by setting the Part property.

CreatePart 
Create a new, empty message part. If the message was not originally a multipart message, it will
be restructured into one. Otherwise, the new part is simply added to the end of the message. This
method will cause the current message part to change to the new part that was just created.

DeletePart 
Delete the message part from the message. If the message part is in the middle of the message, it
will cause the subsequent parts of the message to be reordered. You should not delete part zero
to delete a message; use the MimeDeleteMessage method instead.

Importing Messages
The control can be used to import existing messages, either from memory or from a file. Once the
message has been parsed, the application can examine or modify specific parts of the message. The
following methods are provided to import the contents of a message:

ImportMessage 
The simplest method of importing a message, this method reads the contents of the specified file
and imports it into the current message. This method is typically called immediately after
MimeCreateMessage to load a file into a new message context.

Exporting Messages
After a message has been created or modified, it can be exported to a file or to memory. Exporting the
message to a memory buffer is particularly useful when using the control with another one of the
SocketTools libraries. For example, the contents of a message can be exported to memory, and that
memory address can be passed to the Simple Mail Transfer Protocol (SMTP) control for delivery to the
recipient. The following methods are provided to export the contents of a message:

ExportMessage 
This method exports the current message to a file. When using this method, only certain headers
are exported and they may be reordered. To force all headers to be included in the message or to
preserve the order of the headers, set the Options property.

File Attachments
In addition to simple text messages, one or more files can be attached to a message. The process of
attaching a file involves creating a multipart message, encoding the contents of the file and then including
that encoded data in the message. The following methods are provided to manage files attached to the
message, as well as attach files to an existing message:

Attachment 
A property which returns the name of a file attachment in the current message part. This property
serves two purposes, to determine if the current message part contains a file attachment, and if so,
what file name should be used when extracting that attachment.

AttachFile 

 



This method attaches the contents of the file to the message. The file will be attached using the
specified encoding algorithm and will become the current message part. If the message is not a
multipart message, it will be converted to one; if it already is a multipart message, the attachment
will be added to the end of the message.

AttachData 
This method works in similar fashion to MimeAttachFile, except that instead of the contents of a
file, the data in a memory buffer will be attached to the message. If the message is not a multipart
message, it will be converted to one; if it already is a multipart message, the attachment will be
added to the end of the message.

AttachImage 
This method attaches an inline image file to the message. It is similar to the AttachFile method,
except that the image is designed to be referenced as an embedded graphic in an HTML
message. This method will automatically set the correct header values for an inline image
attachment, and enables the developer to specify a content ID which is used in the HTML
message.

ExtractFile 
Extract the file attachment in the current message part, storing the contents in a file. The
attachment will automatically be decoded if necessary. This method also recognizes uuencoded
attachments that are embedded directly in the body of the message, rather than using the
standard MIME format.

Mail Addresses
The Mail Message control also has methods which are designed to make it easier to work with email
addresses. Addresses are typically in the format of "user@domain.com" however additional information can
be included with the address, such as the user's name or other comments that aren't part of the address
itself. The control can parse these addresses for you, returning them in a format that is suitable for use with
other protocols such as the SMTP control.

ParseAddress 
Parse an email address that may include an address without a domain name or comments in the
address, such as the user's name. For example, the From header field may return an address like
"Joe Smith <joe@example.com>"; this method would parse the address and return
"joe@example.com", the actual address for the user.

Recipient 
It is common for certain headers to contain multiple addresses separated by a comma. These
addresses may also include comments such as the user's name. This property array returns a list of
valid addresses defined in the current message. For example, the To header field may contain
"Tom Jones <tom@example.com>, Jerry Lewis <jerry@example.com>"; this property array would
return "tom@example.com" and "jerry@example.com" as the two addresses listed. The total
number of addresses that are available is returned by the Recipients property.

Message Storage
The control has a collection of methods which makes it simple for an application to store a group of
messages together in a single file, search for and retrieve specific message. The collection of messages is
referred to as a "message store" and messages may either be stored in a plaintext format or in a
compressed binary format.

OpenStore 
This method is used to open an existing message store or creates a new storage file. If a storage
file has been opened previously, it will be closed and the new storage file will be opened. The



storage files may either be plaintext, or stored in a compressed format. It also supports opening
storage files in the UNIX mbox format.

StoreSize 
This property returns the total number of messages that currently in the message store, including
deleted messages. Each message is referred to by an integer which is its index into the storage file.

StoreIndex 
This property specifies the current message index into the storage file. Messages are identified by
an integer value that starts at one for the first message and increments for each additional
message in the storage file. If no message store has been opened, this property will return a value
of zero. Changing the value of this property changes the current message index for the message
store.

FindMessage 
An application can search the message store for messages that match any header value. Searches
can be complete or partial, and may be case-sensitive or case-insensitive. For example, this
method can be used to enumerate all of the messages in the storage file that were sent by a
specific user or match a specific subject.

ReadStore 
This method reads a message from the storage file and replaces the current message. If the
application modifies the message, it can replace the message in the storage file or discard the
changes.

WriteStore 
This method writes the current message to the message store. Note that the message store must
be opened for write access, and the message will always be appended to the storage file. The
StoreIndex property is updated with the index value for the new message.

DeleteMessage 
This method flags a message for deletion from the message store. Once a message has been
flagged for deletion, it may no longer be accessed by the application. When the storage file is
closed, the contents of the deleted message will be removed from the file.

ReplaceMessage 
This method replaces an existing message in the storage file, overwriting it with the current
message. Unlike many of the other methods which do not permit the application to reference a
deleted message, this method can be used to replace a previously deleted message.

CloseStore 
The message store must be closed when the application has finished accessing it. This method
updates the storage file with any changes, purges all deleted messages and closes the storage file.
If the storage file is locked for exclusive access, this method will release that lock, allowing another
process to open the file.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Network News Transfer Protocol  

The Network News Transfer Protocol (NNTP) control enables applications to access a news server, list the
available newsgroups, retrieve articles and post new articles. It is common for this control to be used in
conjunction with the Mail Message control to construct the articles, since a news article uses the same
general format as an email message.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Establish a connection to the NNTP server. Once the connection has been established, the other
methods in the control may be used to access the newsgroups and/or post new articles to the
server.

Authenticate 
Provide a user name and password to authenticate the client session. This should only be used if
required by the server. Not all news servers require authentication, and some only require
authentication when posting articles. If you attempt to perform a function that requires
authentication, an error will be returned that indicates you should authenticate and then retry the
operation.

Disconnect 
Disconnect from the server and release any resources that have been allocated for the client
session. After this method is called, the client session is no longer valid.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Newsgroups
News articles are posted in hierarchical groups, similar to how files are stored in folders. Each level in the
newsgroup hierarchy is separated by a period, so newsgroup names look like microsoft.public.vc. This is
Microsoft's newsgroup for articles about Visual C++ programming. Additional subgroups are used to
further narrow the topic; for example, there's the microsoft.public.vc.3rdparty newsgroup for third party
tools and components for Visual C++, and the microsoft.public.vc.atl newsgroup which discusses issues
related to the Active Template Library. The NNTP control provides the following methods for accessing
newsgroups on the server:

ListGroups 
This method requests that the server return a list of all of the newsgroups that are available. The
application can also request that only groups which were created since a specific date should be
returned. This allows the application to maintain a list of newsgroups on the local system, and then
use this method to periodically update that list based on the date it was last modified. If the
method is successful, the application should call the GetFirstGroup method to begin processing
the group list.

OnNewsGroup 



 

This event is generated for each newsgroup returned by the ListGroups method. Information
about the group is passed to the event handler as arguments to the event, including the name of
the group, the first available article number and the last available article in the group.

SelectGroup 
This method is used to select a newsgroup as the current group. Once selected, the application
has access to the articles in that newsgroup.

News Articles
News articles are the messages posted to one or more newsgroups. Articles are referenced by their article
number, which is a value assigned by the news server. These articles have a structure that is the same as an
email message, with some slightly different headers. Because of this, you can use the Mail Message
interface to parse articles that you retrieve, as well as create new articles to post to the server. The following
methods are used to access and create news articles:

ListArticles 
This method requests that the server return a list of articles that are available in the current
newsgroup. The application can request that all articles be returned, or only those articles which
fall into a certain range of article numbers.

OnNewsArticle 
This event is generated for each article returned by the ListArticles method. Information about
the news article is passed to the event handler as arguments to the event, including the article ID,
size, subject, author and date that the article was posted.

GetArticle 
Retrieve an article from the server, storing the contents in a string buffer or byte array. This can be
used to process the contents of an article without the overhead of storing it in a file on the local
system.

StoreArticle 
Retrieve an article from the server and store it in a file on the local system.

PostArticle 
This method posts an article to one or more newsgroups on the server. A newsgroup article is
similar to an email message, and the MIME interface may be used to create the article headers
and body. One important difference is that the message must contain a header named
"Newsgroups" with the value set to the newsgroup or newsgroups that the article should be
posted to; multiple newsgroups should be separated by commas. If this header is not defined, the
posting will be rejected by the server and the method will return an error. You should also be
aware that some servers limit the number of newsgroups that a message can be posted to. When
an article is posted to more than one newsgroup at a time, this is called cross-posting. Current
convention says that an article should not be cross-posted to more than five newsgroups at a
time. Also keep in mind that multi-posting (posting the same article to different newsgroups
separately) is generally discouraged and should never be done on USENET.

Attaching Files
It is possible to attach files to newsgroup articles; however it should only be done if it is considered
appropriate for the group. Many newsgroups have their own acceptable use policies which determine
whether or not file attachments, particularly large binary files, are acceptable. If the newsgroup accepts
attachments, you can use one of several methods for posting files. It is recommended that you use the File
Encoding control to handle the actual encoding of the data.

Uuencode 
A uuencoded file attachment is included directly in the body of the message. Because the MIME

 



interface creates a multipart message even when uuencoding is specified, the File Encoding
control should be used to encode the data and then it should be included in the main body of the
message.

Base64 
A Base64 file attachment has the same structure as what is used by email messages. This requires
that a multipart message be created, with the encoded data attached as a part of the message.
You can use the MIME control to create this kind of message. Note that not all third-party
newsreaders correctly handle multipart messages.

yEnc 
An encoding method commonly used on USENET, it's similar to uuencoded attachments where
the file data is part of the body of the message. The File Encoding control should be used to
encode the data and then it should be included in the main body of the message. More
information about yEnc encoding can be found at www.yenc.org

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

http://www.yenc.org/


 News Feed Control  

Really Simple Syndication (RSS) is a collection of standardized formats that are used to publish information
about content that is frequently changed. A news feed is published in XML format, which contains one or
more items that includes summary text, hyperlinks to source content and additional metadata that is used
to describe the item. News feeds can be used for a variety of purposes, including providing updates for
weblogs, news headlines, video and audio content. RSS can also be used for other purposes, such as a
software updates, where new updates are listed as items in the feed.

News feeds can be accessed remotely from a web server, or locally as an XML formatted text file. The
source of the feed is determined by the URI scheme that is specified. If the http or https scheme is
specified, then the feed is retrieved from a web server. If the file scheme is used, the feed is considered to
be local and is accessed from the disk or local network. The News Feed control provides an interface that
enables you to open a feed by URL and iterate through each of the items in the feed or search for a
specific feed item. The control also provides a method that can be used to parse a string that contains XML
data in RSS format, where the feed may have been retrieved from other sources such as a database.

The first step your application must take is to initialize the library, which will load the required system
libraries and initialize the internal data structures that are used. If the control is placed on a form, then the
container automatically handles the initialization of control. If the control is created dynamically, then your
application is responsible for initialization.

Initialize 
Initialize the control and load the Windows Sockets control for the current process. If the control is
created dynamically using a method similar to CreateObject, then the application must call this
method to initialize the component before setting any properties or calling any other methods in
the control.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

News Channels
A news feed consists of a channel that contains each of the news feed items. The following properties and
methods are used to access and manage the news feed channel:

Description, Title 
These properties return strings that provide an overview of the news feed and a title that should
be displayed for the feed. The text returned by the Title property is typically brief, while the text
returned by the Description property can be more verbose, such as a paragraph that summarizes
the content of the feed.

LastBuild, Published 
These properties return date and time values that identify when the feed was last modified, and
when it was published. While these values are often the same, they can be different and some
feeds do not specify them at all. The Published property is used to specify the date when the feed
was first published with the current collection of news items. If the content of a news item
subsequently changes, but no new items have been added, then the publish date may remain the
same but the LastBuild property would be changed to reflect when the content was modified.

Open 
Open the channel by specifying a URL to the resource that contains the news. The URL can
identify a remote feed that is downloaded using the HTTP or HTTPS protocols, or it can be a file



 

on the local system or network.

Parse 
Parse a string buffer that contains a news feed. This function is similar to the Open method,
however it used to parse a string that contains the news feed. This method would typically be used
when the feed content is obtained from a different source, such as a database or by using a
different protocol. For example, the news feed could be downloaded using the FtpClient control
and then passed to this function.

Close 
This method closes the feed that was opened by a previous call to the Open or Parse method.
When the information in a news feed is no longer needed, this method will release the resources
allocated to process the feed. The current news feed will automatically be closed when an instance
of the control is destroyed.

Store 
This method is used to store a news feed as a file on the local system. This is typically used to
cache the contents of a news feed or to track the changes made to the feed over time. It is
recommended that the application periodically check the publication date of the feed to ensure
that they have current version.

News Items
News feed items are identified by a numeric value called the item ID. This is used with other functions to
return information about a specific news item. The first item in a news feed has an ID of one and it
increments for each additional item in the feed.

ItemCount 
This property will return the number of news items in the feed. The first item in the feed has a
value of one, and it increments for each additional news item. This property can be used in
conjunction with the GetItem method to enumerate all of the news items in the feed.

ItemTitle 
This property will return a string which specifies a title for the news item. If no title has been
specified, this property will return an empty string. Although it is not required for a news item to
have a title, a feed that conforms to the standard must have either a title or a description of the
item, which is returned by the ItemText property

ItemText 
This property will return a string that contains a summary of the current news item. This may
property may return either plain text or HTML formatted text. If no text has been specified for the
current item, this property will return an empty string. Although it is not required for a news item
to have a description, a feed that conforms to the standard must have either a description of the
item or a title, which is returned by the ItemTitle property.

ItemLink 
This property will return a string which specifies a URL that provides additional information about a
news item. If the news item summarizes the contents of an article, this property typically provides a
link to the complete article. If a link is not specified for the news item, this property will return an
empty string.

ItemGuid 
This property will return a string which uniquely identifies the current news item. If this property is
defined, it is guaranteed to be a unique, persistent value. It is important to note that this string
does not have to be a standard GUID reference number, it can be any unique string. If there is no
unique identifier associated with the current item, this property will return an empty string.

 



GetItem 
This method is used to return information about a specific news item based on the item ID. This
becomes the current news item, and it updates the item-related properties such as ItemTitle and
ItemText.

FindItem 
This method is used to search the feed channel for a specific item, based either on its GUID, title,
link or publication date. When searching for a specific item, only searches by GUID are guaranteed
to return a unique news item. However, since not all news feeds may provide GUIDs for their news
items, additional search criteria can be used when necessary. If this method succeeds, the item
that matched the search criteria becomes the current news item.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Post Office Protocol  

 

The Post Office Protocol (POP3) control enables an application to retrieve a user's mail messages and store
them on the local system. The control provides support for all of the standard functionality such as listing
and downloading messages, as well as extended features such as the ability to retrieve only the headers for
a message or just specific header values. The control also has methods for changing the user's password
and sending messages if they are supported by the server.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a method similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Establish a connection to the POP3 server. Once the connection has been established, the other
methods in the control may be used to access the resources on the server.

Disconnect 
Disconnect from the server and release any resources that have been allocated for the client
session. After this method is called, the client session is no longer valid.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Managing Messages
There are methods in the POP3 control for managing messages which enables the application to list,
delete and retrieve messages stored on the server. Messages are identified by a number, starting with one
for the first message in the mailbox. The most typical operation for a POP3 client is to retrieve each
message, store it on the local system and then delete the message from the server. Any processing that is
done on the message would then be done on the local copy.

Message 
This property sets or returns the message number for the currently selected mailbox. Message
numbers range from 1 through the number of messages available on the server, as returned by
the MessageCount property.

MessageCount, LastMessage 
A property which returns the number of messages available for retrieval. There are two values the
application should use. One is the number of currently available messages and the other is the last
valid message number. As messages are deleted from the server, the total number of available
messages will decrease; however, the last available message number will remain constant.

MessageSize 
This property returns the size of the message in bytes. One thing to be aware of when using this
method is that some servers will only return approximate message sizes. In addition, because of
the difference between the end-of-line characters on UNIX and Windows systems, the size
reported by the server may not be the actual size of the message when stored on the local
system. Therefore, the application should not depend on this value as an absolute. For example, it
should not use this value to determine the maximum number of bytes to read from the server;

 



instead, it should read until the server indicates that the end of the message has been reached.

GetMessage 
This method is used to retrieve a message from the server and copy it into a local string or byte
array buffer. This method will cause the current thread to block until the message transfer
completes, a timeout occurs or the transfer is canceled.

StoreMessage 
This method downloads a complete message and stores it as a text file on the local system.

DeleteMessage 
Mark the message for deletion. When the connection with the server is closed, the message will be
removed from the user's inbox. An important difference between the POP3 and IMAP protocols is
that when a message is marked as deleted on a POP3 server, that message can no longer be
accessed. An attempt to retrieve a message after it has been marked for deletion will result in an
error. The only way to undelete a message once it has been deleted is to terminate the connection
with the server by calling the Reset method instead of calling the Disconnect method.

Message Headers
The POP3 control also includes methods which enable the application to access just the headers for a
message. This can be useful if the program doesn't want to incur the overhead of downloading the entire
message contents. The following methods can be used to examine the headers in a message:

GetHeaders 
This method returns the complete set of headers for the specified message. If your program has
to process multiple header fields, this is the most efficient method to use. It is possible to retrieve
specific header values, however not all servers support that option and it is somewhat slower
because it involves sending individual commands to request each value.

GetHeader 
This method returns the value for a specific header field in a message. This method does not
require that you parse the message headers; however it does incur additional overhead. It is also
important to note that not all servers support the command that is used to request the header
value. If this method fails with the error that the feature is not supported, you should use the
GetHeaders method instead.

MessageUID 
This property returns the unique ID (UID) that the server has associated with the message.  The
UID can be used by an application to track whether or not it has previously viewed the message.
Unlike the message number, which can change between client sessions, the message UID is
guaranteed to be the same value across sessions until the message is deleted.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Remote Command Protocol  

 

The Remote Command protocol enables an application to execute commands on a server, with the output
of the command returned to the client. The SocketTools control actually implements three related
protocols: rexec, rshell and rlogin. The choice of protocols is determined by the port that is selected when a
connection is established.

Rexec 
The rexec protocol enables a client application to execute a command on a server. Output from
the command is returned to the client and the connection is closed when the command
terminates. The client connects on port 512 and must provide a user name and password to
authenticate the session.

Rshell 
The rshell protocol is similar to rexec in that it enables a client to execute a command on a server.
Output from the command is returned to the client and the connection is closed when the
command terminates. The client connects on port 514 and must provide a user name. The
primary difference between the rexec and rshell protocols is that rshell does not require a
password. Instead, it uses what is called "host equivalence" to determine if the client is permitted
to execute commands as that user. On a UNIX based operating system, host equivalence is
controlled by the /etc/hosts.equiv and the .rhosts file in the user's home directory. These files list
the host names and user names which are permitted to execute commands using the rshell
protocol. Consult your operating system manual pages for more information about how to
configure host equivalence.

Rlogin 
The rlogin protocol is similar to Telnet in that it provides an interactive terminal session. The
connection is closed when the user logs out or the shell process on the server is terminated. The
client connects on port 513 and must provide a user name and terminal type. If there is an entry in
the host equivalence tables for the user and local host, then the client will be automatically logged
in and provided with a shell prompt. If there is no host equivalence, the client will be prompted for
a password. The terminal emulation control can be used to provide ANSI or DEC VT-220
emulation services if needed.

An important consideration when deciding whether to use rexec, rshell or rlogin is how the server is
configured and the type of command being executed. If there is no entry for the local host in the server's
host equivalence tables, then the rexec command should be used instead of rshell.

When using rexec or rshell, it is important to keep in mind that although the command is executed with the
privileges of the specified user, that user is not actually logged in. The user's login script is not executed
and the program will not inherit the user's normal environment as it would during an interactive session. If
you are connecting to a UNIX system, you should not attempt to execute programs which try to put
standard input into raw mode; an example of this would be the vi editor. If you are connecting to a
Windows system, you should not execute a program which uses a graphical interface. Only programs
which read standard input and write to standard output are suitable for use with rexec or rshell.

The following methods are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a method similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

 



Execute 
Execute the specified command on the server. The rshell or rexec protocol is selected based on
the port number that is specified. Output from the command will be returned to the client to be
read. When the command terminates, the connection to the server will be closed.

Login 
Establish an interactive login session which is similar to how the Telnet protocol works. If there is
no host equivalence with the local host, you will be prompted for a password. Output from the
session will be returned to the client, and when the client logs out the connection will be closed.

Read 
Read the output generated by the command. Your application would typically call this method in a
loop until all of the data has been read or an error occurs.

Search 
Search for a specific sequence of characters in the output returned by the server. The method
returns when the sequence is encountered or when a timeout occurs. The data captured up to the
point where the character sequence was matched is returned to the caller for processing.

Disconnect 
Disconnect from the server and release any resources that have been allocated for the client
session. After this method is called, the client session is no longer valid.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Shell Protocol  

 

The Secure Shell (SSH) protocol enables an application to establish a secure, interactive terminal session
with a server, or execute commands remotely on the server, with the output of the command returned to
the client. The SocketTools ActiveX control supports both version 1.0 and 2.0 of the protocol.

The following methods are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a method similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Establish a connection to the server. Once the connection has been established, the other
methods in the control may be used to interact with the server.

Disconnect 
Disconnect from the server and release any resources that have been allocated for the client
session. After this method is called, the client session is no longer valid.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Input and Output
Once connected to the server, any output generated by the command shell or a program executed on the
server will be sent as data for the client to read. Any input to the program is sent by the client and received
and processed by the server. The following methods are used: 

Read 
Reads any output that has been generated by the program executing on the server. If the server
closes the connection, this method will return zero after all the data has been read. If the method
is successful, it will return the actual number of bytes read.

ReadLine 
The ReadLine method reads data from the server up to the specified number of bytes or until an
end-of-line character sequence is encountered. Unlike the Read method which reads arbitrary
bytes of data, this function is specifically designed to return a single line of text data in a string
variable.

Peek 
The Peek method can be used to examine the data that is available to be read from the internal
receive buffer. If there is no data in the receive buffer at that time, a value of zero is returned. The
Peek method will never cause the client to block, and so may be safely used with asynchronous
connections.

Write 
Send data to the server which will be received as input to the program. If the method succeeds,
the return value is the number of bytes actually written. This method should always be used when
sending binary data to the server.

WriteLine 

 



The WriteLine method writes a line of text to the server and terminates the line with a carriage-
return and linefeed control character sequence. Unlike the Write method which sends arbitrary
bytes of data to the server, this method is specifically designed to send a single line of text data
from a string.

Command Processing
The SSH protocol can be used to connect to a server, log in and execute one or more commands, process
the output from those commands and display it to an end-user using a graphical interface. The user never
sees or interacts with the actual terminal session. The control interface provides methods which can simplify
this kind of application, reducing the amount of code needed to process the data stream returned by the
server.

Execute 
This method executes a command on a server and copies the output to a user-specified buffer,
with the exit code for the remote program as the method's return value. This is a convenience
method that enables you to execute a remote command in a single call, without having to write
the code to establish the connection and read the output.

Search 
This method is used to search for a specific character or sequence of characters in the data stream
returned by the server. The control will accumulate all of the data received up to the point where
the character sequence is encountered. This can be used to capture all of the output from a
command, or search for specific results returned by the command as it executes on the server.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Simple Mail Transfer Protocol  

The Simple Mail Transfer Protocol (SMTP) enables applications to deliver email messages to one or more
recipients. The control provides an interface for addressing and delivering messages, and extended
features such as user authentication and delivery status notification. This control is typically used in
conjunction with the Mail Message control to create the messages, and the Domain Name Service control
to determine what servers are responsible for accepting mail for a specific user.

Mail Exchanges
When a message is delivered to a user, the application must determine what mail server is responsible for
accepting messages for that user. This can be accomplished using the Domain Name Services (DNS)
protocol, a protocol that is most commonly used to resolve host names such as www.microsoft.com into
Internet addresses. This is typically accomplished by sending a request to a nameserver, a computer system
that provides domain name services. In addition to resolving host names, nameservers can also provide
information about those servers which are responsible for accepting mail for a given domain. There can be
multiple servers which process mail for a domain with each server assigned a priority as part of their mail
exchange (MX) record. If there is no mail exchange record for a domain, then the domain name itself is
used.

To deliver a message directly to the recipient, you must examine the recipient address and request the list
of mail exchanges for that user's domain. Using the DNS control, this is done by reading the
MailExchange property array. If the recipient address is joe@example.com, you would want to enumerate
the mail exchanges for the example.com domain. This will give you the name of the servers that will accept
mail for users in that domain. For example, the property may return the host name mail.example.com as
the name of the server which will accept mail for users in the example.com domain. Note that it is possible
that one or more of the mail exchanges for a domain may not be in the recipient domain itself. In other
words, it is possible that smtp.othercorp.net could be returned as a mail exchange for example.com. This is
frequently the case when another organization is forwarding mail for that domain.

Therefore, there are three general steps that you must take when delivering mail directly to the recipient:

1. Parse the address of each recipient in the message. If you are using the MIME control, the Recipient
and Recipients properties can be helpful in extracting all of the recipient addresses. Everything after
the atsign (@) in the address is the domain portion of that address.

2. Perform an MX record lookup using the DNS control by setting the HostName property to the
domain name and reading the values returned in the MailExchange property array. This property
will return the name of the servers responsible for accepting mail for that user. If there are more than
one server, they will be returned in order of their relative priority, with the highest priority server
having a lower index value. This means that you should attempt to connect to those servers in the
order that they are returned by the property, starting with an index value of zero.

3. Attempt to connect to the first server returned by the MailExchange property array. The connection
should be on the default port, and you should not attempt to use any authentication. If the server
accepts the connection, then use the SendMessage method to deliver the message. If the
connection is rejected or the message is not accepted, attempt to connect to the next mail exchange
server until all servers have been tried.

4. If no mail exchange servers were returned by the MIME control's MailExchange property, or you
could not connect to any of them, attempt to connect to the domain specified in the address using
the default port. If the connection succeeds, then deliver the message. If you cannot connect or the
message is not accepted, then report to the user that the message could not be delivered.



 

One last important consideration is that many Internet Service Providers now block outbound connections
on port 25 to any mail servers other than their own. If you are unable to establish any connections, either
with the error that the connection was refused or it consistently times out, contact your ISP to determine if
port 25 is being blocked as an anti-spam measure. If this is the case, it will be required that you relay all
messages through their mail servers.

Relay Servers
In some situations it may not be possible to send mail directly to the server that accepts mail for a given
domain. The two most common situations are corporate networks which have centralized servers that are
responsible for delivering and forwarding messages, or an Internet Service Provider (ISP) which specifically
blocks access to all mail servers other than their own. This is usually done as either a security measure or as
a means to inhibit users from sending unsolicited commercial email messages. If the standard SMTP port is
being blocked, then any connection attempts will either fail immediately with an error that the server is
unreachable, or the connections will simply time-out. In either case, a relay server must be specified in
order to send email messages.

A relay server is a system which will accept messages addressed to users who may be in a different domain,
and will relay those messages to the appropriate server that does accept mail for the domain. Using a relay
server is generally easier than sending messages directly to the recipient. In order to send a message
through a relay, you need to perform the following steps:

1. Connect to the relay server as you would normally.

2. Authenticate the client to the server. This may or may not be required, depending on how the server
is configured. Some servers may be configured to only require authentication if you are connecting
from an IP address that is not recognized as part of that system's network, for example, if you are
connecting using a different Internet Service Provider. Others may always require authentication.
Check with the server administrator if necessary to determine if and when authentication is required.

3. Use the SendMessage method to deliver the message to the recipients through the relay server. If
there are multiple recipients, you can use the MIME control to enumerate the recipient addresses
and then pass them to the SendMessage method.

It is important to note that using a mail server as a relay without the permission of the organization or
individual who owns that server may violate Acceptable Use Policies and/or Terms of Service agreements
with your service provider. Systems which relay messages from anyone, regardless of whether the message
is coming from a recognized domain, are called open relays. Because open relays are often used to send
unsolicited email, many administrators block mail that comes from one. It is recommended that users check
with their network administrators or Internet service providers to determine if access to external mail
servers is restricted and what is the acceptable use policy for relaying messages through their mail servers.

The following methods are available for use by your application:

Initialize 
Initialize the control and load the Windows Sockets control for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a method similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Establish a connection to the SMTP server. Once the connection has been established, the other
methods in the control may be used to deliver messages to the server.

Authenticate 

 



Authenticate yourself to the server using a username and password. This method should be called
immediately after the connection has been established to the server. This is typically required if
you are attempting to use the mail server as a relay, asking it to forward the message on to the
server that actually accepts email for the recipient. Many Internet Service Providers (ISPs) require
that users authenticate prior to sending mail through their servers. You may need to contact the
server administrator to determine if authentication is required.

Disconnect 
Disconnect from the server and release any resources that have been allocated for the client
session. After this method is called, the client session is no longer valid.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Message Delivery
There are two general methods that can be used to deliver messages through the mail server. In most
cases, it can be done with a single method call. However, there are some circumstances where it would be
more appropriate to perform the transaction in stages. The SMTP control supports both methods.

SendMessage 
This is the simplest method for sending an email message through the server. You provide the
sender and recipient addresses, along with the message contents and the method will submit the
message to the server for delivery.

CreateMessage 
This method begins a transaction in which a message is dynamically composed, addressed and
delivered in stages. You provide the sender address and message size to this method, and after it
returns you begin the next stage, which is addressing the message.

AddRecipient 
This method adds a recipient address to the recipient list for the message. This should be called
once for each recipient, as well as for any recipients who are to receive "blind copies" of the
message. A blind copy is when the message is sent to a recipient, but that recipient's address is
not listed in any of the headers of the message; the other recipients will be unaware that the
message was delivered to him. Most servers have a limit of approximately 100 recipients per
message. It is possible that this method will return an error for a specific recipient address; the
address may be malformed or it may not be acceptable for some other reason. This does not
mean that the message will be rejected in its entirety, only that the specified recipient is not
acceptable.

AppendMessage 
This method should be called after all of the recipients have been added. It is used to send the
contents of the message to the server. It is also possible to use the lower level Write method to
send data directly to the server, however AppendMessage is generally easier to use and can
write data from memory, the system clipboard or from a file on disk.

CloseMessage 
This method is called after the entire message has been sent to the server. This terminates the
transaction and the message is submitted for delivery. Note that it is possible for the server to
accept the message up to this point and then reject it at this final step due to some restriction,
such as the message being too large.



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketWrench  

The SocketWrench control provides a simplified interface to the Windows Sockets API. It was designed to
be easier to use, and to provide properties and methods which eliminate much of the redundant coding
common to Windows Sockets programming. Developers who are working in languages other than C or
C++ will find SocketWrench to be particularly useful. SocketWrench also supports creating client and server
applications which use the SSL and TLS security protocols without any dependencies on third-party security
libraries.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Connect to the server, using either a host name or IP address. When an application calls this
method, it will be acting as a client. This method creates the socket and must be called before
your application attempts to exchange data with a server. For an asynchronous session, set the
Blocking property to False.

Listen 
Begin listening for incoming client connections. When an application calls this method, it will be
acting as a server. Once the Listen method returns, the socket is created and that socket handle is
used by the Accept method accept an incoming client connection. For an asynchronous session,
set the Blocking property to False.

Accept 
Accept a connection from a client. This method should only be called if the application has
previously called the Listen method. If there is no client waiting to connect at the time this method
is called, it will block until a client connects or the timeout period is reached.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Input and Output 
When a TCP connection is established, data is sent and received as a stream of bytes. The following
methods can be used to send and receive data over the socket:

Read 
A low-level method used to read data from the socket and copy it to the string buffer or byte
array provided by the caller. If the server closes the connection, this method will return zero after
all the data has been read. If the method is successful, it will return the actual number of bytes
read. This method should always be used when reading binary data from the server into a byte
array.

ReadLine 
Read a line of text from the socket, up to an end-of-line character sequence or when the server
closes the connection. This method is useful when the client and server are exchanging textual
data, as is common with most command/response application protocols.



 

ReadStream 
A high-level method used to read a stream of bytes and copy it to a string buffer or byte array
provided by the caller. This method can be used to read an arbitrarily large amount of data in a
single call.

Write 
A low-level method used to write data to the socket. If the method succeeds, the return value is
the number of bytes actually written. This method should always be used when sending binary
data to the server.

WriteLine 
Write a line of text to the socket, terminating it with an end-of-line character sequence. This
method is useful when the client and server are exchanging textual data, as is common with most
command/response application protocols.

WriteStream 
A high-level method used to write a stream of bytes to the socket. This method can be used to
write an arbitrarily large amount of data to the socket in a single call.

IsReadable 
This property is used to determine if there is data available to be read from the socket. If the
property returns a value of True, the Read method will return without causing the application to
block. If the property returns False, there is no data available to read from the socket.

IsWritable 
This property is used to determine if data can be written to the socket. In most cases this will
return True, unless the internal socket buffers are full.

Host Name Resolution
The control can be used to resolve host names into IP addresses, as well as perform reverse DNS lookups
converting IP addresses into the host names that are assigned to them. The control will search the local
system's host table first, and then perform a nameserver query if required.

HostAddress 
This property can be used to set the IP address for a server that you wish to communicate with. If
the address is valid and matches an entry in the host table, the HostName property will be
changed to match the address.

HostName 
This property should be set to the name of the server that you wish to communicate with. If the
name is found in the host table, the HostAddress property is updated to reflect the IP address of
the host. Note that it is legal to assign an IP address to this property, but it is not legal to assign a
host name to the HostAddress property.

Local Host Information 
Several methods are provided to return information about the local host, including its fully qualified
domain name, local IP address and the physical MAC address of the primary network adapter.

LocalName 
Return the fully qualified domain name of the local host, if it has been configured. If the system
has not been configured with a domain name, then the machine name is returned instead.

LocalAddress 
Return the IP address of the local host. If a connection has been established, then the IP address
of the network adapter that was used to establish the connection will be returned. This can be
particularly useful for multihomed systems that have more than one adapter and the application

 



needs to know which adapter is being used for the connection.

ExternalAddress 
Return the IP address assigned to the router that connects the local host to the Internet. This is
typically used by an application executing on a system in a local network that uses a router which
performs Network Address Translation (NAT).

PhysicalAddress 
Return the physical MAC address for the primary network adapter on the local system.

AdapterAddress 
This property array returns the IP addresses that are associated with the local network or remote
dial-up network adapters configured on the system. The AdapterCount property can be used to
determine the number of adapters that are available.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Telnet Protocol  

 

The Telnet Protocol control enables an application to connect to a Telnet server, which provides an
interactive terminal session similar to how character based consoles and terminals work. The user can login,
enter commands and interact with applications programmatically or in conjunction with the terminal
emulation control.

The following methods are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a method similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Establish a connection to the server. Once the connection has been established, the other
methods in the control may be used to interact with the server.

Disconnect 
Disconnect from the server and release any resources that have been allocated for the client
session. After this method is called, the client session is no longer valid.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Input and Output
Once connected to the Telnet server, any output generated by a program on the server will be sent as data
for the client to read. Any input to the program is sent by the client and received and processed by the
server. The following methods are used: 

Read 
Reads any output that has been generated by the program executing on the server. When the
client first connects, the server typically executes a login program that requests the users
authenticate themselves by entering a user name and password. Once the user has logged in,
they are usually given a command line prompt where they can enter commands to be executed
on the server. If the server closes the connection, the Read method will indicate that with an error
result and the client can disconnect from the server at that point.

Write 
Send data to the Telnet server which will be received as input to the program. If the local echo
option is enabled, then the client is also responsible for writing the input data to the display
device, if there is one. If local echo is not enabled, the server will automatically echo back any
characters written as data to be read by the client.

Telnet Modes
Telnet supports several modes of operation and the option negotiation phase, which occurs when a
connection is established, is handled automatically by the control. There are two key modes which affect
how the client session works:

Binary 
If this property is set to True, the data between the client and server is not buffered and the high

 



bit is not removed from any characters. If the application is executing a program which uses text
mode windowing features (i.e.: it draws boxes on the display) then this mode must be enabled to
ensure that the client processes the data correctly and it isn't buffered a line at a time. If this mode
is disabled, then the data exchanged between the client and server will be buffered a line at a time
and any 8bit characters will be stripped. This mode is enabled by default.

LocalEcho 
If this property is set to True, it is the responsibility of the client to echo any data that it is sending
to the server. For example, if the character "A" is sent to the server, the application must also send
the character "A" to whatever interface the user is interacting with, such as a terminal emulation
window. The default mode is for this option to be disabled, which means that the server will echo
back any data that is sent to it.

Command Processing
The Telnet protocol can be used to connect to a server, log in and execute one or more commands,
process the output from those commands and display it to an end-user using a graphical interface. The
user never sees or interacts with the actual terminal session. The Telnet interface provides methods which
can simplify this kind of application, reducing the amount of code needed to process the data stream
returned by the server.

Login 
This method is used to automatically log a user in, using the specific user name and password.
This method is specifically designed for UNIX based servers or Windows servers which emulate the
same basic login sequence.

Search 
This method is used to search for a specific character or sequence of characters in the data stream
returned by the server. The control will accumulate all of the data received up to the point where
the character sequence is encountered. This can be used to capture all of the output from a
command, or search for specific results returned by the command as it executes on the server.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Terminal Emulation  

The Terminal Emulation control provides a virtual terminal interface for emulating an ANSI or DEC VT-220
compatible character-based terminal. It can be used in conjunction with the Telnet interface or the Remote
Command interface to display the output of commands executed on a server. It can also be used
independently of any other networking control, such as providing emulation services for a serial
connection.

Display Management
The control provides a number of properties and methods to manage and update the virtual display. The
most commonly used methods are:

BackColor 
This property can be used to change the background color displayed by the virtual terminal.

ColorMap 
This property array can be used to change the default colors which are used when escape
sequences are used to change the foreground or background color of a character cell. In most
cases the default color map will be appropriate, but applications can change the RGB values
associated with an entry in the color map if needed. For example, the default value for the color
gray is at position 8 in the color map index with an RGB value of 192,192,192. If you wanted to use
a darker color, you could change the RGB value to 128,128,128

Emulation 
This property specifies the type of emulation that will be performed by the control. The control is
capable of emulating an ANSI console, a DEC VT-100 and DEC VT-220/320 terminal.

FontName 
This property sets the name of the font which is used by the control to draw text on the display
window. Note that there is also a Font property which returns a Font object for more control over
the font used by the emulator. It is recommended that you only used fixed-width fonts such as
Terminal or Courier New.

FontSize 
This property sets the size of the font which is used by the control to draw text on the display
window. Note that there is also a Font property which returns a Font object for more control over
the font used by the emulator.

ForeColor 
This property can be used to change the foreground color displayed by the virtual terminal.

Write 
This is the most commonly used method of writing to the display. This method will automatically
parse the data being written for escape sequences and update the display appropriately.

Refresh 
Refresh the virtual display, updating the current cursor position and caret. The control will
periodically refresh the display automatically based on its own internal state, but the application
can call this if it wishes to force the display to refresh at that time.

Reset 
This method can be used to reset the display window, the font being used and the size of the
display. Note that resetting the display causes the contents of the display to be cleared.

Cursor Control
There are a number of properties and methods which enable an application to have direct control over



 

cursor positioning, clearing the display and so on. In most cases these methods are called automatically by
the control as the result of processing the escape sequences found in the data being written to the display.
However, an application can choose to manage the display itself. One important thing to keep in mind is
that the X,Y positions used by these properties and methods refer to the cursor position in the virtual
display and correspond to columns and rows, not pixels.

There is also a slight difference in terminology that you should be aware of when reading the technical
reference documentation. In Windows, the term "cursor" is typically used to refer to the mouse pointer,
while "caret" is used to refer to the blinking marker that is displayed at the current position in the display. In
the documentation for the emulator, the term "cursor" is used in the same way that it is used for character
based terminals, as the marker for the current position in the display. Therefore, in terms of the control, you
can think of the cursor and the caret as being synonymous.

CursorX 
This property returns the current position of the cursor in the display, or can be used to change
the current position. The current position is given in columns and indicates where the next text
character will be displayed.

CursorY 
This property returns the current position of the cursor in the display, or can be used to change
the current position. The current position is given in rows and indicates where the next text
character will be displayed.

Clear 
This method clears the contents of the display. You can clear from the start of the display to the
current cursor position, from the current position to the end of the display or the entire display.

DelLine 
This method deletes the line at the current cursor position, shifting the remaining lines in the
display up.

InsLine 
This method inserts a blank line at the current cursor position, shifting the following lines down.

ScrollDown 
This method scrolls the display down by one line.

ScrollUp 
This method scrolls the display up by one line.

Function Key Mapping
Another aspect of terminal emulation is how function keys and other special keys are handled by the
application. The emulation control can be used to convert Windows virtual key codes into the escape
sequences that are generated by character based terminals.

KeyMap 
This property array allows the application to define character sequences that should be mapped to
special keys. When a special key is pressed in the emulation window and there is an entry for it in
the key map, the KeyMapped event is fired. For example, if the user presses the F1 key on the
keyboard, the control will translate that key code into the three characters escape sequence ESC O
P (the ASCII codes 27, 79, 80). That sequence of characters should be sent to the server, which will
recognize it as the F1 function key being pressed. It is important to note that the different
emulation types have different key mappings. Therefore, the server must be set to recognize the
same type of terminal that you are emulating. If you have the emulation set as VT-220 but the
server thinks that you are emulating a VT-100, it will not recognize some of the escape sequences
correctly.

 



KeyMapped 
This event is generated when the user presses a special key while the emulation window has focus,
and that key is mapped to a string using the KeyMap property array. Typically an application will
use this event to send the mapped key escape sequence to a server, such as a Telnet server.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Text Message Control  

Short Message Service (SMS) is a text messaging service used by mobile communication devices to
exchange brief text messages. Most service providers also provide gateway servers that can be used to
send messages to a wireless device on their network using standard email protocols. The Text Message
control provides methods that can be used to determine the provider associated with a specific telephone
number and send a text message to the device using the provider's mail gateway.

The first step your application must take is to initialize the library, which will load the required system
libraries and initialize the internal data structures that are used. If the control is placed on a form, then the
container automatically handles the initialization of control. If the control is created dynamically, then your
application is responsible for initialization.

Initialize 
Initialize the control and load the Windows Sockets control for the current process. If the control is
created dynamically using a method similar to CreateObject, then the application must call this
method to initialize the component before setting any properties or calling any other methods in
the control.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Text Messages
Sending a text message is done with a single method call with several optional parameters. By default,
messages are sent via an SMTP gateway, however the control was designed to be extensible so that
additional methods could be integrated into future versions of the controls. For example, a third-party
company may offer a service that allows messages to be sent using HTTP and that can be added as an
additional service type.

Message 
This property is used to specify the current message text. In most cases, a message should not
exceed 160 characters in length, although some service providers may accept longer messages. If
a message exceeds the maximum number of characters accepted by a service provider, the
message may be ignored or it may be split into multiple messages.

PhoneNumber 
This property is used to specify the current phone number for the device you want to send a
message to. This can be a standard E.164 formatted phone number or an unformatted number.
Any extraneous whitespace, punctuation or other non-numeric characters in the string will be
ignored.

Sender 
This property is used to specify the email address of the sender when the SMTP service is used to
send the message. For other service types, this property typically specifies the phone number or
shortcode associated with the sender.

Urgent 
This property specifies whether a message will be flagged as urgent or not. If this property is set to
True, the message will sent with a high priority. Note that this does not guarantee the message will
be received any differently than a standard text message. Each wireless service provider may
handle urgent messages differently, and some providers may simply ignore the message priority.

SendMessage 



 

This method is used to send a text message. It accepts one or more optional parameters that can
specify the sender, recipient and content of the message, or if no parameters are specified, will use
the PhoneNumber, Sender and Message property values.

Relaying Messages
When a text message is sent using the SMTP service, the default action is to attempt to connect directly to
the wireless service provider's gateway server. However, many residential Internet service providers (ISPs)
do not permit their customers to connect to third-party mail servers and will block the outbound
connection. Some wireless service providers may also reject messages that originate from residential IP
addresses.

To resolve this issue, the developer should allow the user to specify an alternate mail server that will relay
the message to the wireless service provider. For residential users, this will typically be the mail server
provided by their ISP. For business users, this will usually be their corporate mail server. The ServerName
and ServerPort properties are used to identify the relay server, and the UserName and Password
properties provide the credentials to authenticate the client session.

Relay 
This property is used to determine if the control will send the message directly to the wireless
service provider's gateway server, or if the message will be relayed through another mail server.

ServerName 
This property is used to specify the host name or IP address of the server that will relay the
message.

ServerPort 
This property is used to specify the port number that will be used to establish the connection with
the relay server. For SMTP servers, this would typically either be port 25 or port 587.

UserName 
This property is used in conjunction with the Password property to authenticate the client session.
If the message is being sent using SMTP, this would typically be the user name or email address of
the person sending the message.

Password 
This property is used in conjunction with the UserName property to authenticate the client
session. If the message is being sent using SMTP, this would be the password associated with the
user name.

Service Providers
When a service provider is mentioned in the documentation, typically it is referring to the wireless service
provider (also commonly called a "carrier") that is responsible for providing network access for the mobile
device. These are identified by name, such as "Verizon Wireless" and "AT&T Mobility". The control has a
built-in table of known providers in North America, and can return this information to your application.
Note that in some cases, a service provider may also refer to a specific service used to send a text message.

Provider 
This property the preferred wireless service provider associated with the current phone number.
Changing the value of this property will change the preferred wireless service provider. If this
property is an empty string, the default provider assigned to the recipient's phone number will be
used.

ProviderCount 
This property returns the number of wireless service providers supported by the control. This
property is used in conjunction with the ProviderName property to enumerate all of the

 



supported service providers.

 ProviderName 
This property array returns the name of supported wireless service provider and is used in
conjunction with the ProviderCount property to enumerate all of the supported service providers.
Typically this done to populate a user-interface control that enables the user to select a preferred
service provider.

GetAddress 
This method can be used obtain the email address for the wireless service provider's gateway that
is associated with a phone number. This is done by sending an query to a server that will check
the phone number against a database of known providers and the phone numbers that have
been allocated for wireless devices.

GetProvider 
This method can be used to obtain the name of the service provider associated with a phone
number. This is done by sending an query to a server that will check the phone number against a
database of known providers and the phone numbers that have been allocated for wireless
devices.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Time Protocol  

 

The Time protocol control enables an application to retrieve the current time from a server, and optionally
synchronize the local system time using that value. The first step that your application must take is to
initialize the control. After the control has been initialized, the application can request the current time from
a system and update the local system clock if necessary.

Initialize 
Initialize the control and load the Windows Sockets control for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a method similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

GetTime 
Return the current time from a server. The time and date retrieved from the server will be returned
as a string formatted according to the user's current locale. If the date could not be retrieved, an
empty string will be returned.

SetTime 
Update the local system time with the value returned by GetTime. On Windows NT and later
versions of the operating system, this method requires that the current user have the appropriate
permissions to modify the system time or the method will fail.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

Time Conversion
The control also provides several properties which can be used to convert between the local date and time
and UTC date and time for the value returned by the server. These properties are:

LocalDate 
This property returns the network date and adjusts the value for the local timezone. The date is
returned as a string formatted using the Short Date format for the current locale.

LocalTime 
This property returns the network time and adjusts the value for the local timezone. The time is
returned as a string formatted using the standard format for the current locale.

SystemDate 
This property returns the network date in Coordinated Universal Time (UTC). The date is returned
as a string formatted using the Short Date format for the current locale.

SystemTime 
This property returns the network time in Coordinated Universal Time (UTC). The time is returned
as a string formatted using the standard format for the current locale.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Web Location Control  

The WebLocation control enables an application to obtain geographical information about the physical
location of the computer system based on its external IP address. This can allow developers to know where
their application is being used, and provide convenience functionality such as automatically completing a
form based on the location of the user.

The connection to the location service is always secure and does not require you subscribe to any third-
party services. The accuracy of this information can vary depending on the location, with the most detailed
information being available for North America. The country and time zone information for all locations is
generally accurate. However, as the location information becomes more precise, details such as city names,
postal codes and specific geographic locations (e.g.: longitude and latitude) may have reduced accuracy.

Software which is designed to protect the privacy of users, such as those which route all Internet traffic
through proxy servers or VPNs, can significantly impact the accuracy of this information. In this case, the
data returned in this structure may reflect the location of the network or proxy server, and not the location
of the person using your application. It is recommended you always request permission from the user
before acquiring their location, have them confirm the location is correct and provide a mechanism for
them to update the information.

Methods
To obtain the location of the local computer system, use the following methods:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Update 
This method causes the control to update its various properties with information about the current
location. The location service is queried to obtain current information about the physical location
of the computer system based on its external IP address. The location data is cached and
additional queries are only performed if it detects the external IP address for the local system has
changed.

Uninitialize 
Release all resources which have been allocated for the current process. This is the last method
call that the application should make prior to terminating. This is only necessary if the application
has previously called the Initialize method.

Properties
The following properties provide information about the current location of the local computer:

Property Description

ASNumber An integer which is used to uniquely identify a global network (autonomous system)
which is connected to the Internet. This value can be used to determine the ownership
of a particular network.

CityName A string which identifies the city at this location. These names will always be in English,
regardless of the current system locale. If the city name cannot be determined, this
member may contain an empty string.



 

Coordinates A string which specifies the location expressed using the Universal Transverse
Mercator (UTM) coordinate system with the WGS-84 ellipsoid. These coordinates are
commonly used with the Global Positioning System (GPS).

CountryAlpha A string which contains the ISO 3166-1 alpha-2 code assigned to the country. For
example, the alpha-2 code for the United States is "US".

CountryCode An integer value which identifies the country using the standard UN country code. For
example, the numeric country code for the United States is 840.

CountryName A string which contains the full name of the country in which the external IP address is
located, such as "United States". These names will always be in English, regardless of
the current system locale.

IPAddress A string which contains the external IP address for the local system. If the system has
been assigned multiple IP addresses, it reflects the address of the interface used to
establish the connection with the location server.

Latitude A real number which specifies the latitude of the location in decimal format. A positive
value indicates a location which is north of the equator, while a negative value is a
location which is south of the equator.

LocalTime The current date and time at the location, adjusted for its time zone and whether or
not it's in daylight savings time.

LocationId A string which contains contains a string of hexadecimal characters which uniquely
identifies the location for this computer system. This value is used internally by the
location service, and may also be used by the application for its own purposes.

Longitude A real number which specifies the longitude of the location in decimal format. A
positive value indicates a location which is east of the prime meridian, while a negative
value is a location which is west of the prime meridian.

Organization A string which identifies the organization associated with the local system's external IP
address. For residential end-users this is typically the name of their Internet Service
provider, however it may also identify a private company.

PostalCode A string which contains the postal code associated with the location. In the United
States, this is a 5-digit numeric code. Local delivery portions of a postal code (such as
the ZIP+4 code in the United States) are not included.

RegionCode An integer which identifies the geographical region. This value corresponds to
standard UN M49 region codes.

RegionName A string which identifies a broad geographical area, such as "North America" or
"Southeast Asia".

Subdivision A string which identifies a geopolitical subdivision within a country. In the United
States, this will contain the full name of the state or commonwealth. In Canada, this
will contain the name of the province or territory.

SubdivisionCode A string which is either a two- or three-letter code which identifies a geopolitical
subdivision within the country. These codes are defined by the ISO 3166-2 standard.
For example, the code for the state of California in the United States is "CA".

Timezone A string which specifies the full time zone name. These names are defined by the
Internet Assigned Numbers Authority (IANA) and have values like
"America/Los_Angeles" and "Europe/London".

 



TzOffset A integer which specifies the number of seconds east or west of the prime meridian
(UTC). A positive value indicates a time zone which is east of the prime meridian and a
negative value indicates a time zone which is west of the prime meridian.

TzShortName A string which specifies the abbreviated time zone code. If daylight savings time is
used within the time zone, then this value can change based on whether or not
daylight savings is in effect. If a short time zone code cannot be determined, a value
such as "UTC+9" may be returned, indicating the number of hours ahead or behind
UTC.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Web Storage Control  

The WebStorage control provides private cloud storage for uploading and downloading shared data files
which are available to your application. This is primarily intended for use by developers to store
configuration information and other data generated by the application. For example, you may want to
store certain application settings, and the next time a user or organization installs your software, those
settings can be downloaded and restored.

The connection to the storage service is always secure, using TLS 1.2 and AES-256 bit encryption. There are
no third-party services you need to subscribe to, and there are no additional usernames or passwords for
you to manage. Access to the service is associated with an account which is created when you purchase a
development license, and the security tokens are bound to the runtime license key used when initializing
the API. You also have the option to compress and encrypt your data you store using the FileEncoder
control.

Terminology
When you get started with the WebStorage control, you'll notice there is some different terminology which
is used. This will provide an overview of that terminology, and compare it to common terms used with
traditional protocols like FTP. When accessing an FTP server, you generally deal with directories, files,
names and types (generally whether the file is binary or text). The storage control has similar concepts, but
uses somewhat different terminology.

Application Identifiers
An application identifier (AppId) is a null terminated string which uniquely identifies your
application. This string, used in conjunction with your runtime license key, is used to generate an
access token. This token is used to access the storage container which contains the data which
you've stored.

It is recommended you use a standard format for the AppId which consists of your company
name, application name and optionally a version number. Some examples of an AppId string
would be:

MyCompany.MyApplication

MyCompany.MyApplication.1

It is important to note with these two example IDs, although they are similar, they reference two
different applications. Objects stored using the first ID will not be accessible using the second ID. If
you want to store objects which should be shared between all versions of the application, it is
recommended you use the first form, without the version number. If you want to store objects
which should only be accessible to a specific version of your application, then it is recommended
you use the second form which includes the version number.

The AppId must only consist of ASCII letters, numbers, the period and underscore character.
Whitespace characters and non-ASCII Unicode characters are not permitted. The maximum length
of the string is 63 characters. It is not required for your application to create a unique AppId. Each
storage account has a default internal AppId named SocketTools.Storage.Default. This
AppId is used if a NULL pointer or an empty string is specified.

Containers
Storage containers are somewhat analogous to directories or folders in a file system, however they
are general purpose and designed to allow you to control how your application accesses the data
that's been stored. There are four container types which are defined by the control, and you can



think of them as types of boxes or file cabinets which you store your data in.

It is important to keep in mind these containers are available to all users of your application, your
program controls who has access to any particular data file. Your users will not be able to
"browse" any of the containers unless you specifically provide that capability by implementing it in
your own code. There is no public access to any of the data which you upload, and our service
does not use an open API accessible by third parties.

webStorageGlobal 
The global storage container which is available to all users of your application. Any data
stored in this container is available to everyone who uses your software. Unless you have
a specific need to limit access to the data to a specific user or group of users, this is the
recommended container you use to store data.

webStorageDomain 
The domain storage container is limited to users in the same local domain, defined either
by the name of the domain or workgroup assigned to the computer system. This can
provide a kind of organization wide storage, but it does depend on the domain being
unique. For example, if you are using domain storage for your application, and you have
multiple customers who have systems part of the default "Workgroup" domain, they
would all share the same container. If the domain or workgroup name changes, then data
stored in the container would no longer be available.

webStorageMachine 
The local machine storage container is associated with the physical computer system your
application is running on. The machine is identified by unique characteristics of the
system, including the boot volume GUID. Data stored in this container can only be
accessed from the application running on that particular system. If the operating system is
reinstalled, the machine ID will change and data stored in this container would no longer
be available.

webStorageUser 
The current user storage container is associated with the current user who is using your
application. The user identifier is based on the Windows Security Identifier (SID) assigned
to the account when it's created. If the user account is deleted, the data stored in this
container will no longer be available to the application. Another user on the same
computer system would not be able to access the data in this container.

If you decide to use anything other than global storage, the data your application stores can be
orphaned if the system configuration or user account changes. It's recommended you store critical
application data and general configuration information using webStorageGlobal and use other
non-global storage containers for configuration information which is unique to that system and/or
user which is not critical and can be easily recreated. If you're concerned about protecting the
data you upload to global storage, you can encrypt it prior to storing it.

Objects
Storage objects are similar to files in a file system. They are discrete blocks of data, associated with
a label (name), have attributes and are associated with a particular content type. However, an
object does not need to be an actual file on the local system. For example, you could store an
object which is a string, a pointer to a structure, or any block of memory. You could also just store
a complete file as an object. Unlike files, you cannot perform partial reads of an object or "seek"
into certain parts of a stored object. Of course, you can download an object, either in memory or
to a local file, and perform whatever operations you require on the data.



 

Labels
Object labels are similar to file names, and are a way to identify a stored object instead of using its
internal object ID.  However, there are some important differences. The most significant difference
being labels are case-sensitive, unlike Windows file names. An object with the label "AppConfig" is
considered to be different than one with the label "appconfig". Labels can contain Unicode
characters, but they cannot contain control characters.

You can also use forward slashes or backslash characters in the label, but it's important to note
objects are not stored in a hierarchical structure. Your application can store objects using a folder-
like structure, but it's not something which is enforced by the API.

Media Type
Each object your application stores is associated with a media type (also called a content type)
which identifies the object's data. This uses the standard MIME media type designations, such as
"text/plain" or "application/octet-stream". Your application can explicitly specify the media type
you want to associate with the object, or you can have the API choose for you, based on the
contents of the object and using the label as a hint for what it may contain. For example, if you
create an object with the label "AppConfig.xml" and it contains text, then the API will select
"text/xml" as the default media type.

Initialization
The first step your application must take is to initialize the control and then open a storage container. The
following methods are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Open 
Opens a storage container for your application. Subsequent operations, such as storing, retrieving
and copying objects will be performed within this container.

Close 
Close the storage container and release the resources allocated for the session.

Uninitialize 
Release all resources which have been allocated for the current process. This is the last method
call that the application should make prior to terminating. This is only necessary if the application
has previously called the Initialize method.

Data Storage
The control provides methods to upload and download to the storage container. You can store the
contents of local files, or you can create objects from memory using strings or byte arrays.

GetData 
Download object data and store it in a string or byte array provided by the caller.

GetFile 
Download object data and store it in a file on the local system.

PutData 
Upload object data in a string or byte array and store it as an object in the current container. This
function would typically be used to store binary data, including compressed or encrypted text.

 



PutFile 
Upload the the contents of a local file and store it as an object in the current container.

Data Management
The data management methods allow you to obtain information about stored objects and perform typical
operations such as copying, renaming and deleting objects from the container.

FindFirst 
Enables your application to search for and enumerate objects in a container based on their label
and/or their media type. This method is used in conjunction with the FindNext method to list all
matching objects in a container.

CompareData 
Compares the contents of a string or byte array with the data stored in an object. This method can
be used to determine if the contents of the buffer have changed since the data was previously
stored using the PutData method.

CompareFile 
Compares the contents of a local file with the data in a stored object. This method can be used to
determine if the contents of a file have changed since it was previously stored using the PutFile
method.

Copy 
Copies the contents of a stored object to a new container, or duplicating the object within the
same container using a different label.

Move 
Moves the contents of a stored object to a new container.

Rename 
Changes the label associated with a stored object. The new label for the object cannot already
exist in the same container. If you want to change the label to one already assigned to an existing
object, the object must first be deleted.

Delete 
Removes the stored object from the container. This operation is immediate and permanent.
Deleted objects cannot be recovered by the application at a later time.

DeleteAll 
Deletes all objects which are stored in the current open container. This method resets the
container back to its initial state, deleting all object metadata from the database and removing all
stored data. This operation is immediate and the objects stored in the container are permanently
deleted. They cannot be recovered by your application.

Other Methods
Several additional methods are available, allowing your application register and de-register custom
application identifiers and validate object labels.

RegisterId 
Register a new application identifier (AppId) to be used to access a storage container. It is not
required you create a unique application ID, but it can be helpful to distinguish stored content
between different versions of your applications.

UnregisterId 
Unregister an application identifier which was previously registered by your application. You
should be extremely careful when using this function because it permanently delete all stored



objects created using the AppId value. Internally it revokes the access token granted to your
application and causes the server to expunge all objects in the container associated with the
token.

ValidateId 
A method which can be used to validate an application identifier, ensuring it is valid and has been
registered.

ValidateLabel 
A method which can be used to validate an object label to ensure it does not contain any invalid
characters. This would be primarily used by applications which allow a user to specify the label
names for the objects being stored.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Whois Protocol  

 

The Whois protocol control provides an interface for requesting information about an Internet domain
name. When a domain name is registered, the organization that registers the domain must provide certain
contact information along with technical information such as the primary name servers for that domain.
The Whois protocol enables an application to query a server that provides that registration information.
The Whois control provides an interface for requesting that information and returning it to the program so
it can be displayed or processed.

The following properties, methods and events are available for use by your application:

Initialize 
Initialize the control and validate the runtime license key for the current process. This method is
normally not used if the control is placed on a form in languages such as Visual Basic. However, if
the control is being created dynamically using a function similar to CreateObject, then the
application must call this method to initialize the component before setting any properties or
calling any other methods in the control.

Connect 
Connect to the server, using either a host name or IP address. Once the connection has been
established, the other methods in the control may be used to retrieve information from the server.

Search 
This method submits a search keyword to the server. The keyword may specify a domain name, a
user handle or a user mailbox, depending on the search type. Note that not all WHOIS servers
support all search types. For example, many servers no longer support searching for user
information based on email addresses.

Read 
Read the data returned by the server, storing it in a string variable or byte array that is specified by
the caller. This will contain the information about the domain specified when the Search method
was called. Note that the data returned will typically be text, however it may not follow the same
end-of-line conventions as Windows. For example, if the server is a UNIX or Linux system, the end-
of-line may be indicated by a single linefeed, rather than a carriage-return/linefeed pair. Your
application will have to account for this if the data is being displayed as-is to a user.

Disconnect 
Disconnect from the server and release the memory allocated for that client session. After this
method is called, the client session is no longer valid.

Uninitialize 
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last method call that the application should make prior to terminating.
This is only necessary if the application has previously called the Initialize method.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketTools 11 Quick Start Guide  

 

Overview
1. Concepts
2. Controls
3. Properties
4. Methods
5. Events

File Transfers
Connections

File Transfer Protocol
Hypertext Transfer Protocol

Downloading Files
Uploading Files
Listing Files
File Management

Web Services
Connections
Authentication
Downloading Resources
Executing Scripts

Email Services
Protocol Standards
Composing Messages

Text Messages
HTML Messages

Importing Messages
Exporting Messages
File Attachments
Sending Messages

Authentication
Relay Servers

Listing Messages
Reading Messages
Deleting Messages

Terminal Services
Telnet and Remote Login
Remote Command Execution

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Quick Start Guide Overview  

 

The Quick Start Guide is designed to help you get started quickly and easily using the SocketTools ActiveX
controls. It is important to note that the topics will be general in nature, and more specific information
about a particular component is available in the Technical Reference section. This guide is not meant to be
a replacement for the either the Developer's Guide or the Technical Reference, and we encourage
developers to review those sections thoroughly. Although this guide will cover the most common uses of
the components, it is meant to serve as an overview; not every property, method and event will be
discussed.

The examples provided in the Quick Start Guide presume some familiarity with the Visual Basic
programming language. However, the basic concepts are the same regardless of what language is used.
For information on using the controls in other languages, such as Visual C++, check the Language Support
section of the Developer's Guide. For complete information on all of the properties, methods, events and
constants used by the control, refer to the Technical Reference. Before performing any of the steps in this
guide, you should have installed SocketTools on your development system.

To include any of the SocketTools controls in your project in Visual Basic, simply select the
Project|Components...|Controls menu option and select the control that you wish to use. In other
languages, follow the normal steps that are taken to include an ActiveX control in your development
project.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Quick Start Concepts  

Before getting started with using the controls, there are some general concepts used throughout the
documentation which the developer should understand. If you are new to network programming, you are
also encouraged to review the General Concepts section of the Developer's Guide which covers these
topics in more detail.

Connections and Sessions
One of the first general concepts that you'll encounter when developing Internet applications is that most
programs act as either a client or a server. In simplest terms, a server is a program which is designed to
perform specific functions on behalf of another program. A client is a program which is designed to
request information from a server and then present that information to a user. It is common for one server
to be able to interact with many clients, with each client functioning independently of one another. The
interaction between a client and server can be broken down into several discrete steps:

The client program attempts to connect to the server
The server program accepts the connection
The client sends a request to the server to perform some function
The server processes the request, returning information to the client
The client receives the information from the server and processes it
The client disconnects from the server

When a client wants to request information from a server, the first step that it needs to take is to establish a
connection. This is someone analogous to calling someone up on the telephone. You pick up the
telephone, dial a number and wait for the other person to answer the phone and begin the conversation.
In SocketTools, the Connect method is what is used to begin the process of establishing the connection
with the server. The host name or address tells the control what server it should be connecting to, just as
the telephone number is used to specify who you want to talk to. The control's Disconnect method
disconnects the program from the server, and is similar to saying goodbye and hanging up the telephone.

This complete process, from establishing the connection to disconnecting from the server, is typically
referred to as a session. During a single session, the client may send one request, or it may choose to send
several requests before terminating the connection.

Consider a web server such as the one that hosts the SocketTools website. That server is responsible for
providing clients with the web pages and other content that they request. The client could be any browser,
such as Microsoft Edge or Google Chrome. When you enter an address, such as http://sockettools.com, it
instructs the browser to request the index page for the website from the server. The server retrieves the
contents of that page and sends it back to the client as data. The client receives that data and displays it to
the user. This is an example of a client/server session.

Host Names and Ports
Part of establishing a connection with a server is knowing the name of the server to connect to, and the
port number for the service it is providing. Host names are strings which can be used to identify a server,
similar to how a telephone number is used to specify who it is that you want to call. Everyone who has used
a web browser is familiar with host names, such as sockettools.com or microsoft.com. In addition to host
names, you can also use Internet addresses which are a series of four numbers separated by periods. For
example, 192.168.0.10 would be an Internet address, also referred to as an IP address. The SocketTools
controls have two properties, HostName and HostAddress, which can be used to specify the name or
address of a server. You can also specify the host name or address as an optional argument to the
Connect method, if you prefer.



 

In addition to a host name or address, a client program also needs to know what port number it should use
to establish the connection. You can think of port numbers like the extension for a telephone number. Just
as an extension may be used to contact different employees using the same telephone number for a
company, the port number may be used to connect to different services available on the same server. Port
numbers are a way to distinguish between the different services available, and each protocol has a unique
port number assigned to it. For example, a web server uses port 80 to accept connections, while an FTP
server uses port 21. In most cases, it is not necessary to explicitly specify a port number because the
SocketTools components will automatically select the correct port number for the protocol being used.
However, in some cases servers are configured to use non-standard port numbers. The RemotePort
property can be used to specify a port number, or the port number can be passed as an optional
argument to the Connect method.

One important thing to keep in mind is that host names and URLs (Uniform Resource Locators) are not the
same thing. For example, http://sockettools.com is not a valid host name. URLs include information about
the protocol, the host name or address, the port number and the resource to access. When using the
Connect method or setting the HostName property, make sure that you specify only the host name
portion of the URL, such as sockettools.com. Note that the File Transfer Protocol (FTP) and Hypertext
Transfer Protocol (HTTP) controls do provide a URL property which can be assigned a URL string and the
control will automatically parse the URL and set the corresponding HostName and RemotePort properties
to their correct values. Refer to the Technical Reference for more information.

Asynchronous Sessions
The SocketTools controls have been designed to work in one of two basic modes of operation, establishing
either a synchronous or asynchronous connection. The default mode of operation is synchronous, which is
also referred to as a "blocking" connection. In this mode, the control will wait for the requested operation
to complete on the server or until the timeout period expires. For example, when the Connect method is
called, the control will wait until the connection has completed before returning control to your program
and the next statement is executed. The second mode, which is asynchronous or "non-blocking", causes
the control to resume execution of your program immediately without waiting for the operation to
complete. In that case, your program is notified through events that a particular operation has completed.
For example, when the Connect method is called, it will immediately return and when the connection has
completed, the OnConnect event will fire.

The control uses the Blocking property to determine if it should operate synchronously or asynchronously.
In most cases, it is preferable to use the default mode, which is to establish a synchronous connection.
Unless your application is written to specifically handle the various asynchronous network events, there can
be unexpected results. For example, consider the following code:

Dim nError As Long

nError = FtpClient1.Connect("ftp.microsoft.com")
If nError = 0 Then
    nError = FtpClient1.Login()
End If

If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

In this example, the FTP control is being used to establish a connection to ftp.microsoft.com. If no error is
returned, then the program attempts to login the user. If an error does occur, a message box is displayed
and the subroutine is exited. This code is fairly straight-forward and would work as expected with a
synchronous connection where the Blocking property is set to True. However, if the control was set to use

 



an asynchronous connection then it is very likely this code would fail unexpectedly. Why? Because the
Connect method returns immediately in asynchronous mode, without waiting for the connection to
actually complete. In this case, the Login method would need to be moved out of that code block and into
the OnConnect event handler.

When the control is in blocking mode, the Timeout property is used to determine the amount of time that
the control should wait for the operation to complete. The default in most cases is 20 seconds, however
this can be set lower or higher as needed. To cancel a blocking operation and resume execution of the
program, use the Cancel method.

In general, unless you have a specific need to use the control in asynchronous mode, we recommend that
you always use blocking connections. Asynchronous sessions are more complex to code for, have a greater
tendency to introduce errors into the logical flow of a program and can be more difficult to debug. For
languages such as Visual C++ and Visual Basic.NET which support multithreading, it is preferable to create
multiple threads rather than attempt to manage multiple asynchronous sessions in a single thread. In
addition, there is additional overhead imposed when using asynchronous sessions due to the event
handling mechanism.

It should also be noted that certain high-level methods will always cause the control to block during
execution, regardless of what mode the control is using. An example of this is the GetFile method in the
FTP and HTTP controls, which downloads a file from the server to the local system. To use the control in
asynchronous mode, you are limited to using the lower-level methods such as OpenFile.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Quick Start Control Overview  

This section of the Quick Start Guide provides a general overview of the SocketTools ActiveX controls used
for the most common tasks, divided into groups based on their functionality. For a complete list and
detailed descriptions of all of the controls included in the product, refer to the Control Overview section of
the Developer's Guide.

File Transfer
If your program needs to transfer files between a local computer system and a server, SocketTools
includes components which implement the File Transfer Protocol (FTP) and Hypertext Transfer
Protocol (HTTP). Both protocols can be used to upload and download files, and FTP also supports
various file management functions. Which protocol is used largely depends on the specific needs
of the application and the type of server that the program is connecting to. A general purpose file
transfer program would most likely use both controls and allow the user to select which protocol
to use.

Control Description

FtpClient
The File Transfer Protocol control enables an application to upload and download files,
as well as perform various file management functions on the server. For example, the
control can be used to list the files in a directory, delete and rename files, etc.

HttpClient

The Hypertext Transfer Protocol control enables an application to upload and
download files, as well as interact with web-based applications. The file management
capabilities are somewhat limited compared to FTP, however the protocol is not as
complex and has fewer compatibility issues with certain network configurations.

Web Services
Applications which need to access resources on a web server and interact with web-based
applications can use the Hypertext Transfer Protocol (HTTP) control. In the context of web services,
the control can be used to access resources on a web server, execute scripts and other
applications, as well as perform various management functions using WebDAV, a protocol
extension for distributed authoring.

Control Description

HttpClient

The Hypertext Transfer Protocol control enables an application to upload and
download files, as well as interact with web-based applications. The control can be
used to post data to scripts which are executed on the server and return the output of
those scripts to the client application.

email Services
SocketTools includes several controls which can be used to create applications that send and
receive email messages. Applications can compose, edit and store messages on the local system,
retrieve messages from a mail server and send messages to one or more recipients. The
SocketTools controls support features such as the ability to compose messages with styled (HTML)
text, file attachments, relay server authentication and delivery status notification. Programs which
only wish to process messages sent to a user would typically use the MIME control and either the
IMAP4 or POP3 controls. Programs which only wish to send messages would typically use the
MIME control and the SMTP control. A full featured mail client would use all of the following
components.

Control Description
The Multipurpose Internet Mail Extensions (MIME) standard defines the structure



 

MailMessage

and format which is used by email messages. This control enables you to create
MIME compliant messages easily, as well as parse existing messages, edit them and
store them on the local system. The control supports complex multipart
attachments, including messages with one or more file attachments and messages
with alternative content such as styled HTML text.

ImapClient

The Internet Message Access Protocol (IMAP4) control can be used to manage
email messages on a mail server. Using this control, you can list and retrieve
messages, search for specific messages, manage multiple mailboxes, retrieve
portions of a message and perform other advanced functions.

PopClient

The Post Office Protocol (POP3) control can be used to list the messages on a mail
server and download them to the local system. Unlike the IMAP4 protocol, which is
designed to manage messages on the server, the POP3 protocol is used primarily
to retrieve messages, store them locally and then delete them from the server.
POP3 is a simpler protocol with less functionality than IMAP4, however it more
widely supported.

SmtpClient

The Simple Mail Transfer Protocol (SMTP) control is used to submit a message for
delivery to one or more recipients. The control can be used to either send the
message directly to the recipient, or messages can be routed through a relay server
which is responsible for forwarding the message. Both standard SMTP and
extended ESMTP sessions are supported, along with advanced options such as
authentication and delivery status notification.

Terminal Services
Applications which need to execute commands on a server or establish a terminal session can use
the SocketTools Telnet and Remote Shell (RSH) controls. The program can connect to the server
and interact with the server in the same way that a user can with a character based terminal. In
addition, SocketTools includes a terminal emulation control which can be used to emulate an ANSI
console or a DEC VT-220 terminal. This can be used to either provide the user with a traditional
virtual terminal interface, or the program can read data at specific rows and columns and
effectively provide a graphical interface for a legacy character-based application running on the
server.

Control Description

TelnetClient

The Telnet protocol control enables the application to establish a standard,
interactive terminal session with a server. This approach is similar to how character-
based terminals were connected to systems and users would login to the mainframe
or minicomputer. For legacy applications that run on a UNIX server, this control can
be used to connect to the server, login and interact with the server just as a user
would sitting at a terminal. You can either choose to display the terminal session to
the user, or you can have your application present a graphical interface to the user
and interact with the terminal session in the background.

RshClient

The Remote Shell (RSH) control actually implements three related protocols in a
single component. The rshell and rexec protocols are used to execute a command
on the server and the output from that command is returned to the client. The
difference between the two protocols has to do with how authentication is handled.
The rexec protocol uses a password to authenticate a user session, while rshell uses
host equivalence. More information about these protocols is available in the
Technical Reference. This control also implements the rlogin protocol, which is similar
to the Telnet protocol in that it provides an interactive terminal session.

 



Terminal

The Terminal control emulates a standard character-based terminal, either as an
ANSI console, DEC VT-100 or DEC-VT220 terminal. The emulator supports all of the
standard ANSI and DEC escape sequences, including support for colors and line
drawing. Your program has full control over the functionality of the control, including
the color mapping, the escape sequences that special keys (such as the function
keys) send and whether the user can do things such as select and copy text from the
virtual display.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Common Properties  

Many of the SocketTools components share a common set of properties, each with the same general
functionality. This approach makes it easier to understand the interface and reduces the overall learning
curve. However, it is important to note that some common properties may affect the operation of the
controls in different ways. Although this guide can provide a general overview of those properties and how
they are used, it is recommended that you also review the Technical Reference material for the control that
you are using in your application.

Property Name Description

AutoResolve Determines if host names and IP addresses are automatically resolved

Blocking Gets and sets the blocking state of the control

HostAddress Gets and sets the IP address of the server

HostName Gets and sets the name of the server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsReadable Return if data can be read from the server without blocking

IsWritable Return if data can be sent to the server without blocking

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

LocalAddress Return the IP address of the local host

LocalName Return the name of the local host

Password Gets and sets the password for the current user

RemotePort Gets and sets the port number for a remote connection

ResultCode Return the result code of the previous action

ResultString Return a string describing the results of the previous action

Secure Set or return if a connection to the server is secure

State Return the current state of the control

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

UserName Gets and sets the current user name

Version Return the current version of the object

AutoResolve
The AutoResolve property controls how host names are resolved by the control whenever the



HostName or HostAddress properties are set. By default, the property is set to False, which means
that the control does not attempt to resolve the host name until a connection attempt is made. If
the property is set to True, then the control will immediately attempt to resolve the host name into
an IP address. Note that this can cause the control to block for several seconds and negatively
affect the performance of your program. In most cases, this property should be set to False.

Blocking
The Blocking property determines whether or not the control operates in blocking (synchronous)
mode or non-blocking (asynchronous) mode. In blocking mode, the control waits for a given
operation to complete before returning control to your application and executing the next
statement. In non-blocking mode, control is immediately returned to the program without waiting
for the operation to complete. In this case, events are used to notify the application that a specific
operation has completed.

In general, using a control in blocking mode means that your code is going to be structured in a
top-down fashion. For example, when establishing a connection with a server, your program will
block until the connection has completed or has timed out. In non-blocking mode, your code is
event driven and must implement event handlers to process those event notifications.

In general, it is recommended that you only establish a non-blocking connection when you
understand the implications of doing so and it is required by your application. If you require
multiple instances of the control to establish connections to different servers, it is preferable to
create a multithreaded application rather than attempt to use multiple instances of the control in a
single thread.

HostAddress
The HostAddress property is used to specify the IP address of a server to connect to. The address
should be given in dot notation, which is four numbers separated by periods (e.g.: 192.168.0.10). If
the AutoResolve property is set to True, setting this property will force the control to immediately
resolve the address into a host name. Note that if you attempt to set this property to the value of
a host name, an exception will be thrown indicating that the property value is invalid.

HostName
The HostName property is used to specify the name of a server to connect to. This property will
accept either host names or IP addresses. If an IP address is specified, then setting this property is
similar to setting the HostAddress property. If the AutoResolve property is set to True, setting this
property will force the control to immediately resolve the host name into an IP address. The value
of this property is used as the default host name when the Connect method is called.

IsBlocked
The IsBlocked property returns True if the control is currently performing a blocking operation.
This can be used in conjunction with the State property to determine if the control can be used to
issue a command to the server or perform some other operation. When the IsBlocked property
returns False and the State property returns a value of zero or one, the control is in either an
inactive or idle state. If the program attempts to perform another operation while a blocking
operation is in progress, the error stErrorOperationInProgress is returned.

IsConnected
The IsConnected property returns True if a connection has been made with a server, otherwise it
will return False. The property is read-only, and any attempt to set it to a value will result in an
error. To establish a connection, refer to the Connect method.

IsReadable



 

The IsReadable property returns True if there is data available to read using the Read method. If
the property returns False, then there is no data available to be read. In this case, if the Blocking
property is set to True, calling the Read method will cause the control to block until data arrives or
the timeout period is exceeded; otherwise, it will fail and return the error
stErrorOperationWouldBlock. Note that this property can only be used to determine if there is
data available to be read, not the amount of data.

IsWritable
The IsWritable property returns True if the control can successfully write data using the Write
method. If the property returns False, then the control's internal buffers are full and cannot accept
any more data until the server reads some of the data that has already been written. In this case, if
the Blocking property is set to True, the Write method will cause the control to block until the
data can be written or the timeout period is exceeded; otherwise, it will fail and return the error
stErrorOperationWouldBlock. Note that this property can only be used to determine if some data
can be written, not the amount of data.

LastError
The LastError property returns a numeric value which identifies the last error that occurred. This
property may be set to zero, which will clear the last error code. Note that setting this property to
a non-zero value will have the effect of raising that error, which must be handled by the
application. Refer to the Technical Reference for a complete list of error codes and their
description.

LastErrorString
The LastErrorString property returns a description of the last error that occurred, and
corresponds to the value of the LastError property. This property is typically used by an
application to display a message box to the user or include information about the error in a log
file. Note that the error description will be in English, regardless of the current locale settings.

LocalAddress
The LocalAddress property returns the IP address of the local host. Note that if the system is
behind a router which uses Network Address Translation (NAT) then the IP address returned will
be the address of the system on the local network, not the external WAN address assigned to the
router.

LocalName
The LocalName property returns the fully qualified domain name of the local host, if that
information is available. If the control is unable to determine the domain name for the local
system, then it will return the machine name as it was configured in the Windows operating
system.

Password
The Password property is used to specify the password used to authenticate the client session
with the server. This property is only used by those controls which support authentication. Setting
this property to an empty string will clear the current password being used. This property should
be used in conjunction with the UserName property.

RemotePort
The RemotePort property is used to specify the port number used to establish a connection with
the server. A value of zero specifies that the default port number for the protocol should be used.
For example, if the property is set to zero with the FTP control, then the control will use port 21 by
default. Valid port numbers are in the range of 1 through 65535, and assigning the property a

 



value greater than this will result in an error. This property value is used as the default port
number when the Connect method is called.

ResultCode
The ResultCode property returns the last numeric result code sent by the server in response to a
command. Result codes are used to determine the status of a command issued by a server,
typically indicating success, failure or that the client must provide additional information. It is
important to note that different protocols use result codes in different ways. Refer to the Technical
Reference for more information about how result codes are returned by a specific control. To
obtain a description of the result code, use the ResultString property.

ResultString
The ResultString property returns a description of the last result code sent by the server in
response to a command. The values of these strings are completely dependent on the server
implementation and can vary from server to server. An application should never depend on a
server returning a specific description of a command result and instead should rely on the
ResultCode property. The result string is primarily used to provide additional information to the
user or for debugging purposes.

Secure
The Secure property determines if the control should establish a secure connection to the server.
The default value for this property is False, which specifies that a standard connection should be
established. If this property is set to True, then the control will attempt to establish a secure
connection using the Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocols.

State
The State property returns a numeric value which identifies the current state of the control. A
value of zero indicates that no connection has been established with the control. A value of one
indicates that the control is in an "idle" state, waiting to process the next request or send a
command to the server. Values greater than one indicate that the control is actively performing
some operation. Refer to the Technical Reference documentation for the specific control to
determine what each state value means.

ThrowError
The ThrowError property is used to determine how errors are reported by the control when
calling a method. The default value is False, which specifies that errors should be returned as
values from the method call and the control should not throw an exception. If this property is set
to True, then methods will throw an exception whenever an error is encountered. This can be
useful if you want to implement an exception handler for any error conditions rather than
checking the return value from each method call.

Timeout
The Timeout property used to determine how long the control will wait for a blocking operation
to complete before returning control to the application. The default value for the property in most
cases is 20 seconds. Note that the Internet Control Message Protocol (ICMP) control is an
exception in that the Timeout property specifies a value in milliseconds, not seconds. The
Timeout property is only used when the Blocking property is set to True.

Trace
The Trace property is used to enable or disable the trace logging features of the control. When
the property is set to True, the control will record all of the networking function calls that it makes,
and depending on the trace level, the data exchanged between the client and server. To enable



trace logging, you must include the trace library cstrcv11.dll with your application. If this library
cannot be loaded, the Trace property value will be ignored.

TraceFile
The TraceFile property is used to specify the name of a file that will contain the trace logging data
generated when the Trace property is set to True. This property should be set prior to setting the
Trace property.

TraceFlags
The TraceFlags property is used to specify the amount of information that is recorded by the
trace logging facility. The default value of zero specifies that all of the networking function calls
should be logged, along with their arguments and return values. The following values are used:

Value Description

0 All function calls are written to the trace file, including information about
successful calls made to the networking library. This is the default value.

1 Only those function calls which fail are recorded in the trace file. Functions
which are successful or only return values which indicate a warning are not
logged.

2 Only those function calls which fail, or return values which indicate a warning,
are recorded in the trace file. Successful function calls are not logged.

4 All functions calls are written to the trace file, plus all the data that is sent or
received is displayed in both ASCII and hexadecimal format. This is useful for
examining the actual byte stream that is exchanged between the application
and the server.

UserName
The UserName property is used to specify the username used to authenticate the client session
with the server. This property is only used by those controls which support authentication. Setting
this property to an empty string will clear the current username. This property should be used in
conjunction with the Password property.

Version
The Version property returns the current version of the control as a string. This can be used by
the application to check that the correct version of the control has been registered on the local
system.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Common Methods  

Many of the SocketTools components share a common set of methods, each with the same general
functionality. It is important to note that although methods may share the same name, the number and
type of arguments may vary from control to control. Be sure to review the Technical Reference
documentation for the specific control that you are using.

Method Name Description

Cancel Cancels the current blocking network operation

Command Send a custom command to the server

Connect Establish a connection with a server

Disconnect Terminate the connection with a server

Initialize Initialize the control and validate the runtime license key

Read Return data read from the server

Reset Reset the internal state of the control

Uninitialize Uninitialize the control and release any system resources allocated for the
session

Write Write data to the server

All methods expect that the arguments passed to them will be variants, and the argument will be converted
to the appropriate type by the method. This allows the controls to be easily used by weakly typed
languages, and is generally transparent to the caller in languages such as Visual Basic. However, in
languages such as Visual C++, you should either use VARIANT types or related classes such as
CComVariant when passing arguments to a method. In most cases, the arguments should be passed by
value to the method, however there are exceptions where a method returns data to the caller in one or
more arguments. In this case, the caller must pass the argument by reference. Again, languages such as
Visual Basic will handle this for you transparently. However, some languages such as FoxPro or
PowerBuilder require that you use special syntax when passing an argument by reference. Refer to the
documentation for your programming language if you have any questions on how to pass an argument by
reference to a method.

Most methods will return a value of zero if they are successful, or an error code value if the method fails for
some reason. This error code will match the value of the LastError property, and a description of the error
can be obtained by getting the value of the LastErrorString property. There are some exceptions to this
rule, such as the Read and Write methods which return the number of bytes read or written, and a value of
-1 if there was an error. These exceptions are noted in the Technical Reference section for each control.

Cancel
The Cancel method cancels the current blocking operation being performed by the control. For
example, if the Connect method has been called, the Cancel method will cancel the connection
attempt. When this happens, the OnCancel event will fire and the blocking method will return with
the error stErrorOperationCanceled. Once an operation has been canceled, it is important to allow
the application to unwind the stack and resume execution at the point where the blocking method
returns. For example, you should not call the Cancel method and then perform another blocking
operation in any event handler until after the blocking method returns.

Command



 

The Command method is used to send custom commands to the server, specific to the protocol
being used. This provides the program with a very low level of access to the application protocol.
Typically it is used to take advantage of non-standard extensions to the protocol or server-specific
commands. After calling the Command method, the program should check the value of the
ResultCode and ResultString properties to determine if the command was successful or an error
occurred.

Connect
The Connect method is used to establish a connection with a server, and is typically one of the
first methods called by the program. The method accepts one or more optional arguments, such
as the host name or IP address of the server, the port number, and in some cases a user name
and password. If no arguments are specified, then the method will use the values of the
HostName or HostAddress, RemotePort, UserName and Password properties as the default. If the
control is in blocking mode, then the method will return after the connection has been established,
or after the timeout period has been exceeded. If the control is in non-blocking mode, the
method will return immediately and the application must wait for either the OnConnect or
OnError events to fire.

Disconnect
The Disconnect method terminates the current connection and releases some of the resources
allocated by the control for the network connection. For every call to the Connect method, there
should be a matching call made to the Disconnect method when the connection is no longer
needed.

Initialize
The Initialize method explicitly initializes the control, loading the appropriate networking libraries,
validating the runtime license key and performing other internal initialization functions. If the
control is placed on a form or dialog, then it is not normally required that a program call this
method because the container (form) will automatically initialize the control for you. However, if
the control is created dynamically using CreateObject or created using a reference, then your
program must call the Initialize method before setting any properties or calling any other
method. For each call to the Initialize method, there should be a matching call made to the
Uninitialize method when the control is no longer being used.

If the Initialize method is called without specifying a valid runtime key, then the program will only
execute on a system that has a valid development license. To redistribute your application, you
must purchase a license and provide a valid runtime key. For more information, refer to the
Control Initialization section of the Developer's Guide.

Read
The Read method is used to read data returned by the server in response to a command sent by
the client. The type of data returned depends on the protocol being used and the command
issued to the server. The first argument passed to the method should be a string or byte array
which will contain the data that has been read. The second argument should be an integer which
specifies the amount of data to read, in bytes. The Read method is typically only used in
conjunction with those methods which provide lower-level access to the application protocol.

The Read method is different from most other methods in two important ways. Instead of
returning zero or an error code, the method returns the number of bytes read. If an error occurs,
then the method will return -1. If an error occurs, then the method will return -1. To determine the
cause of the error, check the value of the LastError property. If there is no more data to be read
and the server has closed its connection to your program, then the method will return 0.

 



In addition, the variable which will contain the data must be passed by reference to the method. In
languages like Visual Basic, this is automatically handled for you. However, other languages may
require you to use a special syntax to indicate that the variable should be passed by reference
rather than by value. Consult the documentation for your programming language if you have any
questions about how to do this.

Reset
The Reset method will reset the internal state of the control to its defaults, terminating any
connection to the server and releasing resources allocated for the client session. This method
should only be used when the program needs to effectively abort any connection and return to a
known state. In most cases, it is preferable for the application to use the Disconnect method to
cleanly terminate the session.

Uninitialize
The Uninitialize method is used to unload the networking library and release those resources
which have been allocated by the control. In most cases, it is not necessary to explicitly uninitialize
the control because this is handled automatically when the control is unloaded from the form or
the application terminates. For each call to the Initialize method, there should be a matching call
made to the Uninitialize method when the control is no longer being used.

Write
The Write method is used to send data to the server. The first argument passed to the method
should be a string or byte array which will contain the data to be written. The second argument
should be an integer which specifies the number of bytes of data in the string or byte array. The
Write method is typically only used in conjunction with those methods which provide lower-level
access to the application protocol.

The Write method is different from most other methods because instead of returning zero or an
error code, the method returns the number of bytes written. If an error occurs, then the method
will return -1. To determine the cause of the error, check the value of the LastError property.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Common Events  

Many of the SocketTools components share a common set of events, each with the same general
functionality. It is important to note that although events may share the same name, the number and type
of arguments may vary from control to control. Be sure to review the Technical Reference documentation
for the specific control that you are using.

Event Name Description

OnCancel This event is generated when a blocking operation is canceled

OnCommand This event is generated when the server processes a command issued by the
client

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnProgress This event is generated during data transfer

OnRead This event is generated when data is available to be read

OnTimeout This event is generated when a blocking operation times out

OnWrite This event is generated when data can be written to the server

The events generated by the SocketTools controls can be divided into two general categories,
asynchronous network events and status notification events. Events such as OnConnect and OnRead are
examples of network events which are generated when the control is placed in non-blocking mode. Events
such as OnError and OnProgress are examples of notification events which are designed to provide
additional status information to your application.

All events have their arguments passed by value as variants. For languages such as Visual Basic, this does
not require any special consideration when implementing an event handler. For other languages, you may
need to convert the variant into the appropriate data type for your application. For example, in Visual C++
this can be done using the standard macros included in oleauto.h or using a class such as CComVariant.
For more information about how to implement an event handler in C++, refer to to the section on Control
Event Handling in the Developer's Guide.

When developing your event handlers, it is important to remember that the event mechanism uses
Windows messages and requires that the application process those messages. That means that events may
not fire correctly if the application is executing code in a tight loop and no messages are being dispatched.
Another consideration is that some functions can interfere with the normal operation of events. For
example, the MsgBox function in Visual Basic will force event handling to be suspended until the user
closes the message box. Single stepping through code in the debugger can also prevent events from being
processed normally. To debug code in an event handler, it is recommend that you use methods such as
writing diagnostic messages to the immediate (debugging) window or a log file rather than more intrusive
measures such as displaying a message box.

OnCancel
The OnCancel event is generated whenever a blocking operation has been canceled using the
Cancel method. When this event fires, the component is about to return control to your
application, and the blocked method will return with the error stErrorOperationCanceled. It is
important to note that you should not perform another blocking operation while inside the event



 

handler. Instead, allow the stack to unwind and return control to the calling function.

OnCommand
The OnCommand event is generated whenever the server has processed a command issued by
the client. The event handler is passed two arguments, the numeric result code and a string
describing the result of the command. These values correspond to the ResultCode and
ResultString properties. This event is typically used by applications to record the responses from a
server, either as information for the user or for debugging purposes.

OnConnect
The OnConnect event is a networking event that indicates that the connection request has
completed and the client has successfully established a connection with the server. This event is
only generated when the Blocking property is set to False. If the control is used to establish a
non-blocking connection, the application must wait for this event to fire before attempting to
perform any other functions.

OnDisconnect
The OnDisconnect event is a networking event that indicates that the server has closed its
connection to the client. When this event occurs, your program should attempt to read any
remaining data and then call the Disconnect method to close its connection to the server. This
event is only generated when the Blocking property is set to False.

OnError
The OnError event occurs whenever an error is reported by the control. The event handler is
passed two arguments, the numeric error code and a description of the error. These values
correspond to the LastError and LastErrorString properties. This event is typically used by
applications to record any errors that occur, either as information for the user or for debugging
purposes.

OnProgress
The OnProgress event occurs during blocking operations, providing information to the
application about the status of the transaction. For example, this event is called periodically during
a file transfer so that the program knows how much of the file has been uploaded or downloaded.
This event is typically used to update the user interface, such as setting the value of a progress bar
control.

OnRead
The OnRead event is a networking event which occurs whenever there is data available to be
read. This event is only generated when the Blocking property is set to False and a lower-level
method is called which requires the application to read data directly from the server. An important
consideration when handling the OnRead event is that this event is level-triggered. This means
that the event will only fire once, and will not fire again even if more data arrives, until at least
some of the data has been read by the application. This is by design, to prevent the application
from being flooded with event messages.

OnTimeout
The OnTimeout event is generated whenever a blocking operation has exceeded the amount of
time specified by the Timeout property. When this event fires, the component is about to return
control to your application, and the blocked method will return with the error
stErrorOperationTimeout. It is important to note that you should not perform another blocking
operation while inside the event handler. Instead, allow the stack to unwind and return control to
the calling function.

 



OnWrite
The OnWrite event is a networking event which occurs whenever the server is able to receive
more data from the application. This event is only generated when the Blocking property is set to
False and a previous call to the Write method failed with the error stErrorOperationWouldBlock.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfers  

 

SocketTools includes two components which are primarily used for uploading and downloading files. The
File Transfer Protocol (FTP) control is used to transfer files between the local system and an FTP server on a
server. This control also enables an application to list directories and search for files, perform remote file
management tasks such as renaming and deleting files, as well as a number of other functions. The
Hypertext Transfer Protocol (HTTP) control can also be used to transfer files, and the properties, methods
and events for the two controls are very similar.

A common question asked by most developers is which is the best protocol to use if you want to transfer
files. This depends on a number of factors, including the type of server being connected to and what the
program needs to do. As a general rule, FTP is a more complex protocol which offers more features in
terms of the ability to manage files on a server. For example, you can use FTP to list all of the files in a
directory on the server, search for those files which were modified after a certain date and download them.
HTTP doesn't provide those kinds of facilities. However, FTP can present problems when it is used behind a
firewall or a router which uses Network Address Translation (NAT) and applications which use FTP need to
give users the ability to configure various options, such as whether or not passive-mode file transfers are
used.

On the other hand, HTTP offers a much simpler protocol and typically does not have the same kinds of
problems when used from behind a firewall or NAT router. However, it does not have many of the more
advanced file management features that FTP supports, and the ability to upload or delete files usually
requires that the administrator of the web server make specific changes to allow this.

Here are some general guidelines you can follow to determine which is the best protocol to use in a given
situation:

If your program only downloads files from the server to the local system, use HTTP whenever
possible. 
 
If your program only uploads files from the local system to the server, use FTP whenever possible. If
you must use HTTP, make sure that your web administrator has enabled the use of the PUT
command. 
 
If your program frequently downloads files from the server and occasionally uploads files, use HTTP
whenever possible and make sure that your web administrator has enabled the use of the PUT
command. 
 
If your program must perform file management functions such as deleting and renaming files,
creating directories or searching for files which meet a specific criteria, use FTP whenever possible. 
 
If you want to use a secure, encrypted connection to protect the contents of the data being
transferred, use HTTP whenever possible. Although there are extensions to FTP which support secure
connections, those servers are not as common as secure web servers. 
 
For broadest compatibility, use both the FTP and HTTP controls and allow your user to select which
protocol to use and the various options that are available.

If you decide to use the FTP control, make sure that you set the Passive property to True. This will force the
control to only establish outbound connections to the server and ensures a broader range of compatibility
with various firewall and router configurations.

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Establishing a Connection  

 

In order to transfer files or use the various file management methods, it is necessary to establish a
connection to the server. This is done by calling the Connect method and checking the return value to
make sure that the connection was successful. To establish that connection, certain information is required.
This includes:

The host name or IP address of the server that you wish to connect to. This information may be
specified by either setting the HostName property, or by passing the host name as an argument to
the Connect method. For example, ftp.microsoft.com is a valid host name. 
 
The port number of the server that you're connecting to. This can be specified by setting the
RemotePort property or passing the port number as an argument to the Connect method. In most
cases, the default port number should be used and it is not necessary to specify the port number in
your application. However, for servers that are configured to use non-standard port numbers, that
information must be provided. Setting the RemotePort property to a value of zero specifies that the
default port number appropriate for that protocol should be used. 
 
If a secure, encrypted connection is required, then the Secure property should be set to True. A
secure server is one that supports the SSL (Secure Sockets Layer) protocol, the TLS (Transport Layer
Security) protocol or the SSH (Secure Shell) protocol.

In addition, FTP connections almost always require a user name and password. If neither is specified, the
control will attempt an anonymous login. Not all FTP servers support anonymous logins and an error may
be returned indicating that the username or password is invalid. In rarer circumstances, an account name
may also be required. HTTP connections rarely require a username and password for downloads, although
that information may be required to upload files to the server.

Either FTP or HTTP servers may be accessible only through a proxy server in certain circumstances. In those
circumstances, a set of properties related to proxies must be specified before connecting. Please see the
Technical Reference for further details.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Protocol Connections  

 

To establish a connection using the FTP control, you should call the Connect method and check the return
value to ensure that the connection was successful. This can be done one of several ways, and which
approach you use largely depends on personal preference and the structure of your program.

Method Arguments
You can call the Connect method with a number of different arguments, all of which are optional. The
most common use would look like this:

Dim nError As Long

nError = FtpClient1.Connect(strHostName, ftpPortDefault, strUserName, 
strPassword)
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

In this example, the strHostName string variable contains the name of the server to connect to, the
strUserName variable contains the username and the strPassword variable contains the password used to
authenticate that user. If the function returns a value other than zero, this indicates an error and a message
box is used to display the error to the user.

Property Values
Another method is to set the host name, user name and password using the control's properties and then
calling the Connect method without any arguments. Here is an example of how that could be done:

Dim nError As Long

FtpClient1.HostName = "ftp.microsoft.com"
FtpClient1.UserName = "anonymous"
FtpClient1.Password = "user@domain"

nError = FtpClient1.Connect()
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

Note that the RemotePort property is not specified, which means that the default port number should be
used. As with the previous example, if the connection fails then the method will return an error code and a
message box is displayed to the user.

Uniform Resource Locators
A third approach is to specify a URL by setting the URL property and then calling the Connect method
without any arguments. By setting the URL property, the control will automatically update the various
related properties such as HostName and RemotePort. Here is an example of how this could be done:

Dim nError As Long

FtpClient1.URL = "ftp://ftp.microsoft.com/"

nError = FtpClient1.Connect()
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

 



If you prefer to use URLs, this approach provides the simplest means of establishing the connection. It
should be noted that if the URL property is assigned an invalid value, then the control will throw an
exception. If you are using URLs provided by a user, it is strongly recommended that you implement an
error handler, otherwise your program may terminate if the user specifies an incorrect or incomplete URL.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Hypertext Transfer Protocol Connections  

 

To establish a connection using the HTTP control, you should call the Connect method and check the
return value to ensure that the connection was successful. This can be done one of several ways, and which
approach you use largely depends on personal preference and the structure of your program.

Method Arguments
You can call the Connect method with a number of different arguments, all of which are optional. The
most common use would look like this:

Dim nError As Long

nError = HttpClient1.Connect(strHostName)
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

In this example, the strHostName string variable contains the name of the server to connect to. If the
method returns a value other than zero, this indicates an error and a message box is used to display the
error to the user. Note that if the resource requires authentication, then a username and password can also
be passed to the method.

Property Values
Another method is to set the host name using the control's HostName property and then calling the
Connect method without any arguments. Here is an example of how that could be done:

Dim nError As Long

HttpClient1.HostName = "www.microsoft.com"

nError = HttpClient1.Connect()
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If
Note that the RemotePort property is not specified, which means that the default port number should be
used. If authentication was required, the UserName and Password properties could be set as well. As with
the previous example, if the connection fails then the method will return an error code and a message box
is displayed to the user.

Uniform Resource Locators
A third approach is to specify a URL by setting the URL property and then calling the Connect method
without any arguments. By setting the URL property, the control will automatically update the various
related properties such as HostName and RemotePort. Here is an example of how this could be done:

Dim nError As Long

HttpClient1.URL = "http://www.microsoft.com/"

nError = HttpClient1.Connect()
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

If you prefer to use URLs, this approach provides the simplest means of establishing the connection. It

 



should be noted that if the URL property is assigned an invalid value, then the control will throw an
exception. If you are using URLs provided by a user, it is strongly recommended that you implement an
error handler, otherwise your program may terminate if the user specifies an incorrect or incomplete URL.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Downloading Files  

 

The GetFile method is used to download files using either the FTP or HTTP controls. In its simplest form,
the method accepts two arguments, the name of the local file to create or overwrite and the name of the
file on the server to download. For example, consider a form with three TextBox controls and a
CommandButton control:

Private Sub Command1_Click()
    Dim strHostName As String
    Dim strLocalFile As String
    Dim strRemoteFile As String
    Dim nError As Long

    strHostName = Trim(Text1.Text)
    strLocalFile = Trim(Text2.Text)
    strRemoteFile = Trim(Text3.Text)

    ' Establish a connection to the server and display any
    ' errors to the user
    nError = FtpClient1.Connect(strHostName)
    If nError Then
        MsgBox FtpClient1.LastErrorString, vbExclamation
        Exit Sub
    End If

    ' Download the file to the local system
    nError = FtpClient1.GetFile(strLocalFile, strRemoteFile)
    If nError Then
        MsgBox FtpClient1.LastErrorString, vbExclamation
        FtpClient1.Disconnect
        Exit Sub
    End If

    ' Disconnect from the server
    FtpClient1.Disconnect
End Sub

In this example, there is no user name or password specified so the FTP server would need to accept
anonymous logins. This same code would work with the HTTP control to download a file from a web
server. To provide some feedback to the user as to the status of the transfer, a ProgressBar control could
be added to the form. To update the progress bar, a handler for the OnProgress event would also be
added:

Private Sub FtpClient1_OnProgress(ByVal FileName As Variant, _
                                  ByVal FileSize As Variant, _
                                  ByVal BytesCopied As Variant, _
                                  ByVal Percent As Variant)
    ProgressBar1.Value = Percent
End Sub

Simply setting the Value property of the ProgressBar control to the Percent argument in the event handler
will update the progress bar during the file transfer process. As with the previous code, this can also be
done using the HTTP control in the same way.

For a second example, let's use the HTTP control to download an HTML page from a website and store it
on the local system. The form has two TextBox controls and a CommandButton control. The first TextBox
control will contain the URL of the page to download, and the second control will specify the local name on
the server.

 



Private Sub Command1_Click()
    Dim strHostName As String
    Dim strLocalFile As String
    Dim strRemoteFile As String
    Dim nError As Long

    ' If the user enters an invalid URL, setting the URL property will
    ' throw an exception, so that needs to be handled here
    On Error Resume Next: Err.Clear
    HttpClient1.URL = Trim(Text1.Text)
    
    If Err.Number Then
        MsgBox "An invalid URL has been specified", vbExclamation
        Exit Sub
    End If
    
    On Error GoTo 0
    strLocalFile = Trim(Text2.Text)

    ' Establish a connection to the server and display any
    ' errors to the user
    nError = HttpClient1.Connect()
    If nError Then
        MsgBox HttpClient1.LastErrorString, vbExclamation
        Exit Sub
    End If

    ' Download the file to the local system
    nError = HttpClient1.GetFile(strLocalFile, HttpClient1.Resource)
    If nError Then
        MsgBox HttpClient1.LastErrorString, vbExclamation
        HttpClient1.Disconnect
        Exit Sub
    End If

    ' Disconnect from the server
    HttpClient1.Disconnect
End Sub

You'll notice that much of the code is very similar, with the exception for the error handling code used
when the URL property is set, and the use of the Resource property. When the URL property is set, the
control will automatically parse the URL and update the related properties such as HostName and
RemotePort. The path and file name portion of the URL is assigned to the Resource property, which can
then be used in conjunction with the methods such as GetFile and PutFile.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uploading Files  

 

The PutFile method is used to upload files using either the FTP or HTTP controls. In its simplest form, the
method accepts two arguments, the name of the local file to upload and the name of the file that will be
created or overwritten on the server. For example, consider a form which has five TextBox controls and a
CommandButton control:

Private Sub Command1_Click()
    Dim strLocalFile As String
    Dim strRemoteFile As String
    Dim nError As Long

    FtpClient1.HostName = Trim(Text1.Text)
    FtpClient1.UserName = Trim(Text2.Text)
    FtpClient1.Password = Trim(Text3.Text)
    strLocalFile = Trim(Text4.Text)
    strRemoteFile = Trim(Text5.Text)

    ' Establish a connection to the server and display any
    ' errors to the user
    nError = FtpClient1.Connect()
    If nError Then
        MsgBox FtpClient1.LastErrorString, vbExclamation
        Exit Sub
    End If

    ' Download the file to the local system
    nError = FtpClient1.PutFile(strLocalFile, strRemoteFile)
    If nError Then
        MsgBox FtpClient1.LastErrorString, vbExclamation
        FtpClient1.Disconnect
        Exit Sub
    End If

    ' Disconnect from the server
    FtpClient1.Disconnect
End Sub

In this example, the user specifies the name of a server, a username and a password. In most cases, servers
only permit authenticated users to upload files, so this information is usually required. This same code
would work with the HTTP control to upload a file to a web server. To provide some feedback to the user
as to the status of the transfer, a ProgressBar control could be added to the form. To update the progress
bar, a handler for the OnProgress event would also be added:

Private Sub FtpClient1_OnProgress(ByVal FileName As Variant, _
                                  ByVal FileSize As Variant, _
                                  ByVal BytesCopied As Variant, _
                                  ByVal Percent As Variant)
    ProgressBar1.Value = Percent
End Sub

Simply setting the Value property of the ProgressBar control to the Percent argument in the event handler
will update the progress bar during the file transfer process. As with the previous code, this can also be
done using the HTTP control in the same way.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Listing Files  

 

In addition to uploading and downloading files, the FTP control can also be used to list the files that are in
a specific directory on the server. This is done by using three methods: OpenDirectory, ReadDirectory
and CloseDirectory. For example, consider a form with two TextBox controls, a ListBox control and a
CommandButton control. The first TextBox control is used to specify the host name of the server and the
second control specifies the directory. The ListBox control is populated with the name of the files in that
directory.

Private Sub Command1_Click()
    Dim strHostName As String
    Dim strDirectory As String
    Dim strFileName As String
    Dim nError As Long
    
    strHostName = Trim(Text1.Text)
    strDirectory = Trim(Text2.Text)

    ' Establish a connection to the server and display any
    ' errors to the user
    nError = FtpClient1.Connect(strHostName)
    If nError Then
        MsgBox FtpClient1.LastErrorString, vbExclamation
        Exit Sub
    End If
    
    ' Open the directory on the server to begin the
    ' process of reading the contents
    nError = FtpClient1.OpenDirectory(strDirectory)
    If nError Then
        MsgBox FtpClient1.LastErrorString, vbExclamation
        FtpClient1.Disconnect
        Exit Sub
    End If
    
    ' Read each file name until the end of the directory
    ' listing is reached
    Do
        nError = FtpClient1.ReadDirectory(strFileName)
        If nError Then Exit Do
        List1.AddItem strFileName
    Loop
    
    If nError <> stErrorEndOfDirectory Then
        MsgBox FtpClient1.LastErrorString, vbExclamation
    End If
    
    ' Close the directory and disconnect from the server
    FtpClient1.CloseDirectory
    FtpClient1.Disconnect
End Sub

In this example, the ReadDirectory method is used to return only the name of the file, however it can
return additional information such as the file size, date it was last modified, its access permissions and
whether or not its a regular file or a subdirectory. For more information, refer to the Technical Reference
documentation for this method.

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Management  

 

The FTP control includes a number of methods which can be used to manage files and directories on a
server. In most cases, it is required that the client authenticate itself with a username and password because
few servers support these functions when the client is logged in anonymously. It is also required that the
user have the appropriate access rights on the server to perform the requested function. For example, the
user must have the right to modify a directory in order to delete a file from that directory. If a method
returns an error indicating that access was denied, verify with the server administrator that you have the
correct access rights to that file or directory.

Renaming Files
The FTP control supports the ability to rename files using the RenameFile method. It take two arguments,
the name of the file on the server and the new name that you want to change it to:

nError = FtpClient1.RenameFile(strOldName, strNewName)

If the file is renamed successfully, the method will return zero, otherwise it will return an error code. Note
that you can also use this method to move files between directories and rename directories as well.

Deleting Files
Both the FTP and the HTTP control supports the ability to delete files using the DeleteFile method. The
method accepts a single string argument, the name of the file to delete:

nError = FtpClient1.DeleteFile(strFileName)

If the file is deleted successfully, the method will return zero, otherwise it will return an error code. Deleting
a file is a permanent action and there is no provision for restoring a previously deleted file. This method
cannot be used to remove a directory. If this method is used with the HTTP control, it requires that the
server be configured to allow file deletion. Most web servers do not permit this by default.

Creating Directories
The FTP control can be used to create new directories using the MakeDirectory method. This method
accepts a single string argument which specifies the name of the directory to create:

nError = FtpClient1.MakeDirectory(strNewDirectory)

If the directory has been created successfully, the method will return zero, otherwise it will return an error
code. Most servers will not create multiple subdirectories in a single operation. For example, if you specify
the name "/office/projects/documents" an error will usually be returned if the directory "/office/projects"
does not already exist.

It is also important to keep in mind that the file naming conventions depend on the server operating
system. For example, a server running on a UNIX system uses case-sensitive file names, which means that
the directory "/Office/Projects" is different than "/office/projects". On the other hand, those would refer to
the same directory on a Windows server. If this distinction is important to your program, you can determine
the type of server that you're connected to by checking the value of the System property.

Deleting Directories
The FTP control can be used to delete directories using the RemoveDirectory method. This method
accepts a single string argument which specifies the name of the directory to delete:

nError = FtpClient1.RemoveDirectory(strDirectory)

If the directory has been deleted successfully, the method will return zero, otherwise it will return an error
code. Deleting a directory is a permanent action and there is no provision for restoring a previously deleted
directory. If the directory is not empty (in other words, contains one or more files or subdirectories) then
the method will fail.

 



Checking Modification Times
If you need to determine the time that a file was last modified, both the FTP and HTTP controls provide a
method called GetFileTime. This method has two arguments, the name of the file to check, and a string
variable passed by reference which will contain the file date and time when the method returns. For
example:

nError = FtpClient1.GetFileTime(strFileName, strFileDate)
If nError = 0 Then
    MsgBox "The file was modified on " & strFileDate
End If

The date string is formatted according to the system locale and the value of the Localize property
determines if the date is adjusted for the local timezone. If the file does not exist, or the server does not
support the command used to obtain the modification time for the file, an error will be returned.

Checking Permissions
The FTP control can be used to determine the access permissions that have been specified for a given file
using the GetFilePermissions method. This method accepts two arguments, the name of the file to check
and an integer passed by reference which will contain the file permissions when the method returns. For
example:

nError = FtpClient1.GetFilePermissions(strFileName, nFilePerms)
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

If (nFilePerms And ftpPermOwnerRead) <> 0 Then
    MsgBox "The file " & strFileName & " can be read by the owner"
End If

The integer value returned is one or more bit flag values which contains information about the access
rights for the file. For more information, refer to the table in the Technical Reference documentation. If the
file does not exist, or the server does not support the command used to obtain the file permissions, an
error will be returned.

Changing Permissions
In addition to checking the access rights for a file, you can also change those rights using the
SetFilePermissions method in the FTP control. The following example demonstrates how to change the
permissions so that only the owner can read and write to the file:

nFilePerms = ftpPermOwnerRead Or ftpPermOwnerWrite
nError = FtpClient1.SetFilePermissions(strFileName, nFilePerms)
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

For more information about the permission flags that can be used, refer to the Technical Reference
documentation. If the file does not exist, or the server does not support the command used to change the
file permissions, an error will be returned.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Web Services  

 

The SocketTools Hypertext Transfer Protocol (HTTP) control can be used to interact with a web server,
requesting resources, executing scripts and submitting form data for processing. This section of the Quick
Start Guide will cover how to use the control to establish connections to a web server, request resources
and post form data to a script.

In addition the HTTP control also supports protocol extensions such as WebDAV for distributed authoring.
It can be used to automate certain processes and enable your application to interact directly with a
program running on the server without having to use a browser interface.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Establishing a Connection  

 

In order to access a resource on a web server, it is first necessary to establish a connection. This is done by
calling the Connect method and checking the return value to make sure that the connection was
successful. To establish that connection, certain information is required. This includes:

The host name or IP address of the server that you wish to connect to. This information may be
specified by either setting the HostName property, or by passing the host name as an argument to
the Connect method. For example, www.microsoft.com is a valid host name. 
 
The port number of the server that you're connecting to. This can be specified by setting the
RemotePort property or passing the port number as an argument to the Connect method. In most
cases, the default port number should be used and it is not necessary to specify the port number in
your application. However, for servers that are configured to use non-standard port numbers, that
information must be provided. Setting the RemotePort property to a value of zero specifies that the
default port number should be used. 
 
If a secure, encrypted connection is required, then the Secure property should be set to True. A
secure server is one that supports the SSL (Secure Sockets Layer) protocol, or its successor, the TLS
(Transport Layer Security) protocol.

HTTP servers may only be accessible through a proxy server in certain circumstances. In that case, a set of
properties related to proxies must be specified before connecting. Please see the Technical Reference for
further details about the ProxyHost and ProxyPort properties, as well as other information pertaining to
connecting through a proxy server.

To establish a connection using the HTTP control, you should call the Connect method and check the
return value to ensure that the connection was successful. This can be done one of several ways, and which
approach you use largely depends on personal preference and the structure of your program.

Method Arguments
You can call the Connect method with a number of different arguments, all of which are optional. The
most common use would look like this:

Dim nError As Long

nError = HttpClient1.Connect(strHostName)
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

In this example, the strHostName string variable contains the name of the server to connect to. If the
function returns a value other than zero, this indicates an error and a message box is used to display the
error to the user. Note that if the resource requires authentication, then a username and password can also
be passed to the method.

Property Values
Another method is to set the host name using the control's HostName property and then calling the
Connect method without any arguments. Here is an example of how that could be done:

Dim nError As Long

HttpClient1.HostName = "www.microsoft.com"

 



nError = HttpClient1.Connect()
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

Note that the RemotePort property is not specified, which means that the default port number should be
used. If authentication was required, the UserName and Password properties could be set as well. As with
the previous example, if the connection fails then the method will return an error code and a message box
is displayed to the user.

Uniform Resource Locators
Anyone who has used a web browser is familiar with the Uniform Resource Locator (URL); it is the value
that is entered as the address of a website. URLs have a specific format which provides information about
the server, the port number and the name of the resource that is being accessed:

http://[username : [password] @] hostname [:port] / resource [? parameters ]

The first part of the URL identifies the protocol, also known as the scheme, which will be used. With web
servers, this will be either http or https for secure connections. If a username and password is required for
authentication, then this will be included in the URL before the name of the server. Next, there is the name
of the server to connect to, optionally followed by a port number. If no port number is given, then the
default port for the protocol will be used. This is followed by the resource, which is usually a path to a file
or script on the server. Parameters to the resource may also be specified, called the query string, which are
typically used as arguments to a script that is executed on the server.

A third approach to establishing a connection is to specify a URL by setting the URL property and then
calling the Connect method without any arguments. By setting the URL property, the control will
automatically update the various related properties such as HostName and RemotePort. Here is an
example of how this could be done:

Dim nError As Long

HttpClient1.URL = "http://www.microsoft.com/"

nError = HttpClient1.Connect()
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

If you prefer to use URLs, this approach provides the simplest means of establishing the connection. It
should be noted that if the URL property is assigned an invalid value, then the control will throw an
exception. If you are using URLs provided by a user, it is strongly recommended that you implement an
error handler, otherwise your program may terminate if the user specifies an incorrect or incomplete URL.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Web Server Authentication  

 

In some cases, it is required that the client authenticate itself to the web server prior to requesting a
resource. This can be done in one of two ways, either by setting the UserName and Password properties or
by providing those values to the Connect method when it is called. If you attempt to access a resource
that requires authentication, you'll get the error stErrorCommandNotAuthorized.

Method Arguments
You can call the Connect method and specify the user name and password as arguments. The most
common use would look like this:

Dim strUserName As String
Dim strPassword As String
Dim nError As Long

nError = HttpClient1.Connect(strHostName, , strUserName, strPassword)
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

In this example, the strHostName string variable contains the name of the server to connect to and
strUserName and strPassword provide the credentials to authenticate the client session. Note that we omit
the argument that specifies a remote port, which tells the control to use the default port number. If the
function returns a value other than zero, this indicates an error and a message box is used to display the
error to the user.

Property Values
Another method is to initialize the control's properties and then call the Connect method without any
arguments. Here is an example of how that could be done:

Dim nError As Long

HttpClient1.HostName = Text1.Text
HttpClient1.UserName = Text2.Text
HttpClient1.Password = Text3.Text

nError = HttpClient1.Connect()
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

Note that the RemotePort property is not specified, which means that the default port number should be
used. As with the previous example, if the connection fails then the method will return an error code and a
message box is displayed to the user.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Downloading Resources  

 

A web resource is a general term that applies to any document, image or other file which can be accessed
through a web server. It also refers to applets or scripts which can be downloaded and executed on the
client, or programs which are executed on the server and return data to the client.

The SocketTools HTTP control provides several methods which makes it easy to access a resource on a
web server, and either store that resource in memory or as a file on the local system. For the first example,
consider a program which requests some data from a server and stores the response in a string:

Dim strDocument As String
Dim nLength As Long
Dim nError As Long

HttpClient1.URL = "http://api.sockettools.com/test"

nError = HttpClient1.Connect()
If nError = 0 Then
    nError = HttpClient1.GetData(HttpClient1.Resource, strDocument, nLength)
    HttpClient1.Disconnect
End If

In this example, the URL property is assigned to the complete URL of the resource to retrieve and then the
Connect method is called without any arguments. This tells the control that you want to use the
information specified in the URL rather than explicitly specify the host name, port number and so on. If the
Connect method returns zero, then that means no error has occurred, so the next step is to call the
GetData method.

The first argument to the GetData method is the resource portion of the URL, which is returned by the
Resource property. The second argument is the string buffer that will contain the data when the method
returns. The GetData also supports two more arguments. An optional third argument is a variable which
will contain the amount of data copied into the string buffer. It is not required that you specify this
argument, and is included primarily as a convenience.

The optional fourth argument is a numeric value which determines if text resources should be automatically
converted to use the standard Windows conventions for text files. This can be important because the
default behavior for the control is to return the resource data exactly as it is sent by the server. For text-
based resources like HTML documents, this can present a problem if the document on the server uses a
different convention to indicate the end-of-line. On UNIX based servers, the end-of-line character is a
single linefeed, while on Windows based systems, the end-of-line is a carriage-return and linefeed pair.
Rather than writing code to go through the data and perform that conversion if necessary, you can tell the
GetData method that you want it to automatically convert any text resources. For example:

nError = HttpClient1.GetData(HttpClient1.Resource, strDocument, _
                             nLength, httpTransferConvert)

In this case, if the resource is a text document, then it will automatically convert the data to use the
Windows conventions for text files if necessary. It is important to note that if the resource is not a text file
(for example, an image file) then this option does nothing. That being the case, why not perform the
conversion as the default? The reason is that many web servers are configured to treat resources which
don't have a known MIME content type as text by default. For example, consider a resource like
"/files/record.dat" where there isn't a standard MIME type for a file with a .dat extension. In this case, many
web servers will incorrectly tell the client that the resource is text, even if that file actually contains non-text
data. If the GetData method automatically performed this conversion, then it could potentially corrupt the
data. By making the conversion an explicit option, it allows you to tell the control that you know the
resource you're requesting is textual and should be converted. Otherwise, it simply provides you with the

 



data exactly as it was returned by the server.

If you want to store the resource on the local system rather than in a buffer in memory, then you can use
the GetFile method instead of GetData. The code would be virtually identical except for the different
method call:

Dim nError As Long

HttpClient1.URL = "http://sockettools.com/"

nError = HttpClient1.Connect()
If nError = 0 Then
    nError = HttpClient1.GetFile(strFileName, HttpClient1.Resource)
    HttpClient1.Disconnect
End If

The GetFile method requires two arguments, the name of the file to create or overwrite on the local
system and the resource to retrieve from the server. There is also an optional third argument which allows
you to specify if text resources should be automatically converted, just as with the GetData method.

If you would like to provide some visual feedback to your user with the status of the resource being
downloaded, you can implement an event handler for the OnProgress event. For example, if you had a
standard ProgressBar control on the form, you could simply write code such as this:

Private Sub HttpClient1_OnProgress(ByVal BytesTotal As Variant, _
                                   ByVal BytesCopied As Variant, _
                                   ByVal Percent As Variant)
    ProgressBar1.Value = Percent
End Sub

As the resource is being retrieved using either the GetData or GetFile methods, the OnProgress event will
be periodically fired. In this case, the ProgressBar control is updated using the percentage of the transfer
that has completed.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Executing Scripts  

A script is simply another resource on the web server which you can access using the HTTP control. Scripts
may be complete programs written in a language like Perl, or they may be scripting code intermixed with
HTML, such as with ASP and PHP. In most cases, the scripts either generate HTML output which is typically
displayed in a browser or XML which will be parsed by the client.

The two most common ways to execute a script is to use either the GetData or PostData methods. In the
examples that we'll be using the script will be written in Perl, however this information applies to ASP and
PHP as well. Executing a script that does not require any input is as simple as retrieving an HTML
document:

Dim strOutput As String
Dim nError As Long

HttpClient1.URL = "http://sockettools.com/cgi-bin/test.cgi"

nError = HttpClient1.Connect()
If nError = 0 Then
    nError = HttpClient1.GetData(HttpClient1.Resource, strOutput)
    HttpClient1.Disconnect
End If

In this example, the script /cgi-bin/test.cgi is executed on the server, and the HTML output that it generates
is returned to the program in the strOutput variable. The the first few lines of HTML returned by the script
looks like this:

<html>
<head>
<title>Test Script</title>
<meta http-equiv="pragma" content="no-cache">
</head>
<body>
<h3>Query Parameters</h3>
No query parameters were passed to this script<br>
<h3>Form Variables</h3>
No form variables were passed to this script<br>
<h3>Environment Variables</h3>
<b>DOCUMENT_ROOT</b> = "/var/www/html"<br>
<b>GATEWAY_INTERFACE</b> = "CGI/1.1"<br>

Note that near the beginning, there are the lines "No query parameters were passed to this script" and "No
form variables were passed to this script". This is because this test script is also capable of displaying any
data passed to the script in the form of parameters or form variables. These are the two methods that can
be used by a client to provide a script with additional information. The way that the script processes that
information, and which method is used, is determined by how the script is written. This is an important
point when developing client applications that interact with web scripts. As the client, you need to know
what data the script expects and how it expects that data to be passed to it, either as one or more
parameters or as form data which would typically be entered using a web browser.

Query Parameters
A script can have data passed to it through one or more parameters which are provided along with the
name of the script to be executed. For example, if you wanted to pass two parameters to our test script
named "param1" and "param2" with the values of "value1" and "value2" respectively then the URL would
look like this:

http://sockettools.com/cgi-bin/test.cgi?param1=value1&param2=value2



 

The question mark separates the name of the resource from its arguments. Each argument consists of a
name-value pair, separated by an equal sign. If there is more than one name-value pair, then they are
separated by an ampersand. If we modify the example above to use this URL with the query parameters,
the first few lines of output returned by the script now looks like this:

<html>
<head>
<title>Test Script</title>
<meta http-equiv="pragma" content="no-cache">
</head>
<body>
<h3>Query Parameters</h3>
<b>param1</b> = "value1"<br>
<b>param2</b> = "value2"<br>
<h3>Form Variables</h3>
No form variables were passed to this script<br>
<h3>Environment Variables</h3>
<b>DOCUMENT_ROOT</b> = "/var/www/html"<br>
<b>GATEWAY_INTERFACE</b> = "CGI/1.1"<br>

You'll notice that the Query Parameters heading now lists the two arguments with their name-value pairs.
Passing query parameters to a script is the easiest method a client can use to provide information to that
script. However, most servers have a limit on the maximum length of a URL including any parameters; that
value is typically around 8,192 bytes, however it can vary from server to server. Although query parameters
are convenient when the script does not require a lot of data, there needs to be a method where larger
amounts of data can be provided. This is where form data comes in.

Form Data
When an HTML page presents a form to the user with text boxes, dropdown lists and so forth, that data is
typically submitted to a script that is specified by the <form> element. For example, let's consider a simple
HTML form:

<form action="http://sockettools.com/cgi-bin/test.cgi" method="post">
  <input type="text" name="data1" value=""><br>
  <input type="text" name="data2" value=""><br>
  <input type="submit">
</form>

The <form> element provides you two very important pieces of information. The first is the name of the
script that will process the data entered by the user. This is specified by the action attribute. The second is
how the data will be passed to the script, and that's specified by the method attribute. If the form uses the
"get" method, then you'll want to use the control's GetData method as described in the previous section.
However, if the form uses the "post" method, then you'll need to use the control's PostData method
instead.

In the HTML form, there are two text input fields named "data1" and "data2". For the next example, let's say
that you want to write a program that submits data to the script as though the user entered the string
"testing1" in the first text box, and "testing2" in the second and then clicked the submit button.

Dim strOutput As String
Dim strFormData As String
Dim nError As Long

HttpClient1.URL = "http://sockettools.com/cgi-bin/test.cgi"
strFormData = "data1=testing1&data2=testing2"

nError = HttpClient1.Connect()
If nError = 0 Then

 



    nError = HttpClient1.PostData(HttpClient1.Resource, strFormData, strOutput)
    HttpClient1.Disconnect
End If

You'll notice that the code is substantially similar to the example that uses GetData, with the exception that
the form data is passed as a separate argument to the PostData method. The same convention applies,
with the name-value pairs be separated by an equal sign, and multiple pairs being separated by an
ampersand. When the PostData method is used, the first few lines of output that would be returned would
look like this:

<html>
<head>
<title>Test Script</title>
<meta http-equiv="pragma" content="no-cache">
</head>
<body>
<h3>Query Parameters</h3>
No query parameters were passed to this script<br>
<h3>Form Variables</h3>
<b>data1</b> = "testing1"<br>
<b>data2</b> = "testing2"<br>
<h3>Environment Variables</h3>
<b>CONTENT_LENGTH</b> = "29"<br>
<b>CONTENT_TYPE</b> = "application/x-www-form-urlencoded"<br>
<b>DOCUMENT_ROOT</b> = "/var/www/html"<br>
<b>GATEWAY_INTERFACE</b> = "CGI/1.1"<br>

Now, instead of there being query parameters, the script reports that there are two form variables, "data1"
and "data2" and it displays their values. This is the same output that you would get from clicking on the
submit button in the HTML form.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Email Services  

 

Electronic mail is the most prevalent application in computer networking and its use has evolved beyond
the simple exchange of text messages between two people. For the developer, email provides a reliable
means for sending and receiving messages where the protocols are based on well-known and widely used
standards. SocketTools provides an interface to email services, allowing developers to easily implement this
functionality in their own software without requiring general knowledge of network programming or
specific application protocols.

This section of the Quick Start Guide will cover a wide range of topics, from how email messages are
structured, to how messages are delivered through relay servers. Even if you are only interested in a
specific topic, such as how to send a message, we recommend that you read through this complete section
so that you have a full understanding of how the various SocketTools controls are designed to work
together.

The SocketTools ActiveX Edition consists of five controls which can be used to build a wide range of
applications which use email services. Those controls are:

Domain Name Service Control
Internet Message Access Protocol Control
Mail Message Control
Post Office Protocol Control
Simple Mail Transfer Protocol Control

Each of these controls implements a specific aspect of sending and receiving email messages, or managing
a user's messages on the mail server. The Domain Name Service (DNS) control is typically used in
conjunction with the Simple Mail Transfer Protocol (SMTP) control to send email messages to other users.
The Internet Message Access Protocol v4 (IMAP4) and Post Office Protocol v3 (POP3) controls are used to
manage the messages that a user has received. The Mail Message (MIME) control is used to compose new
messages, parse stored messages and modify them if needed. When combined together, these
components form the foundation of any complete email based application.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Protocol Standards  

 

There are several core standards which form the foundation for sending and receiving email messages over
the Internet and corporate intranets. These standards are defined in documents called RFCs (Request For
Comments) which describe how the various protocols should be implemented. The following standards
were used when implementing the email related controls in the SocketTools ActiveX Edition:

RFC 822 documents the basic structure of email messages, including how messages should be formatted
and what the standard message header fields are. RFC 2045 documents Multipurpose Internet Mail
Extensions (MIME), which details how more complicated messages are structured. File attachments, HTML
formatted messages and other more complex aspects of message composition are covered by the MIME
standard. The Internet Mail control supports both RFC 822 and MIME formatted email messages, including
multipart messages which contain alternate text and file attachments. 

RFC 1939 documents the Post Office Protocol v3 (POP3) which is used to retrieve messages from a user's
mailbox on a server. The Internet Mail control uses this protocol to enable applications to list, retrieve and
delete messages.

RFC 3501 documents the Internet Message Access Protocol v4 (IMAP4) which is used to manage
information in a user's mailbox on the server. Unlike the Post Office Protocol, where messages are
downloaded and processed on the local system, the messages on an IMAP4 server are retained on the
server and processed remotely. This is ideal for users who need access to a centralized store of messages
or have limited bandwidth. 

RFC 821 documents the Simple Mail Transfer Protocol (SMTP) which is used to deliver messages to one or
more recipients. RFC 1869 documents extensions to the protocol which provide additional services such as
delivery status notification and authentication. The Internet Mail control implements both the standard and
extended SMTP protocols. 
 

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Composing Messages  

 

The SocketTools Mail Message control is designed to give the developer access to the internal structure of a mail message and enable you to easily create new messages or modify existing messages. To understand how this control can be used, it's useful to understand how a message is actually formatted. Here is an example of a simple, plain text email message:

From: John Doe <johndoe@company.com>
To: Jane Doe <janedoe@company.com>
Date: Mon, 1 Jul 2002 12:00:00 -0800 (PST)
Subject: Meeting scheduled for next week
Message-ID: <20020601200000.15637@mail01.company.com>
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8

I wanted to confirm that you would be able to attend the meeting.
If there are any scheduling conflicts, please let me know.

The first thing that is apparent is that the message has two discrete sections. The first section consists of one or more header fields, followed by a colon and then a value. The second section contains the body of the message, with the headers and body separated by a single blank line.

Therefore, using this example message, reading the control's From property would return the string "John Doe <johndoe@company.com>", which is the address of the person who sent the message. To change the From header field, simply set the From property to a new string value.

The following is list of the most commonly used properties read, create or modify a message:

Property Description

Attachment The name of a file attachment in the current message part.

Bcc One or more message recipients (blind carbon copy).

Cc One or more message recipients (carbon copy).

Content-ID The content identifier for the current message part.

ContentLength The size of the current message part in bytes.

ContentType The content type for the current message part.

Date The date for the current message.

Encoding The encoding type for the current message part.

From The sender of the message.

Localize Enable or disable message localization.

Mailer The name of the application that generated the message.

Message The complete message, including headers and body.

MessageID A unique identifier string from the current message.

Organization The name of the sender's organization or company.

Part The current message part in a multipart message.

PartCount The number of parts in a multipart message.

Priority The current message priority.

Recipient The address of one of the message recipients.

Recipients The number of recipients for the current message.

ReplyTo The address to which replies should be sent.

Subject The subject of the current message.

Text The text in the current message part.

TimeZone The current timezone offset for the local system.

To One or more message recipients.

Most of the message-related properties correspond to specific header fields, such as To, From and Subject. Reading those properties return their respective header values while setting them changes their value in the current message.

For more complex message processing such as attaching files or creating multipart messages, there are a number of additional methods which can be used to manage the current message:

Method Description

AppendMessage Append text to the current message.

AttachFile Attach a file to the current message.

ClearMessage Clear the contents of the current message.

ComposeMessage Compose a new message.

CreatePart Create a new message part in a multipart message.

DeleteHeader Delete a header from the message.

DeletePart Delete a message part.

ExportMessage Export the complete message to a text file.

ExtractFile Extract a file attachment.

GetFirstHeader Return the first header in the current message part.

GetHeader Return the value of a specified header field.

GetNextHeader Return the next header in the current message part.

ImportMessage Import a message from a text file.

ParseMessage Parse a string, adding the contents to the current message.

SetHeader Set the value of the specified header field.

The header related methods such as GetHeader and SetHeader, enable an application to read, create or modify any header field regardless of whether or not there is a predefined property value for it. Because there can be a potentially unlimited number of header fields in a message, these methods give the developer more control over the header portion of the message.

New messages can be created by setting properties which comprise the message. Here is an example which would create a short message:

MailMessage1.From = "johndoe@company.com"
MailMessage1.To = "janedoe@company.com"
MailMessage1.Date = Date
MailMessage1.Subject = "This is the message subject"
MailMessage1.Text = "This is an example of a new message"

The resulting message would look like this:

From: johndoe@company.com
To: janedoe@company.com
Date: Fri, 01 Nov 2002 12:00:00 -0800
Subject: This is the message subject
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 8bit

This is an example of a new message.

Note that in addition to those properties that were set, there were a number of additional header fields such as MIME-Version and Content-Type that were automatically created.

Although setting properties is one way to create a new message, it involves writing a fair amount of code. There is a simpler way to do it using a single method called ComposeMessage. The equivalent code would look like this:

MailMessage1.ComposeMessage "johndoe@company.com", _
                            "janedoe@company.com", , , _
                            "This is the message subject", _
                            "This is an example of a new message"

The ComposeMessage method has the following arguments:

Property Description

From A string value which specifies the email address of the person sending the message. This argument is required.

To A string value which specifies one or more email addresses of those who will receive the message. Multiple addresses may be separated by a comma (such as "johndoe@company.com, janedoe@company.com"). This argument is required.

Cc An optional string value which specifies recipients who should receive a copy of the message. Multiple recipients may be separated by a comma and the addresses are included in the header of the message.

Bcc An optional string value which specifies recipients who should receive a copy of the message, however, these addresses are not included in the header of the message. Multiple recipients may be separated by a comma.

Subject An optional string value which specifies the subject of the message. If the argument is not specified then the message is created without a subject.

MessageText An optional string value which specifies the body of the message. If the argument is not specified, then the message is created without a body.

MessageHTML An optional string value which specifies an HTML version of the message. If this argument is provided along with the MessageText argument, then a multipart message is created which contains both plain text and HTML versions of the message. If the MessageText argument has not been specified, then only an HTML message is created. If this argument is omitted, then the message is sent with only a plain text body.

CharacterSet An optional integer value which specifies a character set to use when composing the message. This typically only needs to be set for languages which use extended characters. For more information on the available character sets, consult the technical reference.

EncodingType An optional integer value which specifies an encoding type to be used with the character set that was selected. For more information about the encoding types available, consult the technical reference.

Once the message has been created, it can be further modified by setting properties or calling methods such as SetHeader. Note that you are not restricted to changing only certain header fields. You can create, modify or delete any header in the message that you wish. You can also add your own custom header fields if you wish.

Now that a simple message has been created, let's attach a file to the message. This can be easily done using the AttachFile method:

MailMessage1.AttachFile "c:\temp\image.gif"

Although this is a simple operation, it makes some significant changes to the message (some portions of the attachment data has been omitted):

From: johndoe@company.com
To: janedoe@company.com
Date: Fri, 01 Nov 2002 12:00:00 -0800
Subject: This is the message subject
MIME-Version: 1.0
Content-Type: multipart/mixed;
              boundary="----=_ST4020_0001_0BCF2D17_179E5A2E"
Content-Transfer-Encoding: 8bit

This is a multipart message in MIME format.

------=_ST4020_0001_0BCF2D17_179E5A2E
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 8bit

This is an example of a new message.
------=_ST4020_0001_0BCF2D17_179E5A2E
Content-Type: image/gif
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="image.gif"
Content-Length: 6434

R0lGODlhRgEyAPcAAJaWqqKitp6esqamuqamtrKywq6uvsrK176+yrq6xra2wsbG0sLCztLS
287O18LCytvb49fX38rK0sbGzt/f5/f3+/Pz9+/v8+vr7+fn6+Pj59/f49vb311hil1hhmFl
uXvrtV8rFWQ7l2qbuZJrt3rLFomrFovruRRhq4bbuZwbu1hLubBbuZF7tn7WuE2RurLWu7DL
u3nrt7Kbr3LbM+Pnu6hrFC2atcfburarucL7uY/Lurl7uVpLu5CLvJyLu9obvZO7u900W7jA
K7jkW72maxHGC72kWxbAu7xuq77DS7ip67qgl77va73fqxGryxDMK7/m67zgixEBAQA7

------=_ST4020_0001_0BCF2D17_179E5A2E--

The message has now become a multipart message that contains both human-readable text as well as data for the file attachment. Rather than having a single group of headers followed by a message body, the message is now broken into sections, each with its own group of headers and body. Each of these sections are called a message part, and can be accessed individually using the Part property. Each message part is identified by a part
number which starts at zero and increases for each subsequent part. Part 0 of this message consists of the following:

From: johndoe@company.com
To: janedoe@company.com
Date: Fri, 01 Nov 2002 12:00:00 -0800
Subject: This is the message subject
MIME-Version: 1.0
Content-Type: multipart/mixed;
              boundary="----=_ST4020_0001_0BCF2D17_179E5A2E"
Content-Transfer-Encoding: 8bit
      
This is a multipart message in MIME format.

Part 0 of any message always refers to the headers and body of the main message. In the previous message, part 0 contains the entire message. Here, part 0 consists primarily of headers and a brief message that this is now a multipart message. This is automatically done for the benefit of older mail clients which may not understand a MIME formatted message, so the user has a message that at least identifies what the message is. Another
thing that has changed is the value of the Content-Type header. In the previous message it had a value of "text/plain; charset=utf-8" which tells the mail client that this is a plain text message. With the file attachment, this has changed to a type called "multipart/mixed" which indicates that the message contains multiple parts with mixed types of information. The boundary value is what is used to actually designate the different parts of the
message. As the message is being processed, the mail client knows that it has found a new message part when the boundary string is encountered.

The next part of the message, part 1, contains the message that was in the original version of the message:

Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 8bit
This is an example of a new message

Note that the content type is back to plain text, just as it was with the original. When a mail client processes a message, it scans the message for plain text message parts which contain information to be displayed to the user.

The last part of the message, part 2, contains the actual file data that was attached to the message:

Content-Type: image/gif
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="image.gif"
Content-Length: 6434

R0lGODlhRgEyAPcAAJaWqqKitp6esqamuqamtrKywq6uvsrK176+yrq6xra2wsbG0sLCztLS
287O18LCytvb49fX38rK0sbGzt/f5/f3+/Pz9+/v8+vr7+fn6+Pj59/f49vb311hil1hhmFl
uXvrtV8rFWQ7l2qbuZJrt3rLFomrFovruRRhq4bbuZwbu1hLubBbuZF7tn7WuE2RurLWu7DL
u3nrt7Kbr3LbM+Pnu6hrFC2atcfburarucL7uY/Lurl7uVpLu5CLvJyLu9obvZO7u900W7jA
K7jkW72maxHGC72kWxbAu7xuq77DS7ip67qgl77va73fqxGryxDMK7/m67zgixEBAQA7

Here the Content-Type header tells the mail client that this is an image file in the GIF format. The other header fields in this message part are used by applications to extract the file attachment once it has been delivered to the recipient. Because email messages must be sent over systems which may not be able to handle binary data, the image file data has been encoded using a standard algorithm called base64. This algorithm converts binary
data into plain 7-bit text data that can be safely exchanged with other mail servers. The process of encoding and decoding attachments is automatically handled by the control when the file is attached. The ExtractFile method is essentially the reverse of the AttachFile method, automatically decoding and storing a file attachment on the local system.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Composing Text Messages  

 

To compose a simple text message, you can use the ComposeMessage method and specify the body of
the message, along with the other standard header fields. For example, if you had a form with TextBox
controls for the sender, recipients, subject and message body you could use code like this:

Dim nError As Long

nError = MailMessage1.ComposeMessage(editFrom.Text, _
                                     editTo.Text, _
                                     editCc.Text, _
                                     editBcc.Text, _
                                     editSubject.Text, _
                                     editMessage.Text)
If nError Then
   MsgBox "Unable to compose a new message" & vbCrLf & _
          MailMessage1.LastErrorString, vbExclamation
   Exit Sub
End If

If you have a text file that contains the body of the message that you want to use, then you can create a
message without a message body and then read the contents of the file and assign it to the Text property.
For example:

Dim nError As Long

nError = MailMessage1.ComposeMessage(editFrom.Text, _
                                     editTo.Text, _
                                     editCc.Text, _
                                     editBcc.Text, _
                                     editSubject.Text)
If nError Then
   MsgBox "Unable to compose a new message" & vbCrLf & _
          MailMessage1.LastErrorString, vbExclamation
   Exit Sub
End If

' Open the file for and assign the contents of the file to the
' Text property which will put it in the body of the message
hFile = FreeFile()
Open strFileName For Input As hFile
MailMessage1.Text = Input(LOF(hFile), hFile)
Close hFile

To access the complete message, use the Message property, which will return the complete message
including the headers and message body. This is most commonly used with the SMTP control to submit the
message to a mail server for delivery to the recipients.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Composing HTML Messages  

 

To compose an HTML formatted message, the ComposeMessage method can be used in the same way
that text messages are created. For example, consider the following HTML text:

<html> 
<head></head> 
<body> 
<font face="Arial"> 
<h3>Test HTML Message</h3> 
This is a test message which uses HTML to format the text. This 
message was created using the <b>Mail Message</b> control from 
<a href="http://sockettools.com/">Catalyst Development</a>. 
</font> 
</body> 
</html>

You could either assign this text to a string, or you could read the message from a file using code like this:

hFile = FreeFile() 
Open strFileName For Input As hFile 
strMessageHTML = Input(LOF(hFile), hFile) 
Close hFile

Where strMessageFile contains the HTML message you wish to send. To compose the HTML formatted
email, simply call the ComposeMessage method as you would with a plain text message, except that
instead of passing the message to the MessageText argument, you pass it to the MessageHTML argument:

nError = MailMessage1.ComposeMessage(editFrom.Text, _
                                     editTo.Text, _
                                     editCc.Text, _
                                     editBcc.Text, _
                                     editSubject.Text, _
                                     "", _
                                     strMessageHTML)

The message that will be sent will now be displayed to the recipient using HTML and will include the
formatting (such as font and text size) as well as the hyperlink. However, not all mail clients are capable of
displaying HTML email. This poses a problem because the message that they'll receive will be the largely
unreadable HTML source. To resolve this problem, create both a plain text version of the message along
with the HTML version. Ideally it would contain similar content, although you could provide a simple
message which says that this is an HTML email and they should request a plain-text version if they can't
display HTML messages. In either case, simply provide both the MessageText and MessageHTML
arguments:

nError = MailMessage1.ComposeMessage(editFrom.Text, _
                                     editTo.Text, _
                                     editCc.Text, _
                                     editBcc.Text, _
                                     editSubject.Text, _
                                     strMessageText, _
                                     strMessageHTML)

This will create what is called a multipart/alternative MIME message which contains both plain text and
HTML versions of the message. Mail clients which are capable of displaying the HTML message will use that
version, while those that cannot will display the plain text version.

It should be noted that there are still some mail clients which do not understand multipart/alternative
messages and therefore will display both the plain text and the HTML source text. While confusing, the

 



plain text version will ensure that the message is still readable. For the most part, email is still a plain text
medium so if you consider readability and compatibility with older mail software to be more important than
formatted text, it is recommended that you use only plain text messages. However, if you know that the
recipients have mail clients that are capable of displaying HTML, the Mail Message control makes this easy
to do.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Importing Messages  

 

In addition to using the ComposeMessage method to create a new message, it is possible to import
existing messages into the Mail Message control. These messages may exist either as text files already
stored on the local system, records in a database, or may even be created dynamically by the application
using data from other sources. The most important thing to keep in mind is that any message which is
imported into the control must adhere to the basic structure outlined previously in the section discussing
message composition. The control is tolerant of malformed messages, however, importing a corrupted
message will often produce unexpected results. If the source of the message is unknown, it is
recommended that an application perform checks to ensure that it contains reasonable values. For
example, check to make sure the From and To header fields contain email addresses, the message has a
valid Date, and a message body is present.

The simplest method of importing a message into the control is using the ImportMessage method. Here
is an example which uses the Common Dialog control to select a file and then calls ImportMessage to
import the file:

Dim nError As Long
    
On Error GoTo ImportCanceled
CommonDialog1.CancelError = True
CommonDialog1.DefaultExt = ".txt"
CommonDialog1.DialogTitle = "Import Message"
CommonDialog1.FilterIndex = 1
CommonDialog1.Flags = cdlOFNFileMustExist + cdlOFNLongNames
CommonDialog1.Filter = "Text Files (*.txt)|*.txt|" & _
                       "email Message Files (*.eml)|*.eml|" & _
                       "All Files (*.*)|*.*"
    
CommonDialog1.ShowOpen
On Error GoTo 0
    
nError = MailMessage1.ImportMessage(CommonDialog1.FileName)
If nError Then
    MsgBox "Unable to import message from " & _
           CommonDialog1.FileTitle & vbCrLf & _
           MailMessage1.LastErrorString, vbExclamation
    Exit Sub
End If

MsgBox "Imported message from " & MailMessage1.From & vbCrLf & _
       "regarding " & Chr(34) & MailMessage1.Subject & Chr(34), _
       vbInformation

Exit Sub

ImportCanceled:
Exit Sub

Once the message has been imported successfully, the various message related properties can be accessed
just as if the message had been composed. Note that the current message, if any, will be completely
replaced by the message that has been imported.

Another method of importing a message is from a string. This is useful if a message has been stored in
something other than a text file such as a record in a database. To do this, simply set the control's
Message property to the string which contains the message:

 



On Error Resume Next: Err.Clear
MailMessage1.Message = strMessage

If Err.Number Then
    MsgBox Err.Description, vbExclamation
    Exit Sub
End If

Unlike the ImportMessage method, which returns an error code if it fails, setting the Message property
will result in an error being raised if there is a problem. Because of this, any application which sets the
Message property should use an error handler. In this example, it simply executes the next statement and
uses the Err object to obtain the error code and description.

A third method of importing a message into the control is to use the ParseMessage method. Unlike the
ImportMessage method or the Message property, it is not required that the complete message be
available at once. Instead, ParseMessage enables an application to import a message in pieces,
dynamically parsing the data and adding to the contents of the current message. The following example
opens a file which contains a message, reads it in 1,024 byte blocks and then passes it to the
ParseMessage method:

hFile = FreeFile()
Open strFileName For Input As hFile
nFileLength = LOF(hFile)

MailMessage1.ClearMessage
    
Do While nFileLength > 0
    cbBuffer = nFileLength
    If cbBuffer > 1024 Then cbBuffer = 1024
    nFileLength = nFileLength - cbBuffer
    strBuffer = Input(cbBuffer, hFile)
    nError = MailMessage1.ParseMessage(strBuffer)
    If nError > 0 Then
        MsgBox MailMessage1.LastErrorString, vbExclamation
        Exit Do
    End If
Loop
    
Close hFile

The initial call to the ClearMessage method ensures that if there is a current message, the contents are
cleared first. Then the ParseMessage method is repeatedly called until the end-of-file is reached. This
approach could be used when a message is being created by some external data source or the application
needs to make some sort of change to the message contents dynamically. Note that the purpose of the
above example is to demonstrate how to use the ParseMessage method and is not the recommended
procedure for importing a message from a text file. Refer to the technical reference documentation for the
ImportMessage method for more information on importing messages from text files.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Exporting Messages  

 

The Mail Message control has the ability to export the current message contents as a string or as a text file
on the local system. When a message is exported, the complete message including headers, message body
and any file attachments are included. The following example uses the CommonDialog control to choose a
file name to export the current message to:

Dim nError As Long

On Error GoTo ExportCanceled
CommonDialog1.CancelError = True
CommonDialog1.DefaultExt = ".txt"
CommonDialog1.DialogTitle = "Export Message"
CommonDialog1.FilterIndex = 1
CommonDialog1.Flags = cdlOFNLongNames + cdlOFNOverwritePrompt
CommonDialog1.Filter = "Text Files (*.txt)|*.txt|" & _
                       "email Message Files (*.eml)|*.eml|" & _
                       "All Files (*.*)|*.*"

CommonDialog1.ShowSave
On Error GoTo 0

nError = MailMessage1.ExportMessage(CommonDialog1.FileName)
If nError Then
    MsgBox "Unable to export message to " & _
           CommonDialog1.FileTitle & vbCrLf & _
           MailMessage1.LastErrorString, vbExclamation
    Exit Sub
End If

MsgBox "Exported message to " & CommonDialog1.FileName & vbCrLf & _
       "regarding " & Chr(34) & MailMessage1.Subject & Chr(34), _
       vbInformation

ExportCanceled:
Exit Sub

When a message is exported, headers may be re-ordered and certain headers which contain routing
information (such as Received and Return-Path) are omitted by default. These headers are not normally
needed when composing or delivering a message, however, there may be situations in which an
application needs to preserve these headers or the order in which they were originally received. The
ExportMessage method has an optional argument which can be used to specify one or more export
options:

Constant Description

mimeOptionDefault The default export options. The headers for the message are written
out in a specific consistent order, with custom headers written to the
end of the header block regardless of the order in which they were set
or imported from another message. If the message contains Bcc,
Received, Return-Path, Status or X400-Received header fields, they will
not be exported.

mimeOptionAllHeaders All headers, including the Bcc, Received, Return-Path, Status and
X400-Received header fields will be exported. Normally these headers
are not exported because they are only used by the mail transport
system. This option can be useful when exporting a message to be

 



stored on the local system, but should not be used when exporting a
message to be delivered to another user.

mimeOptionKeepOrder The original order in which the message header fields were set or
imported are preserved when the message is exported.

The mimeOptionAllHeaders and mimeOptionKeepOrder values may be combined if both options are
required. For example, the following code would export a message with all of the headers, preserving their
original order:

nOptions = mimeOptionAllHeaders Or mimeOptionKeepOrder 
nError = MailMessage1.ExportMessage(strFileName, nOptions)

Note that the option values are actually bit flags, so a bitwise Or operation is used to combine them. This
method is preferred over using simple addition which can produce unexpected results in some cases. Also
note that if the ExportMessage method is called without specifying the optional argument, then the value
of the Options property is used as a default, such as:

MailMessage1.Options = mimeOptionAllHeaders Or mimeOptionKeepOrder 
nError = MailMessage1.ExportMessage(strFileName)

This would also cause the message to be exported with all headers and preserve their original order. A
general rule of thumb is that if there is an optional argument to a method which corresponds to a property
in the control, if that argument is not specified, the property value will be used as a default.

If an application needs to do some processing on the message but doesn't want the overhead of exporting
the message to a file, then the message contents can be read using the control's Message property. This
property returns a string which contains the complete message, including all headers. The Options
property determines whether or not all headers are exported and if the original header order is preserved,
just as with the ExportMessage method. It should be noted that this is different than the Text property,
which returns only the body of the current message part, not the complete message.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Attachments  

 

In addition to sending text messages, email is commonly used as a means to exchange files. This can be
easily done using the Mail Message control's AttachFile method. Let's modify the previous example,
presuming that an edit control has been included on the form which allows a user to input the name of the
file they wish to attach. Add this after the call to the ComposeMessage method:

' If a file name has been entered, then attach it to
' the message that was composed

If Len(editFileName.Text) > 0 Then
    nError = MailMessage1.AttachFile(editFileName.Text)

    If nError Then
        MsgBox "Unable to attach file " & editFileName.Text & _
               vbCrLf & MailMessage1.LastErrorString, vbExclamation
    Exit Sub
End If

If the file does not exist or cannot be accessed, then the AttachFile method will return an error. Otherwise,
the file data will be encoded and attached to the message. The AttachFile method has two arguments, the
name of the file to attach and an optional argument which specifies how the attachment should be
encoded.

In most cases, it is not necessary to specify the optional argument because the AttachFile method will
automatically determine the correct encoding method based on the contents of the file. However, there
are some situations in which you may wish to use some specific encoding method. For example, you may
want to force the control to use base64 encoding even though the attachment is a plain text file. To do
this, you can use one of the following values:

Constant Description

mimeAttachBase64 The base64 algorithm is used to encode the file data. This is the default
encoding type used for binary data such as executables, image or audio
files.

mimeAttachUucode The uuencode algorithm is used to encode the file data. This is an older
encoding type that was commonly used before the MIME standard was
developed. It is not recommended that you use this encoding method
unless specifically required by an application.

mimeAttachQuoted The quoted-printable algorithm is used to encode the file data. This
should only be used to encode text files which may contain non-printable
or extended ANSI characters. Using this format on binary files may cause
them to become corrupted when extracted by the recipient.

For example, if you want to always have the attached file encoded using the base64 algorithm, the code
would be changed to look like this:

' If a file name has been entered, then attach it to
' the message that was composed

If Len(editFileName.Text) > 0 Then
    nError = MailMessage1.AttachFile(editFileName.Text, mimeAttachBase64)
    If nError Then
        MsgBox "Unable to attach file " & editFileName.Text & _
               vbCrLf & MailMessage1.LastErrorString, vbExclamation

 



    Exit Sub
End If

When attaching a file, keep in mind that the size of the attachment in the message will typically be about
33% larger than the size of the file itself. This is an important consideration because most mail servers
restrict the size of the messages they will accept and will reject messages that exceed that limit. For
example, if a mail server restricts messages to 5 megabytes, the maximum size of a file that can be
attached to the message is about 3.5 megabytes.

Another consideration with file attachments is compatibility with third-party mail client software. If the
current message contains alternative messages (i.e., both plain text and HTML text) then AttachFile will
change the message structure, creating a more complex multipart message which has mixed content types.
Mail software which does not fully conform to the MIME standard may not be able to correctly display this
type of message, either being unable to display the body of the message, or, displaying the complete
message including the alternate text and the encoded file attachment. To ensure that your message is
readable by most recipients, it's recommended that you attach files to plain text messages.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Sending Messages  

 

After a mail message has been created or imported, that message can be delivered to the recipients using
the Simple Mail Transfer Protocol (SMTP) control. To send a message, simply follow these steps:

Create or import a message to be submitted for delivery
Create a list of one or more recipients for the message
Connect to the mail server, authenticating if needed
Submit the message to the mail server for delivery
Disconnect from the mail server

In the following example, the Mail Message control is used to compose a message and the SMTP control is
used to submit the message to a mail server for delivery. Typically the name of the mail server would be
provided by the user and would be the server provided by their Internet Service Provider.

With MailMessage1
    ' Create a standard mail message with the sender, recipients,
    ' subject and message body
    .ComposeMessage strFrom, strTo, strCc, , strSubject, strMessage

    ' Create a string which contains a comma separated list of all of
    ' the message recipients for use with the SendMessage method
    For nIndex = 0 To .Recipients - 1
        If Len(strRecipients) > 0 Then strRecipients = strRecipients & ", "
        strRecipients = strRecipients & .Recipient(nIndex)
    Next

    ' Connect to the mail server and display a message box if the
    ' connection fails for any reason
    nError = SmtpClient1.Connect(strServer)
    If nError Then
        MsgBox SmtpClient1.LastErrorString, vbExclamation
        Exit Sub
    End If

    ' Submit the message to the mail server
    nError = SmtpClient1.SendMessage(.From, strRecipients, .Message)
    If nError Then
        MsgBox SmtpClient1.LastErrorString, vbExclamation
        SmtpClient1.Disconnect
        Exit Sub
    End If

    ' Disconnect from the mail server after the message has
    ' been submitted for delivery
    SmtpClient1.Disconnect
End With

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Client Authentication  

 

In some cases a mail server may require that the client authenticate itself before it is permitted to submit a
message for delivery. This is typically done as an anti-spam measure to ensure that only authorized users
are able to send messages. Authentication is part of the Extended SMTP (ESMTP) standard, so to use this
feature it is required that you set the Extended property to True, and then call the Authenticate method
after the connection has been established. For example:

SmtpClient1.Extended = True

nError = SmtpClient1.Connect(strHostName)
If nError Then
    MsgBox SmtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

If SmtpClient1.Extended = False Then
    MsgBox "This server does not support authentication", vbInformation
    SmtpClient1.Disconnect
    Exit Sub
End If

nError = SmtpClient1.Authenticate(strUserName, strPassword)
If nError Then
    MsgBox SmtpClient1.LastErrorString, vbExclamation
    SmtpClient1.Disconnect
    Exit Sub
End If

First, the Extended property is set to True, which tells the SMTP control that we would like to try and
establish an ESMTP session. After the connection has been established, the value of the Extended property
is checked to make sure that it is still True. Because ESMTP is an optional extension to the protocol, it is not
required that all mail servers support it. The control will not return an error if the server doesn't support
ESMTP, it will simply set the Extended property back to False, which lets the application know that the
connection has been made, but no extended features are available.

The Authenticate method expects two arguments, a username and password which are used to
authenticate the client session. Once the session has been authenticated, the client can proceed to submit
the message for delivery.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Relay Servers  

 

In some situations it may not be possible to send mail directly to the server that accepts mail for a given
domain. The two most common situations are corporate networks which have centralized servers that are
responsible for delivering and forwarding messages, or an Internet Service Provider (ISP) which specifically
blocks access to all mail servers other than their own. This is usually done as either a security measure or as
a means to inhibit users from sending unsolicited commercial email messages. If the standard SMTP port is
being blocked, then any connection attempts will either fail immediately with an error that the server is
unreachable, or the connection will simply time-out. In either case, a relay server must be specified in order
to send email messages.

A relay server is a system which will accept messages addressed to users which may be in a different
domain, and will relay those messages to the appropriate server that does accept mail for the domain. In
that case, the HostName property will specify the host name or address of the mail server that will be used
by the control to relay the message. In some cases, the relay server may use a non-standard port number
to circumvent blocks on port 25. In that case, the RemotePort property should be set to the port number
used by the relay server.

It is important to note that using a mail server as a relay without the permission of the organization or
individual who owns that server may violate Acceptable Use Policies and/or Terms of Service agreements
with your service provider. Systems which relay messages from anyone, regardless of whether the message
is coming from a recognized domain, are called open relays. Because open relays are often used to send
unsolicited email, many administrators block mail that comes from one. It is recommended that users check
with their network administrators or Internet service providers to determine if access to external mail
servers is restricted and what is the acceptable use policy for relaying messages through their mail servers.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Listing Messages  

If your application needs to list the available messages in a user's mailbox, either the Post Office Protocol
v3 (POP3) or Internet Message Access Protocol v4 (IMAP4) controls can be used. Which protocol is
selected largely depends on the mail server. Most service providers offer POP3 access to their mail servers,
and it is the more commonly used protocol.

Post Office Protocol
The Post Office Protocol is a simple message retrieval protocol designed to access the messages that have
arrived in the user's inbox. It is designed for mail clients which will store the messages on the local system
and then delete them from the server. POP3 provides only limited support for managing messages on the
server. Here is an example of how you could list messages using the POP3 and Mail Message controls:

Dim nMessageId As Long
Dim strHeaders As String
Dim nError As Long

' Establish a connection to the mail server using the default port
' and the specified username and password
nError = PopClient1.Connect(strHostName, , strUserName, strPassword)
If nError Then
    MsgBox PopClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' If the MessageCount property returns 0, then there are no
' messages in the mailbox
If PopClient1.MessageCount = 0 Then
    MsgBox "There are no messages in this mailbox", vbInformation
    PopClient1.Disconnect
    Exit Sub
End If
    
' Initialize the ListBox and ProgressBar controls
List1.Clear
ProgressBar1.Max = PopClient1.MessageCount - 1
ProgressBar1.Value = 0

For nMessageId = 1 To PopClient1.MessageCount
    ' Retrieve the headers for the message, storing them in the
    ' string variable
    nError = PopClient1.GetHeaders(nMessageId, strHeaders)
    If nError Then Exit For

    ' Parse the header block returned by the server
    MailMessage1.ClearMessage
    MailMessage1.ParseMessage strHeaders
   
    ' Update the ListBox and ProgressBar controls
    List1.AddItem nMessageId & " " & MailMessage1.Subject
    ProgressBar1.Value = nMessageId - 1
    DoEvents
Next
    
If nError Then MsgBox PopClient1.LastErrorString, vbExclamation
PopClient1.Disconnect

There's a few important points about this example. The use of the GetHeaders method here to retrieve the



 

message header block is the most compatible means of retrieving header values from a POP3 server. If you
review the Technical Reference, you'll notice that there is also a GetHeader method which will return the
value of a single header field. While it may seem more efficient to use this approach, rather than download
the complete header block, the GetHeader method depends on an extended command called XTND XLST
which many POP3 servers do not support. While it is convenient if the server does support that command,
an application should never depend on it being available. In addition, although this example only lists the
subject of the message, if you wanted to list more information such as the sender, recipient and date of the
message then you'd need to call GetHeader multiple times. It is usually more efficient to simply request
the entire header block and let the client parse it.

The header block is returned in a string with each header terminated by a carriage return and linefeed
sequence. While you could write your own code to parse the headers, it's recommended that you use the
Mail Message control to do this. Message headers can be complex when they span multiple lines or
contain encoded sequences.

One other thing that is worth pointing out is the use of DoEvents in the For..Next loop. This is done to
allow the UI controls to redraw themselves and also permit the application to remain responsive to the
user. However, when you do this you need to be aware that your application can be re-entered by the user
clicking on buttons, selecting menu items and so on. If you use DoEvents, make sure that you design your
application so that the user can not interact with your program in a way that will allow them to perform
some other action using the POP3 control while the contents are being listed.

Internet Message Access Protocol
The Internet Message Access Protocol is a more complex, general purpose protocol used for accessing and
managing a user's mailbox on a server. The design of the IMAP4 control is intentionally very similar to the
POP3 control, with a number of additional properties and methods to take advantage of the protocol's
features. Here is how the code would be written to list the available messages in a user's Inbox:

Dim nMessageId As Long
Dim strSubject As String
Dim nError As Long

' Establish a connection to the mail server using the default port
' and the specified username and password
nError = ImapClient1.Connect(strHostName, , strUserName, strPassword)
If nError Then
    MsgBox ImapClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' Select the user's Inbox where new messages arrive
nError = ImapClient1.SelectMailbox("Inbox")
If nError Then
    MsgBox ImapClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' If the MessageCount property returns 0, then there are no
' messages in the mailbox
If ImapClient1.MessageCount = 0 Then
    MsgBox "There are no messages in this mailbox"
    ImapClient1.Disconnect
    Exit Sub
End If
    
' Initialize the ListBox and ProgressBar controls

 



List1.Clear
ProgressBar1.Max = ImapClient1.MessageCount - 1
ProgressBar1.Value = 0
    
For nMessageId = 1 To ImapClient1.MessageCount
    ' Retrieve the Subject header field from the message
    strSubject = ""
    ImapClient1.GetHeader nMessageId, 0, "Subject", strSubject

    ' Update the ListBox and ProgressBar controls
    List1.AddItem nMessageId & " " & strSubject
    ProgressBar1.Value = nMessageId - 1
    DoEvents
Next
    
If nError Then MsgBox ImapClient1.LastErrorString, vbExclamation
ImapClient1.Disconnect

You'll notice that the code is substantially similar to the previous example, however there are a couple of
important differences. The SelectMailbox method is used to explicitly select the user's Inbox, where new
messages are stored until they are moved or deleted by the user. Unlike POP3 which only deals with new
messages, IMAP4 is designed to manage multiple mailboxes, so you need to specify which mailbox you
want to use. The mailbox "Inbox" is a special mailbox defined by the IMAP4 standard where all new
messages are stored. You can list the available mailboxes by reading the Mailbox property array.

The other significant difference is the use the GetHeader method here. This example could have used the
GetHeaders methods to retrieve the complete header block as in the previous example, however because
IMAP4 has support for retrieving specific header values, it was a good way to explain the difference
between the protocols. Unlike POP3 which depends on an extension to the protocol to retrieve a single
header value, all IMAP4 servers support this capability so it is something that you can take advantage of
without concerns about compatibility.

It should be noted that if you plan on retrieving more than two or three header fields from the message, it
will usually be more efficient to retrieve the entire header block with the GetHeaders method and then use
the Mail Message control to parse it.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reading Messages  

The Post Office Protocol (POP3) and Internet Message Access Protocol (IMAP4) controls can be used to
retrieve messages from the mail server for the client to process or store locally. Which protocol is used
largely depends on what service the mail server supports. It is also important to remember that POP3 is a
protocol that is primarily used with applications that store the messages locally; after a message has been
downloaded, it is typically deleted from the server. On the other hand, IMAP4 is a protocol designed for
clients that want to leave the messages on the server and manage those messages remotely.

Post Office Protocol
The Post Office Protocol gives you access to all of the messages that have arrived in a user's inbox. To read
those messages, they must be downloaded one at a time and you must provide a message number which
identifies the message that you wish to retrieve or store. The first message in the mailbox is number one,
and it increases in order for each additional message. It is important to note that as new messages arrive
and old messages are deleted from the mailbox, message numbers will not refer to the same message
from session to session. In other words, if you connect to the server and retrieve message 12, disconnect
and then re-connect, it is possible that message 12 will no longer be the same message that you previously
downloaded. Your application should never depend on a message number referring to a specific message.

Here is an example of how to retrieve the first message in the user's mailbox:

Dim nMessageId As Long
Dim strMessage As String
Dim nError As Long

' Establish a connection to the mail server using the default port
' and the specified username and password
nError = PopClient1.Connect(strHostName, , strUserName, strPassword)
If nError Then
    MsgBox PopClient1.LastErrorString, vbExclamation
    Exit Sub
End If

If PopClient1.MessageCount = 0 Then
    MsgBox "There are no messages in this mailbox"
Else
    nMessageId = 1 ' Retrieve the first message from the mailbox
    nError = PopClient1.GetMessage(nMessageId, strMessage)

    ' If there were no errors, then use the Mail Message control
    ' to parse the message and update the interface
    If nError = 0 Then
        MailMessage1.Message = strMessage
        textFrom.Text = MailMessage1.From
        textTo.Text = MailMessage1.To
        textCc.Text = MailMessage1.Cc
        textDate.Text = MailMessage1.Date
        textSubject.Text = MailMessage1.Subject
        textMessage.Text = MailMessage1.Text
    Else
        MsgBox PopClient1.LastErrorString, vbExclamation
    End If
End If
    
PopClient1.Disconnect

In this example, the GetMessage method is used to retrieve the contents of the first message, message



 

number 1, and store it in a string variable. If successful, then the Mail Message control is used to parse the
message. This is easily done by assigning the Message property to the string which contains the message.

If you prefer to store the message on the local system, then you can use the StoreMessage method
instead. It works in exactly the same way, except that instead of specifying a string or byte array, you
specify the name of a file which will contain the message. If the file already exists it will be overwritten,
otherwise it will be created.

For large messages, it can be useful to provide some sort of feedback to the user to let them know how
much of the message has been downloaded. This can be easily done by adding an OnProgress event
handler to update a ProgressBar control. For example:

Private Sub PopClient1_OnProgress(ByVal MessageNumber As Variant, _
                                  ByVal MessageSize As Variant, _
                                  ByVal MessageCopied As Variant, _
                                  ByVal Percent As Variant)
    ProgressBar1.Value = Percent
End Sub

As the message is being retrieved from the server, the OnProgress event will periodically fire which which
cause the ProgressBar control to be updated with a new value.

Internet Message Access Protocol
The Internet Message Access Protocol enables you to access the messages in any of the user's mailboxes.
To read those messages, you must specify the message number. The message numbers start with one and
increase for each message in the mailbox. As with the Post Office Protocol, your application should never
depend on a message number referring to a specific message. Messages that are deleted or moved from
one mailbox to another may change the ordering of the messages. To identify messages over multiple
client sessions, refer to the MessageUID property.

The following example retrieves the first message from the user's Inbox:

Dim nMessageId As Long
Dim strMessage As String
Dim nError As Long

' Establish a connection to the mail server using the default port
' and the specified username and password
nError = ImapClient1.Connect(strHostName, , strUserName, strPassword)
If nError Then
    MsgBox ImapClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' Select the user's Inbox where new messages arrive
nError = ImapClient1.SelectMailbox("Inbox")
If nError Then
    MsgBox ImapClient1.LastErrorString, vbExclamation
    Exit Sub
End If

If ImapClient1.MessageCount = 0 Then
    MsgBox "There are no messages in this mailbox"
Else
    nMessageId = 1 ' Retrieve the first message from the mailbox
    nError = ImapClient1.GetMessage(nMessageId, 0, strMessage)

    ' If there were no errors, then use the Mail Message control
    ' to parse the message and update the interface

 



    If nError = 0 Then
        MailMessage1.Message = strMessage
        textFrom.Text = MailMessage1.From
        textTo.Text = MailMessage1.To
        textCc.Text = MailMessage1.Cc
        textDate.Text = MailMessage1.Date
        textSubject.Text = MailMessage1.Subject
        textMessage.Text = MailMessage1.Text
    Else
        MsgBox ImapClient1.LastErrorString, vbExclamation
    End If
End If

ImapClient1.Disconnect

This example is very similar to the code used with the POP3 control. The only significant changes are the
use of the SelectMailbox method to select the user's Inbox, and the extra argument to the GetMessage
method. Unlike the Post Office Protocol, IMAP4 has the ability to select specific sections of a multipart
message and return them to the caller.

When working with multipart messages in the IMAP4 control, one important thing to keep in mind is that
the IMAP4 protocol considers the first part of a multipart message to be part 1. Referencing part 0 tells the
control that you want the entire multipart message including the main header block.

For large messages, it can be useful to provide some sort of feedback to the user to let them know how
much of the message has been downloaded. This can be easily done by adding an OnProgress event
handler to update a ProgressBar control. This is implemented in exactly the same way as it is for the POP3
control. For example:

Private Sub ImapClient1_OnProgress(ByVal MessageNumber As Variant, _
                                   ByVal MessageSize As Variant, _
                                   ByVal MessageCopied As Variant, _
                                   ByVal Percent As Variant)
    ProgressBar1.Value = Percent
End Sub

As the message is being retrieved from the server, the OnProgress event will periodically fire which which
cause the ProgressBar control to be updated with a new value.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Deleting Messages  

If your application needs to delete the messages in a user's mailbox, either the Post Office Protocol v3
(POP3) or Internet Message Access Protocol v4 (IMAP4) controls can be used. Which protocol is selected
largely depends on the mail server. Most service providers offer POP3 access to their mail servers, and it is
the more commonly used protocol.

Post Office Protocol
The Post Office Protocol is designed for mail clients which will store the messages on the local system and
then delete them from the server. Here is an example of how you could store all of the messages in a
user's mailbox and then delete them:

Dim nMessageId As Long
Dim strHeaders As String
Dim nError As Long

' Establish a connection to the mail server using the default port
' and the specified username and password
nError = PopClient1.Connect(strHostName, , strUserName, strPassword)
If nError > 0 Then
    MsgBox PopClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' If the MessageCount property returns 0, then there are no
' messages in the mailbox
If PopClient1.MessageCount = 0 Then
    MsgBox "There are no messages in this mailbox", vbInformation
    PopClient1.Disconnect
    Exit Sub
End If
    
' Initialize the ProgressBar control
ProgressBar1.Value = 0
ProgressBar1.Max = PopClient1.LastMessage

For nMessageId = 1 To PopClient1.LastMessage
    ' Create a file name based on the message number
    strFileName = strFolder + Format(nMessageId, "00000000") + ".eml"
    
    ' Store the message in the specified file
    nError = PopClient1.StoreMessage(nMessageId, strFileName)
    If nError = 0 Then
        ' If the message was stored successfully, then delete
        ' it from the mailbox
        nError = PopClient1.DeleteMessage(nMessageId)
    End If

    ' If there was an error, warn the user
    If nError > 0 Then
        MsgBox PopClient1.LastErrorString, vbExclamation
        Exit For
    End If

    ProgressBar1.Value = nMessageId
    DoEvents
Next



 

PopClient1.Disconnect

Although this is very similar to the previous example that listed the available messages in the mailbox, there
is an important difference. Whenever you plan on deleting messages from a POP3 mailbox, you should use
the LastMessage property to determine what the message number is for the last available message in the
mailbox, not the MessageCount property. Whenever a message is deleted from the POP3 mailbox, the
MessageCount property value will decrease by one. This is done to reflect the fact that after message has
been deleted, it can no longer be accessed. This is different than the IMAP4 protocol which merely flags a
message for deletion and that message can still be accessed until the mailbox is expunged.

Internet Message Access Protocol
When you delete a message from a mailbox using the IMAP4 protocol, the message is simply flagged for
deletion. Unlike the POP3 protocol, where the message can no longer be accessed, an IMAP4 client can
retrieve messages that have been deleted until the mailbox has been expunged. Here is an example of how
you could store all of the messages in a user's Inbox and then delete them:

Dim nMessageId As Long
Dim strSubject As String
Dim nError As Long

' Establish a connection to the mail server using the default port
' and the specified username and password
nError = ImapClient1.Connect(strHostName, , strUserName, strPassword)
If nError Then
    MsgBox ImapClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' Select the user's Inbox where new messages arrive
nError = ImapClient1.SelectMailbox("Inbox")
If nError Then
    MsgBox ImapClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' If the MessageCount property returns 0, then there are no
' messages in the mailbox
If ImapClient1.MessageCount = 0 Then
    MsgBox "There are no messages in this mailbox", vbInformation
    ImapClient1.Disconnect
    Exit Sub
End If
    
' Initialize the ProgressBar control
ProgressBar1.Value = 0
ProgressBar1.Max = ImapClient1.MessageCount

For nMessageId = 1 To ImapClient1.MessageCount
    ' Create a file name based on the message number
    strFileName = strFolder + Format(nMessageId, "00000000") + ".eml"
    
    ' Store the message in the specified file
    nError = ImapClient1.StoreMessage(nMessageId, strFileName)
    If nError = 0 Then
        ' If the message was stored successfully, then delete
        ' it from the mailbox
        nError = ImapClient1.DeleteMessage(nMessageId)
    End If

 



    ' If there was an error, warn the user
    If nError > 0 Then
        MsgBox ImapClient1.LastErrorString, vbExclamation
        Exit For
    End If

    ProgressBar1.Value = nMessageId
    DoEvents
Next

' Unselect the current mailbox, expunging the deleted messages
ImapClient1.UnselectMailbox True
ImapClient1.Disconnect

You'll notice that this code is very similar to the POP3 example, with two significant differences. The
SelectMailbox method is used to explicitly select the user's Inbox, where new messages are stored until
they are moved or deleted by the user. Unlike POP3 which only deals with new messages, IMAP4 is
designed to manage multiple mailboxes, so you need to specify which mailbox you want to use. The
mailbox "Inbox" is a special mailbox defined by the IMAP4 standard where all new messages are stored. In
addition, the UnselectMailbox method is used to explicitly expunge the deleted messages from the
mailbox. Note that it is possible to unselect a mailbox and leave the deleted messages intact until a later
time.

Because messages are only flagged for deletion, it is possible to check for deleted messages in a mailbox
by setting the Message property to the desired message number, and then checking the value of the
MessageFlags property. If the imapFlagDeleted bit (a value of 512) has been set, then the message has
been marked for deletion. For example:

For nMessageId = 1 To ImapClient1.MessageCount
    ImapClient1.Message = nMessageId
    If (ImapClient1.MessageFlags And imapFlagDeleted) Then
        MsgBox "Message " & nMessageId & " has been deleted", vbInformation
    End If
Next

It is also possible to undelete a message by calling the UndeleteMessage method. If you have multiple
messages in a mailbox marked for deletion and you want to prevent all of them from being deleted, you
can call the ReselectMailbox method which will reset the state of the current mailbox.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Terminal Services  

 

SocketTools includes several components which can be used to establish character-based terminal sessions
with a server, including the Telnet and Remote Command (RSH) controls. Typically these controls are used
in one of two general ways:

Establish an interactive session with the server, just as if a character-based terminal or console is
being used. The Terminal Emulation control is used to display output, usually emulating an ANSI or
DEC VT-220 terminal. 
 
Establish a connection with the server where keystrokes are sent to the server as though it is
interacting with a user, however the output is parsed and presented to the user in a Windows
application. In this case, the user never sees a standard character-based terminal window. Instead,
the application drives the terminal session in the background.

Because the Terminal Emulation control is separate from the controls which provide the actual connection
to the server, you can use it only when needed for an interactive session. The control can be used to
emulate a standard ANSI console, a DEC VT-100 and DEC-VT220 terminal. It supports colors, character-
based line drawing, scrollable regions, the ability to select and copy text to the clipboard and a number of
other advanced features. For a list of the escape sequences supported by the control, refer to the Control
Sequences section of the technical reference.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Telnet and Remote Login  

 

To establish a terminal session with a server, you can either use the Telnet control or the Remote
Command control. Telnet is a standard protocol which is used to provide basic terminal services, and is
more widely supported than the Remote Login (rlogin) protocol. The following example demonstrates
connecting to a Telnet server, listing the files in the user's current directory and capturing the output:

Dim strCommand As String
Dim strOutput As String
Dim strBuffer As String
Dim nResult As Long
Dim nError As Long

' Establish a connection with the server
nError = TelnetClient1.Connect(strHostName)
If nError Then
    MsgBox TelnetClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' Login to the server as the specified user
nError = TelnetClient1.Login(strUserName, strPassword)
If nError Then
    MsgBox TelnetClient1.LastErrorString, vbExclamation
    TelnetClient1.Disconnect
    Exit Sub
End If

' Issue a UNIX command to list the contents of the user's
' home directory and then logout
strCommand = "/bin/ls -l; exit" & vbCrLf
TelnetClient1.Write strCommand, Len(strCommand)

' Read the data returned by the server and collect it
' in the strOutput string
Do
    nResult = TelnetClient1.Read(strBuffer, 4096)
    If nResult > 1 Then strOutput = strOutput + strBuffer
Loop Until nResult < 1

' Disconnect from the server
TelnetClient1.Disconnect

After the connection has been established, the Login method is used to automatically login the user. It is
important to note that this method expects that the server will respond with the standard Username: and
Password: prompts that most UNIX and Windows based Telnet servers use. If the server uses a non-
standard login sequence, then the client will need to use the Search method to search for the prompts and
write code to respond to them. Note that many servers are configured to not permit the administrator
(root) account to login using Telnet. If you are unable to login, check with your system administrator to
determine if you have sufficient privileges to establish a telnet session from your local system.

An example using the Remote Command control to login to a server is very similar, however there are a
few important differences:

Dim strCommand As String
Dim strOutput As String
Dim strBuffer As String
Dim nResult As Long

 



Dim nError As Long

' Login to the server as the specified user
nError = RshClient1.Login(strHostName, , strUserName)
If nError Then
    MsgBox RshClient1.LastErrorString, vbExclamation
    RshClient1.Disconnect
    Exit Sub
End If

' Issue a UNIX command to list the contents of the user's
' home directory and then logout
strCommand = "/bin/ls -l; exit" & vbCrLf
RshClient1.Write strCommand, Len(strCommand)

' Read the data returned by the server and collect it
' in the strOutput string
Do
    nResult = RshClient1.Read(strBuffer, 4096)
    If nResult > 1 Then strOutput = strOutput + strBuffer
Loop Until nResult < 1

' Disconnect from the server
RshClient1.Disconnect

Instead of a Connect method, the control uses the Login method to establish the connection and login
the user. It is also important to note that a username is provided, but there is no password. This is because
the rlogin protocol uses a concept called host equivalence. This means that the server must be specifically
configured to allow the user to login from your local system. If the system administrator has not done this,
then attempts to connect to the server will fail with the error that the connection has been aborted. If you
need to use the rlogin protocol, most likely you will need to contact your system administrator to make the
appropriate changes to permit access to the server.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Remote Command Execution  

 

To execute a command on a server, you can Remote Command control. The following example
demonstrates connecting to a UNIX server, listing the files in the user's current directory and capturing the
output:

Dim strCommand As String
Dim strBuffer As String
Dim strOutput As String
Dim nResult As Long, nError As Long

' Execute the command on the server
nError = RshClient1.Execute(strHostName, rshPortExec, strUserName, strPassword, 
strCommand)
If nError > 0 Then
    MsgBox RshClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' Read the output from the command and store it in a
' string buffer
Do
    nResult = RshClient1.Read(strBuffer, 1024)
    If nResult > 1 Then strOutput = strOutput + strBuffer
Loop Until nResult < 1

' Disconnect from the server  
RshClient1.Disconnect

The Execute method establishes the connection to the server, authenticates the user and executes the
command. The output from the command is read using the Read method. Note that this method should
only be used if the command is not interactive and expect character-mode input. For example, the Execute
method should not be used with editors such as Emacs. For interactive sessions or the ability to execute
multiple commands in a single client session, the Telnet or Rlogin protocols should be used instead.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketTools Technical Reference  

 

DnsClient Control
FileEncoder Control
FileTransfer Control
FtpClient Control
FtpServer Control
HttpClient Control
HttpServer Control
IcmpClient Control
ImapClient Control
InternetMail Control
InternetServer Control
MailMessage Control
NntpClient Control
NewsFeed Control
PopClient Control
RasDialer Control
RshClient Control
SshClient Control
SmtpClient Control
SocketWrench Control
TelnetClient Control
Terminal Control
TextMessage Control
TimeClient Control
WebLocation Control
WebStorage Control
WhoisClient Control

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Domain Name Service Control

Resolve domain names into Internet addresses and return information about a remote host, such
as the servers that are responsible for accepting mail for the domain.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name DnsClientCtl.DnsClient

File Name CSDNSX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.DnsClient.11

ClassID 17CF34F6-C9D1-41B1-8FA7-647148185A2E

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 1034

Overview
The Domain Name Services (DNS) protocol is what applications use to resolve domain names into
Internet addresses as well as provide other information about a domain. All of the SocketTools
components provide basic domain name resolution functionality, but the Domain Name Services
component gives an application direct control over what servers are queried, the amount of time
spent waiting for a response and the type of information that is returned.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same



folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved./p>  



 Domain Name Service Properties  

 

Property Description

HostAddress Gets and sets the IP address of the remote host

HostAlias Returns the aliases defined for the current hostname

HostAliases Return the number of aliases for the specified host name

HostFile Gets and sets the name of an alternate host file

HostInfo Returns information about the host system

HostName Gets and sets the name of the remote host

HostProtocol Set the protocol to return service information for the specified host

HostServices Return the well-known services available for the specified host

IsBlocked Determine if the control is blocked performing an operation

IsInitialized Determine if the control has been initialized

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

LocalAddress Return the IP address of the local host

LocalDomain Gets and sets the domain name for the local system

LocalName Return the name of the local host

MailExchange Return the name of the mail exchange host for the specified domain

MailExchanges Return the number of mail exchange records for the current host

NameServer Gets and sets the IP address of a nameserver

RemotePort Gets and sets the port number for a remote connection

Retry Set the number of times the control attempts to resolve a hostname

ServerAddress Return the address of the nameserver that resolved the query

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

Version Return the current version of the object

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/dns/control/property/isinitialized.html


 HostAddress Property  

 

Gets and sets the IP address of the remote host.

Syntax
object.HostAddress [= ipaddress ]

Remarks
Setting the HostAddress property causes the control to submit a reverse query to the
nameservers that you have specified. If a reverse entry is found for the IP address, the HostName
property is changed to that host name.

Note that reverse DNS entries may not be available for many systems.

Data Type
String

See Also
HostName Property, NameServer Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAlias Property  

 

Returns the aliases defined for the current hostname.

Syntax
object.HostAlias(Index)

Remarks
The HostAlias property array returns the aliases assigned to the host specified by the
HostAddress or HostName properties. If the host address or name can be resolved, the first
element in the HostAlias array always refers to the host's fully qualified domain name. The end of
the alias list is indicated when the property returns an empty string. The property array is zero
based, meaning that the first index value is zero.

Data Type
String

Example
The following example places the all of the aliases for a specific host into a listbox:

Dim nIndex As Integer

List1.Clear
DnsClient1.HostName = Trim(Text1.Text)

For nIndex = 0 To DnsClient1.HostAliases - 1
     List1.AddItem DnsClient1.HostAlias(nIndex)
     nIndex = nIndex + 1
Loop

See Also
HostAddress Property, HostAliases Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAliases Property  

 

Return the number of aliases for the specified host name.

Syntax
object.HostAliases

Remarks
The HostAliases property returns the number of aliases for the host specified by the HostName
property. If the specified host name cannot be resolved, this property will return a value of zero.

Data Type
Integer (Int32)

Example
The following example places the all of the aliases for a specific host into a listbox:

Dim nIndex As Integer

List1.Clear
DnsClient1.HostName = Trim(Text1.Text)

For nIndex = 0 To DnsClient1.HostAliases - 1
     List1.AddItem DnsClient1.HostAlias(nIndex)
     nIndex = nIndex + 1
Loop

See Also
HostAddress Property, HostAlias Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostFile Property  

 

Gets and sets the name of an alternate host file.

Syntax
object.HostFile [= filename ]

Remarks
The HostFile property is used to specify the name of an alternate file for resolving hostnames and
IP addresses. The host file is used as a database that maps an IP address to one or more
hostnames, and is used when setting the HostName or HostAddress properties and establishing
a connection with a remote host. The file is a plain text file, with each line in the file specifying a
record, and each field separated by spaces or tabs. The format of the file must be as follows:

address hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Setting this property loads the file into memory allocated for the current thread. If the contents of
the file have changed after the function has been called, those changes will not be reflected when
resolving hostnames or addresses. To reload the host file from disk, set the property again with
the same file name. To remove the alternate host file from memory, specify an empty string as the
file name.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

Data Type
String

See Also
HostAddress Property, HostName Property, LocalName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostInfo Property  

 

Returns information about the host system.

Syntax
object.HostInfo

Remarks
The HostInfo property returns a string that includes the machine type and operating system for
the host. This information corresponds to it's HINFO record in the database.

Data Type
String

See Also
HostAddress Property, HostName Property, HostProtocol Property, HostServices Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the remote host.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the remote system that you wish to obtain
information on. Setting this property causes a query to be submitted to the nameservers that you
have specified. If the host name can be resolved, the HostAddress property is set to the IP
address of the host, in dot-notation.

Data Type
String

See Also
HostAddress Property, NameServer Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostProtocol Property  

 

Set the protocol to return service information for the specified host.

Syntax
object.HostProtocol [= protocol ]

Remarks
The HostProtocol property determines the protocol for which service information is returned, and
should be set to one of the following values:

Value Constant Description

6 dnsProtocolTCP Specifies services using the Transmission Control Protocol (TCP).

17 dnsProtocolUDP Specifies services using the User Data Protocol (UDP).

Data Type
Integer (Int32)

See Also
HostServices Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostServices Property  

 

Return the well-known services available for the specified host.

Syntax
object.HostServices

Remarks
The HostServices property returns a string that contains a list of well-known services for the
specified host. This corresponds to the WKS entry in the nameserver's database. The services
returned depend on the protocol specified in the HostProtocol property.

Data Type
String

See Also
HostProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Determine if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalAddress Property  

 

Return the IP address of the local host.

Syntax
object.LocalAddress

Remarks
The LocalAddress read-only property returns the local host's IP address in dot notation (four
numbers separated by periods).

Data Type
String

See Also
HostAddress Property, LocalName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalDomain Property  

 

Gets and sets the domain name for the local system.

Syntax
object.LocalDomain [= domain ]

Remarks
The LocalDomain property is used to set the domain name for the local host. The local domain
name is used when the name assigned to HostName property does not specify a domain (in
other words, does not have a dot in the name). In that case, the value of the LocalDomain
property is appended to the hostname.

If a domain name has been specified for the local system, the LocalDomain property is set to that
value by default.

Data Type
String

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalName Property  

 

Return the name of the local host.

Syntax
object.LocalName

Remarks
The LocalName read-only property returns the name of the local host. The name that is returned
depends on the configuration of the TCP/IP software.

Data Type
String

See Also
HostName Property, LocalAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailExchange Property  

 

Return the name of the mail exchange host for the specified domain.

Syntax
object.MailExchange(Index)

Remarks
The MailExchange property array returns the host name of the systems designated as the mail
exchangers for the current domain. The mail exchange hosts are returned sorted in priority order,
with the higher priority mail servers being listed first. The property array is zero based, which
means that the first index value is zero. The HostName property must be set to the domain name
that you want to obtain the mail exchange records for.

This property array is commonly used to determine which system is responsible for forwarding
mail within a domain. For example, if a mail message is addressed to the user
someone@example.com, you can determine the name of the server or servers responsible for
accepting mail for that user by setting the value of the HostName property to example.com and
then checking the MailExchange property array. Note that it is possible that a domain will not
have any mail exchange (MX) records, in which case you should attempt to to connect directly to a
mail server running on the host specified in the domain name portion of the address.

Data Type
String

Example
The following example places the all of the mail exchanges for a specific host into a listbox:

Dim nIndex As Integer

List1.Clear
DnsClient1.HostName = Trim(Text1.Text)

For nIndex = 0 To DnsClient1.MailExchanges - 1
     List1.AddItem DnsClient1.MailExchange(nIndex)
     nIndex = nIndex + 1
Loop

See Also
HostName Property, HostAddress Property, NameServer Property, MailExchanges Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailExchanges Property  

 

Return the number of mail exchange records for the current host.

Syntax
object.MailExchanges

Remarks
The MailExchanges property returns the number of mail exchange (MX) records for the current
host specified by the HostName property. This property can be used in conjunction with the
MailExchange property to enumerate the servers responsible for accepting mail for a given
domain.

Data Type
Integer (Int32)

Example
The following example places the all of the mail exchange records for a specific host into a listbox:

Dim nIndex As Integer

List1.Clear
DnsClient1.HostName = Trim(Text1.Text)

For nIndex = 0 To DnsClient1.MailExchanges - 1
     List1.AddItem DnsClient1.MailExchange(nIndex)
     nIndex = nIndex + 1
Loop

See Also
HostName Property, HostAddress Property, NameServer Property, MailExchange Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NameServer Property  

 

Gets and sets the IP address of a nameserver.

Syntax
object.NameServer(Index) [ = address ]

Remarks
The NameServer property array is used to specify one or more nameservers used to resolve
hostnames and addresses. The address value must be an IP address in dot notation. The Index
argument specifies which nameserver to set or return a value for. There may be up to 3
nameservers defined for any single instance of the control.

Data Type
String

See Also
HostAddress Property, HostName Property, Retry Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= port ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

Data Type
Integer (Int32)

See Also
HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Retry Property  

 

Set the number of times the control attempts to resolve a hostname.

Syntax
object.Retry [= count ]

Remarks
The Retry property specifies the number of times, per nameserver, that the control attempts to
resolve a hostname or address. If attempts to query a nameserver fail, the control waits a period of
time and then resubmits the query. As the number of retries increase, the longer the period of
time the control waits to receive a response before attempting the query using another
nameserver.

The default number of retries is four, with a minimum value of one and a maximum value of eight.

Data Type
Integer (Int32)

See Also
NameServer Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerAddress Property  

 

Return the address of the nameserver that resolved the query.

Syntax
object.ServerAddress

Remarks
The ServerAddress property returns the IP address (in dot notation) of the nameserver that
resolved the previous query.

Data Type
String

See Also
HostAddress Property, HostName Property, HostProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

DnsClient1.ThrowError = False
nError = DnsClient1.Resolve(strHostName, strHostAddress)

If nError > 0 Then
    MsgBox DnsClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

DnsClient1.ThrowError = True
DnsClient1.Resolve strHostName, strHostAddress

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a remote host. If a connection is not established within the given time
period, the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 dnsTraceInfo All function calls are written to the trace file, including
information about successful calls made to the networking
library. This is the default value.

1 dnsTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 dnsTraceWarning Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 dnsTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII and
hexadecimal format. This is useful for examining the actual
byte stream that is exchanged between the application
and the remote host.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Domain Name Service Methods  

 

Method Description

Cancel Cancels the current blocking network operation

Initialize Initialize the control and validate the runtime license key

MatchHost Match a host name against of list of addresses including wildcards

Query Perform a general nameserver query for a specific type of record

Reset Reset the internal state of the control

Resolve Resolves a host name to a host IP address

Uninitialize Uninitialize the control and release any system resources that were allocated

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Reset Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set dnsClient = CreateObject("SocketTools.DnsClient.11")

nError = dnsClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/dns/control/property/isinitialized.html


 MatchHost Method  

 

Match a host name against one more strings that may contain wildcards.

Syntax
object.MatchHost( HostName, HostMask, [Resolve] )

Parameters
HostName

A string value which specifies the host name or IP address to match against the host mask
string.

HostMask

A string value which specifies one or more values to match against the host name. The asterisk
character can be used to match any number of characters in the host name, and the question
mark can be used to match any single character. Multiple values may be specified by separating
them with a semicolon.

Resolve

An optional boolean value which determines if the host name or IP address should be resolved
when matching the host against the mask string. If this parameter is True, two checks against
the host mask string will be performed; once for the host name specified and once for its IP
address. If this parameter is False, then the match is made only against the host name string
provided. If this argument is omitted, the default value is True.

Return Value
A value of True is returned if the host name or IP address matched the host mask. Otherwise, a
value of False is returned which indicates that there was no match.

Remarks
The MatchHost method provides a convenient way for an application to determine if a given host
name matches one or more mask strings which may contain wildcard characters. For example, the
host name could be "www.microsoft.com" and the host mask string could be "*.microsoft.com". In
this example, the function would return True, indicating the host name matched the mask.
However, if the mask string was "*.net" then the function would return False, indicating that there
was no match. Multiple mask values can be combined by separating them with a semicolon; for
example, the mask "*.com;*.org" would match any host name in either the .com or .org top-level
domains.

See Also
HostAddress Property, HostFile Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Query Method  

 

Perform a general nameserver query for a specific type of record.

Syntax
object.Query( RecordName, RecordType, RecordData, [Reserved] )

Parameters
RecordName

A string value that specifies the name of the record that is to be retrieved. Typically this is the
name of a given host for which you wish to obtain information.

RecordType

An integer value that specifies the type of record that is to be retrieved. This parameter should
be set to one of the following values:

Value Constant Description

0 dnsRecordNone No record type

1 dnsRecordAddress Host address

2 dnsRecordNS Authoritative nameserver

5 dnsRecordCName Canonical name (alias)

6 dnsRecordSOA Start of Authority

11 dnsRecordWKS Well known services

12 dnsRecordPTR Domain name

13 dnsRecordHInfo Host information

14 dnsRecordMInfo Mailbox information

15 dnsRecordMX Mail exchange host

16 dnsRecordTXT Text strings

29 dnsRecordLoc Location information

100 dnsRecordUInfo User information

101 dnsRecordUid User ID

102 dnsRecordGid Group ID

RecordData

A string variable that is set to the data returned as a result of the query. If no data was returned,
this argument will be set to an empty string. This parameter must be passed by reference.

Reserved

An optional parameter that is reserved for future use. This parameter should be omitted or
passed as an empty variant.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

 



Remarks
The Query method performs a general nameserver query for a given record based on the name
and type. This method will not use a local host file when performing host name or IP address
lookups.

The dnsRecordAddress record type is used to resolve a host name into an IP address, and is the
most common type of nameserver query that is performed. This is the type of query that is used
when you set the HostName property and then read the HostAddress property to obtain it's IP
address. If the host name has both an IPv4 and IPv6 address, this method will return the IPv4
address by default for compatibility with existing applications. It will only return an IPv6 address if
the host has no IPv4 address assigned to it.

The dnsRecordPTR record type is used to resolve an IP address into a host name, and is also
referred to as a reverse DNS lookup. The RecordName argument should be set to the IP address
of the system, and the RecordData argument will contain its fully qualified domain name when the
method returns. Note that this requires that a PTR record actually exists for the given address,
which may not be the case. This is the same type of query that is performed when you set the
HostAddress property and then read the HostName property to determine the host name.

See Also
HostAddress Property, HostName Property, MailExchange Property, Resolve Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Resolve Method  

 

Resolves a host name to a host IP address.

Syntax
object.Resolve( HostName, IpAddress, [Reserved] )

Parameters
HostName

A string value that specifies the host name to resolve.

IpAddress

A string variable that will contain the IP address for the specified host name when the method
returns. This parameter must be passed by reference.

Reserved

An optional parameter that is reserved for future use. This parameter should be omitted or
passed as an empty variant.

Return Value
A value of zero is returned if the host name could be resolved into an IP address. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

Remarks
The Resolve method is used to convert a host name into an IP address. Note that unlike the
Query method, this method will use the local host file when resolving the host name. If the host
name has both an IPv4 and IPv6 address, this method will return the IPv4 address by default for
compatibility with existing applications. It will only return an IPv6 address if the host has no IPv4
address assigned to it.

See Also
HostAddress Property, HostFile Property, HostName Property, Query Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Domain Name Service Events  

 Event Description

OnError This event is generated when a control error occurs
 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketTools Control Error Codes  

Value Constant Description

10001 stErrorNotHandleOwner Handle not owned by the current thread

10002 stErrorFileNotFound The specified file or directory does not exist

10003 stErrorFileNotCreated The specified file could not be created

10004 stErrorOperationCanceled The blocking operation has been canceled

10005 stErrorInvalidFileType The specified file is a block or character device, not a
regular file

10006 stErrorInvalidDevice The specified device or address does not exist

10007 stErrorTooManyParameters The maximum number of function parameters has been
exceeded

10008 stErrorInvalidFileName The specified file name contains invalid characters or is too
long

10009 stErrorInvalidFileHandle Invalid file handle passed to function

10010 stErrorFileReadFailed Unable to read data from the specified file

10011 stErrorFileWriteFailed Unable to write data to the specified file

10012 stErrorOutOfMemory Out of memory

10013 stErrorAccessDenied Access denied

10014 stErrorInvalidParameter Invalid argument passed to function

10015 stErrorClipboardUnavailable The system clipboard is currently unavailable

10016 stErrorClipboardEmpty The system clipboard is empty or does not contain any
text data

10017 stErrorFileEmpty The specified file does not contain any data

10018 stErrorFileExists The specified file already exists

10019 stErrorEndOfFile End of file

10020 stErrorDeviceNotFound The specified device could not be found

10021 stErrorDirectoryNotFound The specified directory could not be found

10022 stErrorInvalidBuffer Invalid memory address passed to function

10024 stErrorNoHandles No more handles available to this process

10035 stErrorOperationWouldBlock The specified operation would block the current thread

10036 stErrorOperationInProgress A blocking operation is currently in progress

10037 stErrorAlreadyInProgress The specified operation is already in progress

10038 stErrorInvalidHandle Invalid handle passed to function

10039 stErrorInvalidAddress Invalid network address specified

10040 stErrorInvalidSize Datagram is too large to fit in specified buffer



10041 stErrorInvalidProtocol Invalid network protocol specified

10042 stErrorProtocolNotAvailable The specified network protocol is not available

10043 stErrorProtocolNotSupported The specified protocol is not supported

10044 stErrorSocketNotSupported The specified socket type is not supported

10045 stErrorInvalidOption The specified option is invalid

10046 stErrorProtocolFamily The specified protocol family is not supported

10047 stErrorProtocolAddress The specified address is invalid for this protocol family

10048 stErrorAddressInUse The specified address is in use by another process

10049 stErrorAddressUnavailable The specified address cannot be assigned

10050 stErrorNetworkUnavailable The networking subsystem is unavailable

10051 stErrorNetworkUnreachable The specified network is unreachable

10052 stErrorNetworkReset Network dropped connection on reset

10053 stErrorConnectionAborted Connection was aborted due to timeout or other failure

10054 stErrorConnectionReset Connection was reset by remote network

10055 stErrorOutOfBuffers No buffer space is available

10056 stErrorAlreadyConnected Connection already established with remote host

10057 stErrorNotConnected No connection established with remote host

10058 stErrorConnectionShutdown Unable to send or receive data after connection shutdown

10060 stErrorOperationTimeout The specified operation has timed out

10061 stErrorConnectionRefused The connection has been refused by the remote host

10064 stErrorHostUnavailable The specified host is unavailable

10065 stErrorHostUnreachable The specified host is unreachable

10067 stErrorTooManyProcesses Too many processes are using the networking subsystem

10069 stErrorTooManyThreads Too many threads have been created by the current
process

10070 stErrorTooManySessions Too many client sessions have been created by the current
process

10082 stErrorInternalFailure An unexpected internal error has occurred

10091 stErrorNetworkNotReady Network subsystem is not ready for communication

10092 stErrorInvalidVersion This version of the operating system is not supported

10093 stErrorNetworkNotInitialized The networking subsystem has not been initialized

10101 stErrorRemoteShutdown The remote host has initiated a graceful shutdown
sequence

11001 stErrorInvalidHostName The specified hostname is invalid or could not be resolved

11002 stErrorHostNameNotFound The specified hostname could not be found

11003 stErrorHostNameRefused Unable to resolve hostname, request refused



11004 stErrorHostNameNotResolved Unable to resolve hostname, no address for specified host

12001 stErrorInvalidLicense The license for this product is invalid

12002 stErrorProductNotLicensed This product is not licensed to perform this operation

12003 stErrorNotImplemented This function has not been implemented on this platform

12004 stErrorUnknownLocalHost Unable to determine local host name

12005 stErrorInvalidHostAddress Invalid host address specified

12006 stErrorInvalidServicePort Invalid service port number specified

12007 stErrorInvalidServiceName Invalid or unknown service name specified

12008 stErrorInvalidEventId Invalid event identifier specified

12009 stErrorOperationNotBlocking No blocking operation in progress on this socket

12101 stErrorSecurityNotInitialized Unable to initialize security interface for this process

12102 stErrorSecurityContext Unable to establish security context for this session

12103 stErrorSecurityCredentials Unable to open client certificate store or establish client
credentials

12104 stErrorSecurityCertificate Unable to validate the certificate chain for this session

12105 stErrorSecurityDecryption Unable to decrypt data stream

12106 stErrorSecurityEncryption Unable to encrypt data stream

12201 stErrorOperationNotSupported The specified operation is not supported

12202 stErrorInvalidProtocolVersion Invalid application protocol version specified

12203 stErrorNoServerResponse No data returned from server

12204 stErrorInvalidServerResponse Invalid data returned from server

12205 stErrorUnexpectedServerResponse Unexpected response code returned from server

12206 stErrorServerTransactionFailed Server transaction failed

12207 stErrorServiceUnavailable The service is currently unavailable

12208 stErrorServiceNotReady The service is not ready, try again later

12209 stErrorServerResyncFailed Unable to resynchronize with server

12210 stErrorInvalidProxyType Invalid proxy server type specified

12211 stErrorProxyRequired Resource must be accessed through specified proxy

12212 stErrorInvalidProxyLogin Unable to login to proxy server using specified credentials

12213 stErrorProxyResyncFailed Unable to resynchronize with proxy server

12214 stErrorInvalidCommand Invalid command specified

12215 stErrorInvalidCommandParameter Invalid command parameter specified

12216 stErrorInvalidCommandSequence Invalid command sequence specified

12217 stErrorCommandNotImplemented Specified command not implemented on this server

12218 stErrorCommandNotAuthorized Specified command not authorized for the current user



12219 stErrorCommandAborted Specified command was aborted by the remote host

12220 stErrorOptionNotSupported The specified option is not supported on this server

12221 stErrorRequestNotCompleted The current client request has not been completed

12222 stErrorInvalidUsername The specified username is invalid

12223 stErrorInvalidPassword The specified password is invalid

12224 stErrorInvalidAccount The specified account name is invalid

12225 stErrorAccountRequired Account name has not been specified

12226 stErrorInvalidAuthenticationType Invalid authentication protocol specified

12227 stErrorAuthenticationRequired User authentication is required

12228 stErrorProxyAuthenticationRequired Proxy authentication required

12229 stErrorAlreadyAuthenticated User has already been authenticated

12230 stErrorAuthenticationFailed Unable to authenticate the specified user

12251 stErrorNetworkAdapter Unable to determine network adapter configuration

12252 stErrorInvalidRecordType Invalid record type specified

12253 stErrorInvalidRecordName Invalid record name specified

12254 stErrorInvalidRecordData Invalid record data specified

12255 stErrorConnectionOpen Data connection already established

12256 stErrorConnectionClosed Server closed data connection

12257 stErrorConnectionPassive Data connection is passive

12258 stErrorConnectionFailed Unable to open data connection to server

12259 stErrorInvalidSecurityLevel Data connection cannot be opened with this security
setting

12260 stErrorCachedTlsRequired Data connection requires cached TLS session

12261 stErrorDataReadOnly Data connection is read-only

12262 stErrorDataWriteOnly Data connection is write-only

12263 stErrorEndOfData End of data

12264 stErrorRemoteFileUnavailable Remote file is unavailable

12265 stErrorInsufficientStorage Insufficient storage on server

12266 stErrorStorageAllocation File exceeded storage allocation on server

12267 stErrorDirectoryExists The specified directory already exists

12268 stErrorDirectoryEmpty No files returned by the server for the specified directory

12269 stErrorEndOfDirectory End of directory listing

12270 stErrorUnknownDirectoryFormat Unknown directory format

12271 stErrorInvalidResource Invalid resource name specified

12272 stErrorResourceRedirected The specified resource has been redirected



12273 stErrorResourceRestricted Access to this resource has been restricted

12274 stErrorResourceNotModified The specified resource has not been modified

12275 stErrorResourceNotFound The specified resource cannot be found

12276 stErrorResourceConflict Request could not be completed due to the current state
of the resource

12277 stErrorResourceRemoved The specified resource has been permanently removed
from this server

12278 stErrorContentLengthRequired Request must include the content length

12279 stErrorRequestPrecondition Request could not be completed due to server
precondition

12280 stErrorUnsupportedMediaType Request specified an unsupported media type

12281 stErrorInvalidContentRange Content range specified for this resource is invalid

12282 stErrorInvalidMessagePart Message is not multipart or an invalid message part was
specified

12283 stErrorInvalidMessageHeader The specified message header is invalid or has not been
defined

12284 stErrorInvalidMessageBoundary The multipart message boundary has not been defined

12285 stErrorNoFileAttachment The current message part does not contain a file
attachment

12286 stErrorUnknownFileType The specified file type could not be determined

12287 stErrorDataNotEncoded The specified data block could not be encoded

12288 stErrorDataNotDecoded The specified data block could not be decoded

12289 stErrorFileNotEncoded The specified file could not be encoded

12290 stErrorFileNotDecoded The specified file could not be decoded

12291 stErrorNoMessageText No message text

12292 stErrorInvalidCharacterSet Invalid character set specified

12293 stErrorInvalidEncodingType Invalid encoding type specified

12294 stErrorInvalidMessageNumber Invalid message number specified

12295 stErrorNoReturnAddress No valid return address specified

12296 stErrorNoValidRecipients No valid recipients specified

12297 stErrorInvalidRecipient The specified recipient address is invalid

12298 stErrorRelayNotAuthorized The specified domain is invalid or server will not relay
messages

12299 stErrorMailboxUnavailable Specified mailbox is currently unavailable

12300 stErrorMailboxReadonly The selected mailbox cannot be modified

12301 stErrorMailboxNotSelected No mailbox has been selected

12302 stErrorInvalidMailbox Specified mailbox is invalid



 

12303 stErrorInvalidDomain The specified domain name is invalid or not recognized

12304 stErrorInvalidSender The specified sender address is invalid or not recognized

12305 stErrorMessageNotDelivered Message not delivered to any of the specified recipients

12306 stErrorEndOfMessageData No more message data available to be read

12307 stErrorInvalidMessageSize The specified message size is invalid

12308 stErrorMessageNotCreated The message could not be created in the specified mailbox

12309 stErrorNoMoreMailboxes No more mailboxes exist on this server

12310 stErrorInvalidEmulationType The specified terminal emulation type is invalid

12311 stErrorInvalidFontHandle The specified font handle is invalid

12312 stErrorInvalidFontName The specified font name is invalid or unavailable

12313 stErrorInvalidPacketSize The specified packet size is invalid

12314 stErrorInvalidPacketData The specified packet data is invalid

12315 stErrorInvalidPacketId The unique packet identifier is invalid

12316 stErrorPacketTtlExpired The specified packet time-to-live period has expired

12317 stErrorInvalidNewsgroup Invalid newsgroup specified

12318 stErrorNoNewsgroupSelected No newsgroup selected

12319 stErrorEmptyNewsgroup No articles in specified newsgroup

12320 stErrorInvalidArticle Invalid article number specified

12321 stErrorNoArticleSelected No article selected in the current newsgroup

12322 stErrorFirstArticle First article in current newsgroup

12323 stErrorLastArticle Last article in current newsgroup

12324 stErrorArticleExists Unable to transfer article, article already exists

12325 stErrorArticleRejected Unable to transfer article, article rejected

12326 stErrorArticleTransferFailed Article transfer failed

12327 stErrorArticlePostingDenied Posting is not permitted on this server

12328 stErrorArticlePostingFailed Posting is not permitted on this server

12329 stErrorInvalidDateFormat The specified date format is not recognized

12330 stErrorFeatureNotSupported The specified feature is not supported on this server

12331 stErrorInvalidFormHandle The specified form handle is invalid or a form has not been
created

12332 stErrorInvalidFormAction The specified form action is invalid or has not been
specified

12333 stErrorInvalidFormMethod The specified form method is invalid or not supported

12334 stErrorInvalidFormType The specified form type is invalid or not supported

12335 stErrorInvalidFormField The specified form field name is invalid or does not exist

 



12336 stErrorEmptyForm The specified form does not contain any field values

12337 stErrorMaximumConnections The maximum number of client connections exceeded

12338 stErrorThreadCreationFailed Unable to create a new thread for the current process

12339 stErrorInvalidThreadHandle The specified thread handle is no longer valid

12340 stErrorThreadTerminated The specified thread has been terminated

12341 stErrorThreadDeadlock The operation would result in the current thread becoming
deadlocked

12342 stErrorInvalidClientMoniker The specified moniker is not associated with any client
session

12343 stErrorClientMonikerExists The specified moniker has been assigned to another client
session

12344 stErrorServerInactive The specified server is not listening for client connections

12345 stErrorServerSuspended The specified server is suspended and not accepting client
connections

12346 stErrorNoMessageStore No message store has been specified

12347 stErrorMessageStoreChanged The message store has changed since it was last accessed

12348 stErrorMessageNotFound No message was found that matches the specified criteria

12349 stErrorMessageDeleted The specified message has been deleted

12350 stErrorFileChecksumMismatch The local and remote file checksums do not match

12351 stErrorFileSizeMismatch The local and remote file sizes do not match

12352 stErrorInvalidFeedUrl The news feed URL is invalid or specifies an unsupported
protocol

12353 stErrorInvalidFeedFormat The internal format of the news feed is invalid

12354 stErrorInvalidFeedVersion This version of the news feed is not supported

12355 stErrorChannelEmpty There are no valid items found in this news feed

12356 stErrorInvalidItemNumber The specified channel item identifier is invalid

12357 stErrorItemNotFound The specified channel item could not be found

12358 stErrorItemEmpty The specified channel item does not contain any data

12359 stErrorInvalidItemProperty The specified item property name is invalid

12360 stErrorItemPropertyNotFound The specified item property has not been defined

12361 stErrorInvalidChannelTitle The channel title is invalid or has not been defined

12362 stErrorInvalidChannelLink The channel hyperlink is invalid or has not been defined

12363 stErrorInvalidChannelDescription The channel description is invalid or has not been defined

12364 stErrorInvalidItemText The description for an item is invalid or has not been
defined

12365 stErrorInvalidItemLink The hyperlink for an item is invalid or has not been defined

12366 stErrorInvalidServiceType The specified service type is invalid



12367 stErrorServiceSupended Access to the specified service has been suspended

12368 stErrorServiceRestricted Access to the specified service has been restricted

12369 stErrorInvalidProviderName The specified provider name is invalid or unknown

12370 stErrorInvalidPhoneNumber The specified phone number is invalid or not supported in
this region

12371 stErrorGatewayNotFound A message gateway cannot be found for the specified
provider

12372 stErrorMessageTooLong The message exceeds the maximum number of characters
permitted

12373 stErrorInvalidProviderData The request returned invalid or incomplete service
provider data

12374 stErrorInvalidGatewayData The request returned invalid or incomplete message
gateway data

12375 stErrorMultipleProviders The request has returned multiple service providers

12376 stErrorProviderNotFound The specified service provider could not be found

12377 stErrorInvalidMessageService The specified message is not supported with this service
type

12378 stErrorInvalidMessageFormat The specified message format is invalid

12379 stErrorInvalidConfiguration The specified configuration options are invalid

12380 stErrorServerActive The requested action is not permitted while the server is
active

12381 stErrorServerPortBound Unable to obtain exclusive use of the specified local port

12382 stErrorInvalidClientSession The specified client identifier is invalid for this session

12383 stErrorClientNotIdentified The specified client has not provided user credentials

12384 stErrorInvalidClientState The requested action cannot be performed at this time

12385 stErrorInvalidResultCode The specified result code is not valid for this protocol

12386 stErrorCommandRequired The specified command is required and cannot be
disabled

12387 stErrorCommandDisabled The specified command has been disabled

12388 stErrorCommandSequence The command cannot be processed at this time

12389 stErrorCommandCompleted The previous command has completed

12390 stErrorInvalidProgramName The specified program name is invalid or unrecognized

12391 stErrorInvalidRequestHeader The request header contains one or more invalid values

12392 stErrorInvalidVirtualHost The specified virtual host name is invalid

12393 stErrorVirtualHostNotFound The specified virtual host does not exist

12394 stErrorTooManyVirtualHosts Too many virtual hosts created for this server

12395 stErrorInvalidVirtualPath The specified virtual path name is invalid



12396 stErrorVirtualPathNotFound The specified virtual path does not exist

12397 stErrorTooManyVirtualPaths Too many virtual paths created for this server

12398 stErrorInvalidTask The asynchronous task identifier is invalid

12399 stErrorTaskFinished The asynchronous task has not finished

12400 stErrorTaskQueued The asynchronous task has been queued

12401 stErrorTaskSuspended The asynchronous task has been suspended

12402 stErrorTaskFinished The asynchronous task has finished

12403 stErrorInvalidAccountUuid The application account identifier is invalid

12404 stErrorInvalidAccountId The product identifier identifier is invalid

12405 stErrorInvalidProductId TODO

12406 stErrorInvalidSerialNumber The product serial number is invalid

12407 stErrorInvalidAppId The application identifier is invalid

12408 stErrorInvalidApiKey The application key is invalid

12409 stErrorAccountExists The application account identifier already exists

12410 stErrorAccountNotCreated The application account identifier was not created

12411 stErrorAccountNotFound The application account identifier was not found

12412 stErrorAccountNotExpired Access to this account has not expired

12413 stErrorAccountNotUpdated The application account could not be updated

12414 stErrorAccountExpired Access to this account has expired

12415 stErrorAccountRevoked Access to this account has been revoked

12416 stErrorApiKeyNotCreated The application key could not be created

12417 stErrorApiKeyNotFound The application key could not be found

12418 stErrorApiKeyNotExpired The application key has not expired

12419 stErrorApiKeyNotUnique The application key identifier is not unique

12420 stErrorApiKeyNotUpdated The application key could not be updated

12421 stErrorApiKeyNotDeleted The application key could not be deleted

12422 stErrorApiKeyExists The application key already exists

12423 stErrorApiKeyExpired The application key has expired and must be refreshed

12424 stErrorApiKeyRevoked TODO

12425 stErrorApiKeyAppId The application key has been revoked

12426 stErrorInvalidToken The application was not found or was not specified

12427 stErrorTokenNotCreated The access token could not be created

12428 stErrorTokenNotFound The access token could not be found

12429 stErrorTokenNotExpired The access token has not expired

12430 stErrorTokenNotUpdated The access token was not updated



12431 stErrorTokenNotDeleted The access token could not be deleted

12432 stErrorTokenExpired The access token has expired and must be refreshed

12433 stErrorTokenRevoked The access token has been revoked

12434 stErrorNoApiKeysFound No application keys found for this account

12435 stErrorNoTokensFound No access tokens found for this application key

12436 stErrorNoTokensRevoked No access tokens have been revoked

12437 stErrorInvalidStorageObject Invalid storage object identifier

12438 stErrorStorageObjectReadOnly The storage object is read-only

12439 stErrorStorageObjectExpired Access to the storage object has expired

12440 stErrorStorageObjectSize The storage object size exceeds storage limits

12441 stErrorStorageObjectDigest The storage object digest is invalid or cannot be computed

12442 stErrorStorageObjectExists A storage object with this label already exists

12443 stErrorStorageObjectModified A storage object with this label has been modified

12444 stErrorStorageObjectNotOwner The current user is not the storage object owner

12445 stErrorStorageObjectNotFound The specified storage object does not exist

12446 stErrorStorageObjectNotCreated The storage object was not created

12447 stErrorStorageObjectNotModified The storage object was not modified

12448 stErrorStorageObjectNotRenamed The storage object was not renamed

12449 stErrorStorageFolderEmpty The storage folder does not contain any objects

12450 stErrorStorageAccountQuota The storage account has exceeded its quota

12451 stErrorStorageAccountLimit The storage account has exceeded its object limit

12452 stErrorInvalidStorageType The specified storage type is invalid

12453 stErrorInvalidStorageProvider The specified storage provider is not available

12454 stErrorInvalidStorageRegion The specified storage region is not available

12455 stErrorInvalidStorageContainer The storage container does not exist or cannot be
accessed

12456 stErrorInvalidStorageLabel The storage object label is invalid or undefined

12457 stErrorInvalidQueueHandle The specified queue handle is invalid or the queue has
been deleted

12458 stErrorInvalidQueueFile The specified file identifier is not valid for this queue

12459 stErrorQueueRunning The operation cannot be performed while the queue is
running

12460 stErrorQueueStopped The operation cannot be performed when the queue has
stopped

12461 stErrorQueueEmpty There are no files in the specified queue

12462 stErrorQueuePaused The operation cannot be performed while the queue is



paused

12463 stErrorQueueLocked The operation cannot be performed while the queue is
locked

12464 stErrorFileNotQueued The specified file cannot be found in the queue

12465 stErrorEndOfQueue There are no more files in the specified queue

12466 stErrorTooManyFiles The maximum number of files have been queued for
transfer

12467 stErrorNoQueuedTransfer No queued file transfer is currently in progress

12468 stErrorIvalidX509Certificate The specified X.509 format certificate is invalid

12469 stErrorInvalidPKCS12Certificiate The specified PKCS 12 format certificate is invalid

12470 stErrorInvalidCipherSuite The specified cipher suite is invalid or unavailable

12471 stErrorDeprecatedCipherSuite The specified cipher suite is insecure and has been
deprecated

12472 stErrorInvalidCertificateChain The certificate chain could not be validated

12473 stErrorInvalidPrivateKey The private key for the certificate is invalid

12474 stErrorInvalidApiSession The application session identifier is invalid

12475 stErrorExpiredApiSession The application session identifier has expired

12476 stErrorInvalidApiToken The application token for this session is invalid

12477 stErrorExpiredApiToken The application token for this session has expired

12478 stErrorInvalidApiAuthId The authorization token for this session is invalid

12479 stErrorInvalidApiEndpoint The endpoint for the specified request is invalid

12480 stErrorInvalidApiPayload The data submitted with the specified request is invalid

12481 stErrorUnknownSessionOwner The current session owner is unknown or no longer valid

12482 stErrorRevokedSessionAuth The authorization token for this session has been revoked

12483 stErrorInvalidUrlScheme The scheme for the specified URL is invalid or unsupported

12484 stErrorInvalidUrlHost The host name for the specified URL is invalid

12485 stErrorInvalidUrlPort The port number for the specified URL is invalid

12486 stErrorInvalidUrlPath The resource path for the specified URL is invalid

12487 stErrorInvalidContentType The content type is invalid or not supported

12488 stErrorUnknownContentType The content type cannot be determined

12489 stErrorInvalidCharset The specified character set is invalid or not supported

12490 stErrorInvalidCodePage The specified ANSI code page is invalid or not supported

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



File Encoding Control

Encode and decode files using standard algorithms such as base64, uuencode and quoted-
printable. The control can also be used to compress and expand files, as well as encrypt or decrypt
file data using AES encryption.

Reference

Properties
Methods
Events

Control Information

Object Name FileEncoderCtl.FileEncoder

File Name CSNCDX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.FileEncoder.11

ClassID 7C53A9D2-20C6-4BC3-BE1C-B7B4322D0BCE

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 1738, RFC 1951, RFC 2045

Overview
The File Encoding control provides functions for encoding and decoding binary files, typically
attachments to email messages. The process of encoding converts the contents of a binary file to
printable 7-bit ASCII text. Decoding reverses the process, converting a previously encoded text file
back into a binary file.

There are two primary types of encoding methods used with various Internet applications: base64
and uucode. The base64 algorithm is most commonly used with email attachments, and is often
referred to as MIME encoding since this is the encoding method specified in the MIME standards
document. The uucode algorithm (so called because the programs to perform the encoding were
called uuencode and uudecode) is often used when attaching binary files to Usenet newsgroup
posts. The library also supports an alternate encoding format called yEnc which is also widely used
to attach files to Usenet posts.

In addition to encoding and decoding data files, this control includes methods to compress and
expand data, as well as encrypt and decrypt files using 256-bit AES encryption.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the



desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Encoding Control Properties  

 

Property Description

DecodedText Set the current decoded text or return the decoded value of the EncodedText property

DecryptedText Set the current decrypted text or return decrypted value of the EncryptedText property

EncodedText Set the current encoded text or return the encoded value of the DecodedText property

Encoding Gets and sets the current encoding method used by the component

EncryptedText Set the current encrypted text or return the encrypted value of the DecryptedText property

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

Password Gets and sets the password value used to encrypt and decrypt data

ThrowError Enable or disable error handling by the container of the control

Version Return the current version of the object

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DecodedText Property  

 

Set the value of the current decoded text string, or return the decoded value of an encoded string.

Syntax
object.DecodedText [= value ]

Remarks
The DecodedText property is used to specify the decoded value of a string, or return the
decoded value of a previously encoded string. If the property is set, the current plain (decoded)
text is changed to that value and reading the EncodedText property will return the encoded
string for this value. If the property is read, it will return the decoded value of the EncodedText
property.

The control will use the value of the Encoding property to determine how the text should be
decoded. Note that only base64 and quoted-printable encoding is supported when decoding a
string using this property. To decode the contents of a file, it's recommended that you use the
DecodeFile method.

This property only supports decoding text which was previously encoded using the ASCII or UTF-8
character set. If you need to decode text which used a different character set, you should use the
DecodeText method in the Mail Message control. It is a component which is used to create and
parse MIME formatted messages, and it is capable of decoding text that was encoded using a
variety of different character sets.

Data Type
String

See Also
EncodedText Property, Encoding Property, DecodeFile Method, DecodeText Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DecryptedText Property  

 

Set the value of the current decrypted text string, or return the decrypted value of an encrypted
string.

Syntax
object.DecryptedText [= value ]

Remarks
The DecryptedText property is used to specify the current decrypted (plain text) value, or return
the decrypted value of a previously encrypted string. If the property is set, the current text is
changed to this value. Getting this property will decrypt the EncryptedText property value and
return a copy of the decrypted string.

The value of the Password property will be used to generate the decryption key. If the Password
property has not been set, or if it's an empty string, an default internal hash value is used to
decrypt the data. Password values that exceed 215 characters will be truncated.

Due to how the decryption key is created internally, the control cannot be used to decrypt strings
previously encrypted another third-party library or component. The encryption is performed using
the 256-bit AES (Advanced Encryption Standard) algorithm, and the key is generated using an
SHA-256 hash of the password value. It is not possible to recover previously encrypted text if the
password value is unknown.

Data Type
String

See Also
EncryptedText Property, Password Property, DecryptData Method, DecryptFile Method,
EncryptData Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 EncodedText Property  

 

Set the value of the current encoded text string, or return the encoded value of a plain text string.

Syntax
object.EncodedText [= value ]

Remarks
The EncodedText property is used to specify the encoded value of a string, or return the
encoded value of a plain text (decoded) string. If the property is set, the current value will be
changed to the encoded value, and the DecodedText property will return the plain text value of
the encoded string. If the property is read, it will return the encoded value of the DecodedText
property.

The control will use the value of the Encoding property to determine how the text should be
encoded. Note that only base64 and quoted-printable encoding is supported when encoding a
string using this property. To encode the contents of a file, it's recommended that you use the
EncodeFile method.

This property only supports encoding text using the UTF-8 or ASCII character set. If you need to
encode text using a different character set, you should use the EncodeText method in the Mail
Message control. It is a component which is used to create and parse MIME formatted messages,
and it is capable of encoding text using a variety of different character sets.

Data Type
String

See Also
DecodedText Property, Encoding Property, EncodeFile Method, EncodeText Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Encoding Property  

 

Gets and sets the current encoding method used by the control.

Syntax
object.Encoding [= value ]

Remarks
The Encoding property determines how the specified file will be encoded or decoded by the
control. The following encoding methods are supported:

Value Constant Description

0 fileEncodeDefault Use the default encoding method. Currently this is the
same specifying that the base64 algorithm should be used
for encoding and decoding files.

1 fileEncodeBase64 Use the base64 algorithm for encoding and decoding
files. This is the standard method for encoding files as
outlined in the Multipurpose Internet Mail Extensions
(MIME) protocol. This is the method used by most modern
email client software.

2 fileEncodeQuoted This encoding method is typically used for text messages
that use characters beyond the standard ASCII character
set, in the range of 128-255. This method, called quoted
printable encoding, allows text messages to pass through
mail systems that do not support characters with the high-
bit set. Note that this method should not be used to
encode binary files such as executables because the
resulting output can be very large. For binary files, use the
base64 algorithm instead.

3 fileEncodeUucode Use the uuencode and uudecode algorithms for encoding
and decoding files. This is a common encoding method
used with UNIX systems and older email client software.

4 fileEncodeYencode Use the yEnc algorithm for encoding the file. This is an
encoding method that is commonly used when posting
files to Usenet newsgroups.

The value of this property specifies the default encoding method for the DecodeFile and
EncodeFile methods. Unless needed for a specific purpose, it is strongly recommended that
binary files be encoded with the base64 algorithm for maximum compatibility. Note that it is not
necessary to use this control to encode or decode file attachments with the Mail Message control,
since it automatically handles encoding and decoding multipart messages.

The Encoding property also determines the encoding method that is used when the
DecodedText and EncodedText properties are used to decode and encode text strings. The
following values are supported:

Value Constant Description

0 dataEncodeDefault Use the default encoding method. Currently this is the
same specifying that the base64 algorithm should be

 



used for encoding and decoding data.

1 dataEncodeBase64 Use the base64 algorithm for encoding and decoding
data. This is the standard method for encoding data as
outlined in the Multipurpose Internet Mail Extensions
(MIME) protocol. This is the method used by most
modern email client software.

2 dataEncodeQuoted This encoding method is typically used for text messages
that use characters beyond the standard ASCII character
set, in the range of 128-255. This method, called quoted
printable encoding, allows text messages to pass through
mail systems that do not support characters with the
high-bit set. Note that this method should not be used to
encode binary data such as executables because the
resulting output can be very large. For binary data, use
the base64 algorithm instead.

3 dataEncodeURL This encoding method is used with Uniform Resource
Locators (URLs) to convert certain reserved characters to
ensure that the URL is processed correctly by a web
server. Numbers and letters are unchanged; control
characters, spaces, most punctuation and 8-bit characters
are converted into their hexadecimal value.

4 dataEncodeUTF7 This encoding method converts Unicode text into 7-bit
characters that can be safely passed through systems that
do not support Unicode or 8-bit characters. This is most
commonly used with email applications.

5 dataEncodeUTF8 This encoding method converts Unicode text into 8-bit
characters that can be safely passed through systems that
do not support Unicode.

Data Type
Integer (Int32)

See Also
DecodedText Property, EncodedText Property, DecodeFile Method, EncodeFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 EncryptedText Property  

 

Set the value of the current encrypted text string, or return the encrypted value of a plain text
string.

Syntax
object.EncryptedText [= value ]

Remarks
The EncryptedText property is used to specify the current encrypted text value, or return the
decrypted value of a previously encrypted string. If the property is set, the current text is changed
to this value and reading the DecryptedText property will return the decrypted string for this
value. If you are assigning a value to this property, it must be a base64 encoded string.

The value of the Password property will be used to generate the encryption key. If the Password
property has not been set, or if it's an empty string, an default internal hash value is used to
encrypt the data. Password values that exceed 215 characters will be truncated.

Due to how the encryption key is created internally, another third-party library or component
cannot be used to decrypt the string value returned by this property. The encryption is performed
using the 256-bit AES (Advanced Encryption Standard) algorithm, and the key is generated using
an SHA-256 hash of the password value. It is not possible to recover previously encrypted data if
the password value is unknown.

Data Type
String

See Also
DecryptedText Property, Password Property, DecryptData Method, EncryptData Method,
EncryptFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Password Property  

 

Gets and sets the password used to encrypt and decrypt data.

Syntax
object.Password [= value ]

Remarks
The Password property specifies the value which is used to generate the encryption and
decryption key. If the Password property has not been set, or if it's an empty string, an default
internal hash value is used to encrypt and decrypt the data. Password values that exceed 215
characters will be truncated.

Although it is not required for your application to use a password to encrypt the data, it is
recommended. If no password is specified, any other application that uses this control will be able
to decrypt the data. Passwords are case-sensitive and must match exactly, including the use of any
spaces. If this property value is not identical to what was used to encrypt the data, attempts to
decrypt the data will fail.

The encryption is performed using the 256-bit AES (Advanced Encryption Standard) algorithm,
and the key is generated using an SHA-256 hash of the password value. It is not possible to
recover previously encrypted data if the password value is unknown.

Data Type
String

See Also
DecryptedText Property, EncryptedText Property, DecryptFile Method, EncryptFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

FileEncoder1.ThrowError = False
nError = FileEncoder1.EncodeFile(strInputFile, strOutputFile)

If nError > 0 Then
    MsgBox FileEncoder1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

FileEncoder1.ThrowError = True
FileEncoder1.EncodeFile strInputFile, strOutputFile

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Encoding Control Methods  

 

Method Description

CompressData Compress the contents of a string or byte array

CompressFile Compress the contents of the specified file

DecodeFile Decode the contents of a file encoded by EncodeFile

DecryptData Decrypt a string or byte array encrypted by EncryptData

DecryptFile Decrypt the contents of a file encrypted by EncryptFile

EncodeFile Encode the contents of the specified file

EncryptData Encrypt the contents of a string or byte array

EncryptFile Encrypt the contents of the specified file

ExpandData Expand the contents of a string or byte array

ExpandFile Expands the contents of a file compressed by CompressFile

Initialize Initialize the control using the specified runtime license key

Reset Reset the internal state of the control to its initial defaults

Uninitialize Uninitialize the control

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CompressData Method  

 

Compress the contents of the specified string or byte array.

Syntax
object.CompressData( InputData, OutputData )

Parameters
InputData

A string or byte array that contains the data to be compressed.

OutputData

A string or byte array that is passed by reference and will contain the compressed data when
the method returns. If this parameter is a string or variant type, the compressed data will be
automatically base64 encoded. If this parameter is a byte array, the compressed data will be
copied into the array.

Return Value
This method returns the number of bytes of compressed data that was copied into the output
buffer. If the input buffer is a zero-length string or an empty array, the method will return zero. If
an error occurs, the method will return -1. Check the value of the LastError property to determine
the specific error that has occurred.

Remarks
The CompressData method compresses the contents of a string or byte array in memory, rather
than using a temporary file. The type of variable passed to the method as the output buffer
determines whether the data is base644 encoded or not. If the output buffer is a string type then
the compressed data will be automatically encoded to ensure that it can be safely represented as
a string. If the output buffer is a byte array, the compressed data will be copied into the array as-is
without any encoding. If the caller specifies a fixed-size byte array as the output buffer, the array
must be large enough to contain all of the compressed data, otherwise the method will fail.

The return value from this method should always be checked to ensure that the data was
successfully compressed. An application should never assume that the output buffer contains valid
compressed data unless the return value is greater than zero. The compressed data is not
returned in a format that is recognized by third-party applications such as PKZip or WinZip. To
expand the compressed data, pass the contents of the output buffer to the ExpandData method.

See Also
CompressFile Method, DecryptData Method, EncryptData Method, ExpandData Method,
ExpandFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CompressFile Method  

 

Compress the contents of the specified file.

Syntax
object.CompressFile( InputFile, OutputFile, [CompressionType], [CompressionLevel] )

Parameters
InputFile

A string value that is the name of the file that will be compressed. The file must exist, and it must
be a regular file that can be opened for reading by the current process. An error will be
returned if a character device, such as the console, is specified as the file name.

OutputFile

A string value that is the name of the file that is to contain the compressed file data. If the file
exists, it must be a regular file that can be opened for writing by the current process and will be
overwritten. If the file does not exist, it will be created. An error will be returned if a character
device, such as the console, is specified as the file name.

CompressionType

A numeric value which determines the algorithm that will be used to compress the data. One of
the following values may be specified. If this argument is not specified, the Deflate algorithm is
used.

Value Constant Description

1 fileCompressionDeflate A compression algorithm that
combines LZ77 algorithm for
creating common substrings and
Huffman coding to process the
different frequencies of byte
sequences in the data stream.
Deflate is widely used by
compression software.

2 fileCompressionBurrowsWheeler A compression algorithm that
rearranges blocks of data in sorted
order and then uses Huffman
coding to process different
frequencies of data within the block.
Burrows-Wheeler compression
provides a better compression ratio
than the Deflate algorithm, however
it requires more resources to
perform the compression.

CompressionLevel

A numeric value which specifies the compression level to use. A value of zero specifies that the
default compression level appropriate for the selected algorithm should be used, balancing
resource usage and the compression ratio of the data. A value of 1 specifies that the
compression should be performed using minimal memory resources, at the expense of the
compression ratio. The maximum value of 9 specifies that the algorithm should use more

 



memory to achieve the maximum compression ratio. It is recommended that most applications
use the default value of zero.

Return Value
This method returns a value of zero if the file was successfully compressed. A non-zero return
value specifies an error code which indicates the reason for the failure.

Remarks
The CompressFile method compresses the contents of the specified file. The compression ratio
achieved depends on the type of file being compressed. Note that the compressed file is not
stored in an archive format that is recognized by third-party applications such as PKZip or WinZip.

See Also
CompressData Method, DecodeFile Method, EncodeFile Method, ExpandFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DecodeFile Method  

 

Decode the contents of the specified file.

Syntax
object.DecodeFile( InputFile, OutputFile, Encoding )

Parameters
InputFile

A string value that specifies the name of the file to be decoded. The file must exist, and it must
be a regular file that can be opened for reading by the current process. An error will be
returned if a character device, such as the console, is specified as the file name.

OutputFile

A string value that specifies the name of the file that will contain the decoded data. If the file
exists, it must be a regular file that can be opened for writing by the current process and will be
overwritten. If the file does not exist, it will be created. An error will be returned if a character
device, such as the console, is specified as the file name.

Encoding

The encoding method that was used to create the file. The following encoding methods are
valid:

Value Constant Description

0 fileDecodeDefault Use the default encoding method. Currently this is
the same specifying that the base64 algorithm
should be used for encoding and decoding files.

1 fileDecodeBase64 Use the base64 algorithm for encoding and
decoding files. This is the standard method for
encoding files as outlined in the Multipurpose
Internet Mail Extensions (MIME) protocol. This is
the method used by most modern email client
software.

2 fileDecodeQuoted This encoding method is typically used for text
messages that use characters beyond the
standard ASCII character set, in the range of 128-
255. This method, called quoted printable
encoding, allows text messages to pass through
mail systems that do not support characters with
the high-bit set. Note that this method should not
be used to encode binary files such as executables
or file archives.

3 fileDecodeUucode Use the uuencode and uudecode algorithms for
encoding and decoding files. This is a common
encoding method used with UNIX systems and
older email client software.

4 fileDecodeYencode Use the yEnc algorithm for encoding the file. This
is an encoding method that is commonly used
when posting files to Usenet newsgroups.

 



&H10000 fileDecodeCompressed This option is used in combination with one of the
encoding types listed above. If specified, the
method will decode the file and expand the data,
restoring the original file contents.

Return Value
This method returns a value of zero if the file was successfully decoded. A non-zero return value
specifies an error code which indicates the reason for the failure.

Remarks
The DecodeFile method decodes the contents of a file that was created using the specified
encoding method.

The fileDecodeCompressed option should only be specified if the encoded file was created using
EncodeFile method with the fileEncodeCompressed option.

See Also
Encoding Property, EncodeFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DecryptData Method  

 

Decrypt the contents of the specified string or byte array.

Syntax
object.DecryptData( InputData, OutputData [, Password ])

Parameters
InputData

A string or byte array that contains the data to be decrypted.

OutputData

A string or byte array which will contain the decrypted data when the method returns. This
parameter must be passed by reference. When specifying a Byte array, you must ensure the
buffer is large enough to contain all of the decrypted data.

Password

An optional parameter that specifies the password that was used to decrypt the data. If this
parameter is omitted, the value of the Password property will be used.

Return Value
This method returns the number of bytes of decrypted data copied into the output buffer. If the
input buffer is a zero-length string or an empty array, the method will return zero. If an error
occurs, the method will return -1. Check the value of the LastError property to determine the
specific error that has occurred.

Remarks
The DecryptData method will decrypt the contents of the input buffer previously encrypted with
the EncryptData method. Thee decrypted data is returned in the specified output buffer. The
password (or passphrase) provided by the caller is used to generate a SHA-256 hash value which
is used as part of the decryption process.

The input and output buffer variables must match the same data types which were
used when calling the EncryptData method. If it was used to encrypt a string, then
the input and output variables must be String types. If it was used to encrypt binary
data, the input and output variables must be Byte arrays. Never attempt to encrypt
or decrypt binary data using String variables. You must always use a Byte array for
binary data.

Due to how the SHA-256 hash is generated, this method cannot be used to decrypt files that were
encrypted using another third-party library. It can only be used to decrypt data that was previously
encrypted using EncryptData.

If you wish to encrypt and decrypt the contents of a file, use the EncryptFile and DecryptFile
methods.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider
may not be available in some languages, countries or regions. The availability of this provider may
also be constrained by cryptography export restrictions imposed by the United States or other
countries. If the required cryptographic provider is not available, the method will fail.

See Also
CompressFile Method, EncryptData Method, ExpandData Method, ExpandFile Method

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DecryptFile Method  

 

Decrypt the contents of the specified file.

Syntax
object.DecryptFile( InputFile, OutputFile [, Password] )

Parameters
InputFile

A string value that specifies the name of the file to be decrypted. The file must exist, and it must
be a regular file that can be opened for reading by the current process. An error will be
returned if a character device, such as the console, is specified as the file name.

OutputFile

A string value that specifies the name of the file that will contain the decrypted data. If the file
exists, it must be a regular file that can be opened for writing by the current process and will be
overwritten. If the file does not exist, it will be created. An error will be returned if a character
device, such as the console, is specified as the file name.

Password

An optional parameter that specifies the password that was used to encrypt the file contents. If
this parameter is omitted, the value of the Password property will be used.

Return Value
This method returns a value of zero if the file was successfully decrypted. A non-zero return value
specifies an error code which indicates the reason for the failure.

Remarks
The DecryptFile method will decrypt the contents of a file previously encrypted with the
EncryptFile method and stores the decrypted data in the specified output file. The
password (or passphrase) provided by the caller is used to generate a SHA-256 hash
value which is used as part of the decryption process.

Due to how the SHA-256 hash is generated, this method cannot be used to decrypt files
that were encrypted using another third-party library. It can only be used to decrypt data
that was previously encrypted using EncryptFile.

A temporary file is created during the decryption process and the output file is created or
overwritten only if the input file could be successfully decrypted. If the decryption fails, no
output file will be created.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This
provider may not be available in some languages, countries or regions. The availability of
this provider may also be constrained by cryptography export restrictions imposed by the
United States or other countries. If the required cryptographic provider is not available,
the method will fail.

See Also
DecryptedText Property, EncryptedText Property, Password Property, EncryptData Method,
EncryptFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 EncodeFile Method  

 

Encode the contents of the specified file.

Syntax
object.EncodeFile( InputFile, OutputFile, Encoding )

Parameters
InputFile

A string value that specifies the name of the file to be encoded. The file must exist, and it must
be a regular file that can be opened for reading by the current process. An error will be
returned if a character device, such as CON: is specified as the file name.

OutputFile

A string value that specifies the name of the file that will contain the encoded data. If the file
exists, it must be a regular file that can be opened for writing by the current process and will be
overwritten. If the file does not exist, it will be created. An error will be returned if a character
device, such as CON: is specified as the file name.

Encoding

The encoding method to be used when creating the file. The following encoding methods are
valid:

Value Constant Description

0 fileEncodeDefault Use the default encoding method. Currently this is
the same specifying that the base64 algorithm
should be used for encoding and decoding files.

1 fileEncodeBase64 Use the base64 algorithm for encoding and
decoding files. This is the standard method for
encoding files as outlined in the Multipurpose
Internet Mail Extensions (MIME) protocol. This is
the method used by most modern email client
software.

2 fileEncodeQuoted This encoding method is typically used for text
messages that use characters beyond the standard
ASCII character set, in the range of 128-255. This
method, called quoted printable encoding, allows
text messages to pass through mail systems that
do not support characters with the high-bit set.
Note that this method should not be used to
encode binary files such as executables or file
archives.

3 fileEncodeUucode Use the uuencode and uudecode algorithms for
encoding and decoding files. This is a common
encoding method used with UNIX systems and
older email client software.

4 fileEncodeYencode Use the yEnc algorithm for encoding the file. This
is an encoding method that is commonly used
when posting files to Usenet newsgroups.

 



&H10000 fileEncodeCompressed This option is used in combination with one of the
encoding types listed above. If specified, the file
will be compressed prior to being encoded by the
control. This can significantly reduce the size of
the encoded output.

Return Value
This method returns a value of zero if the file was successfully encoded. A non-zero return value
specifies an error code which indicates the reason for the failure.

Remarks
The EncodeFile method encodes the contents of a file, using the specified encoding method.

When specifying the fileEncodeCompressed option, it is important to remember that the
compressed, encoded data can only be restored to its original contents using the DecodeFile
method. This option should not be used when encoding a file to be attached to an email message
unless you provide the recipient with a utility to decode the data.

See Also
Encoding Property, DecodeFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 EncryptData Method  

 

Encrypt the contents of the specified string or byte array.

Syntax
object.EncryptData( InputData, OutputData [, Password ])

Parameters
InputData

A string or byte array that contains the data to be encrypted.

OutputData

A string or byte array which will contain the encrypted data when the method returns. This
parameter must be passed by reference. When specifying a Byte array, you must ensure the
buffer is large enough to contain all of the decrypted data.

Password

An optional parameter that specifies the password that was used to encrypt the data. If this
parameter is omitted, the value of the Password property will be used.

Return Value
This method returns the number of bytes of encrypted data copied into the output buffer. If the
input buffer is a zero-length string or an empty array, the method will return zero. If an error
occurs, the method will return -1. Check the value of the LastError property to determine the
specific error that has occurred.

Remarks
The EncryptData method encrypts the contents of a string or byte array using a 256-bit AES
(Advanced Encryption Standard) algorithm and stores the encrypted data in the specified output
file. The password (or passphrase) provided by the caller is used to generate a SHA-256 hash
value which is used as part of the encryption process. The identical password is required to
decrypt the data using the DecryptData method.

Although it is not required for your application to use a password to encrypt the data, it is
recommended. If no password is specified, any other application that uses this control will be able
to decrypt the data. Passwords are case-sensitive and must match exactly, including the use of any
spaces.

If the input buffer is a String type, the output buffer must also be a String. The text
will be automatically encoded as UTF-8 and the encrypted data will be returned as a
base64 encoded string. If the input buffer is a Byte array, the output buffer must also
be a Byte array. Never attempt to encrypt or decrypt binary data using String
variables. You must always use a Byte array for binary data.

If you wish to encrypt and decrypt the contents of a file, use the EncryptFile and DecryptFile
methods.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider
may not be available in some languages, countries or regions. The availability of this provider may
also be constrained by cryptography export restrictions imposed by the United States or other
countries. If the required cryptographic provider is not available, the method will fail.

See Also

 



CompressFile Method, DecryptData Method, ExpandData Method, ExpandFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 EncryptFile Method  

 

Encrypt the contents of the specified file.

Syntax
object.EncryptFile( InputFile, OutputFile [, Password] )

Parameters
InputFile

A string value that specifies the name of the file to be encrypted. The file must exist, and it must
be a regular file that can be opened for reading by the current process. An error will be
returned if a character device, such as the console, is specified as the file name.

OutputFile

A string value that specifies the name of the file that will contain the encrypted data. If the file
exists, it must be a regular file that can be opened for writing by the current process and will be
overwritten. If the file does not exist, it will be created. An error will be returned if a character
device, such as the console, is specified as the file name.

Password

An optional parameter that specifies the password that was used to encrypt the file contents. If
this parameter is omitted, the value of the Password property will be used.

Return Value
This method returns a value of zero if the file was successfully encrypted. A non-zero return value
specifies an error code which indicates the reason for the failure.

Remarks
The EncryptFile method will encrypt the contents of a file using a 256-bit AES (Advanced
Encryption Standard) algorithm and stores the encrypted data in the specified output file.
The password (or passphrase) provided by the caller is used to generate a SHA-256 hash
value which is used as part of the encryption process. The identical password is required
to decrypt the data using the DecryptFile method.

Although it is not required for your application to use a password to encrypt the data, it is
recommended. If no password is specified, any other application that uses this control will
be able to decrypt the data. Passwords are case-sensitive and must match exactly,
including the use of any spaces.

A temporary file is created during the encryption process and the output file is created or
overwritten only if the input file could be successfully encrypted. If the encryption fails, no
output file will be created.

If you wish to encrypt or decrypt string values, use the DecryptedText and
EncryptedText properties.

This method uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This
provider may not be available in some languages, countries or regions. The availability of
this provider may also be constrained by cryptography export restrictions imposed by the
United States or other countries. If the required cryptographic provider is not available,
the method will fail.

See Also

 



DecryptedText Property, EncryptedText Property, Password Property, DecryptData, EncryptData,
EncryptFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExpandData Method  

 

Expand the contents of the specified string or byte array.

Syntax
object.ExpandData( InputData, OutputData )

Parameters
InputData

A string or byte array that contains the data to be expanded.

OutputData

A string or byte array that is passed by reference and will contain the expanded data when the
method returns.

Return Value
This method returns the number of bytes of expanded data that was copied into the output
buffer. If the input buffer is a zero-length string or an empty array, the method will return zero. If
an error occurs, the method will return -1. Check the value of the LastError property to determine
the specific error that has occurred.

Remarks
The ExpandData method expands data that compressed with a previous call to the
CompressData method. If the input buffer is a string of base64 encoded data, it will automatically
be decoded prior to being expanded. If the expanded (uncompressed) data is textual, then the
output buffer can be a string or variant type. If the expanded data is binary, the output buffer
should always be a byte array. Binary data that is expanded into a string buffer may be corrupted
because the data will be automatically be converted to Unicode by this method. This conversion is
not performed if the output buffer is a byte array. If the caller specifies a fixed-size byte array as
the output buffer, the array must be large enough to contain all of the expanded data, otherwise
the method will fail.

The return value from this method should always be checked to ensure that the data was
successfully expanded. An application should never assume that the output buffer contains valid
data unless the return value is greater than zero.

See Also
CompressData Method, CompressFile Method, DecryptData Method, EncryptData Method,
ExpandFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExpandFile Method  

 

Expands the contents of a previously specified file.

Syntax
object.ExpandFile( InputFile, OutputFile, [CompressionType] )

Parameters
InputFile

A string value that specifies the name of the file to be expanded. The file must exist, and it must
be a file that was created by a previous call to the CompressFile method. An error will be
returned if the file cannot be accessed, if it specifies a character device such as the console, or
the if the data is not in a recognizable format.

OutputFile

A string value that specifies the name of the file that will contain the expanded data. If the file
exists, it must be a regular file that can be opened for writing by the current process and will be
overwritten. If the file does not exist, it will be created. An error will be returned if a character
device, such as the console, is specified as the file name.

CompressionType

A numeric value which determines the algorithm that was used to compress the data. One of
the following values may be specified. If this argument is not specified, the Deflate algorithm is
used. If the compression type specified by this argument does not match the actual
compression algorithm used to compress the file, an error will be returned.

Value Constant Description

1 fileCompressionDeflate A compression algorithm that
combines LZ77 algorithm for
creating common substrings and
Huffman coding to process the
different frequencies of byte
sequences in the data stream.
Deflate is widely used by
compression software.

2 fileCompressionBurrowsWheeler A compression algorithm that
rearranges blocks of data in sorted
order and then uses Huffman
coding to process different
frequencies of data within the block.
Burrows-Wheeler compression
provides a better compression ratio
than the Deflate algorithm, however
it requires more resources to
perform the compression.

Return Value
This method returns a value of zero if the file was successfully decompressed. A non-zero return
value specifies an error code which indicates the reason for the failure.

 



Remarks
The ExpandFile method expands the contents of a previously compressed file. Note that this
method can only expand files that were compressed using the control. It cannot expand the
contents of a file stored in an archive format such as PKZip or WinZip.

See Also
CompressFile Method, DecodeFile Method, EncodeFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set fileEncoder = CreateObject("SocketTools.FileEncoder.11")

nError = fileEncoder.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
Reset Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults and any handles allocated by the control will be released.

See Also
Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method resets the internal state of the control. This method is not typically used
because any resources that have been allocated by an instance of the control will automatically be
released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Encoding Control Events  

 
Event Description

OnError This event is generated when a control error occurs

OnProgress This event is generated the file contents are encoded or decoded

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnProgress Event  

 

The OnProgress event is generated the file contents are encoded or decoded.

Syntax
Sub object_OnProgress ( [Index As Integer,] ByVal FileName As Variant, ByVal FileSize As
Variant, ByVal FileProcessed As Variant, ByVal Percent As Variant )

Remarks
The OnProgress event is generated as files are being encoded or decoded. For large files, this
event can be used to update a progress bar or other user-interface control to provide the user
with some visual feedback. The arguments to this event are:

FileName

The name of the file currently being encoded or decoded.

FileSize

The size of the file in bytes.

FileProcessed

The number of bytes in the file which have been encoded or decoded.

Percent

The percentage of data in the file which has been encoded or decoded, expressed as an integer
value between 0 and 100, inclusive.

Note that this event is guaranteed to fire at least twice, immediately before the encoding or
decoding process begins, and after it has completed. To prevent an application from being
flooded with OnProgress events during the course of the encoding process, the control meters
the time intervals at which this event is triggered. Unless the file is very large, it is not uncommon
for interim events to not fire during the decoding or encoding process.

See Also
DecodeFile Method, EncodeFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



File Transfer Control

Transfer files between a local and server and perform common file management functions on the
server.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name FileTransferCtl.FileTransfer

File Name CSFTCX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.FileTransfer.11

ClassID 113C9358-86CA-4A6A-8601-8A367F99865E

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 959, RFC 1579, RFC 1945, RFC 2228, RFC 2616

Overview
The SocketTools File Transfer ActiveX control provides a simplified interface for uploading and
downloading files over the Internet or an intranet. The control implements the File Transfer
Protocol (FTP) and Hypertext Transfer Protocol (HTTP) for transferring files between the local
system and a server.

An application can transfer a file with a single method call, simply by specifying a URL, without the
need to provide the individual protocol, host, port, file name, and account information.
Alternatively, connection and access information may be supplied separately, to allow multiple file
transfer operations to be performed in a single server session. In either case, the differences
between the supported protocols are kept to a minimum. Additional features such as proxy
connections are easily implemented by simply setting a few properties.

The control offers a comprehensive interface that provides everything needed to incorporate file
transfer functionality in an application, as well as perform remote file management. In addition to
downloading and uploading by file name, URL, and wild card patterns, a developer may use the
control for the creation, listing, and removal of directories, as well as renaming and removal of files
on the server.

In addition to supporting standard FTP and HTTP connections, the File Transfer Control also
supports secure TLS 1.2 and SFTP (SSH 2.0) connections. By simply setting a few properties, a
secure connection using up to 256-bit AES encryption can be established, providing your
application with the greatest flexibility and highest level of security available.

file:///C|/Projects/cstools11/pdf/file/control/errors/index.html


Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Control Properties  

 

Property Description

Account Gets and sets the FTP account name for the current user

ActivePort Gets and sets the range of ports used for active mode file transfers

AppendFile Specify that data should be appended to an existing file during a FTP file transfer

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the client certificate

CertificatePassword Gets and sets the password associated with the client certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the client certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was issued

CertificateUser Gets and sets the user that owns the client certificate

ChannelMode Gets and sets the security mode for the specified communications channel

CipherStrength Return the length of the key used by the encryption algorithm

CodePage Gets and sets the code page used for Unicode text conversion

Compression Set or return if data compression should be enabled for HTTP downloads

DirectoryFormat Gets and sets the current FTP directory format type

Features Gets and sets the features enabled for the current client session

FileType Gets and sets the current file transfer type for FTP transfers

Fingerprint Returns a string that uniquely identifies the server

HashStrength Return the length of the message digest that was selected

IsBlocked Determine if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

KeepAlive Set or return if the connection to a HTTP server is persistent

LastError Gets and sets the last error code

LastErrorString Return a description of the last error that occurred

Localize Determines if remote file dates are localized to the current timezone

Passive Enable passive FTP file transfers

Password Gets and sets the password for the current user

Priority Gets and sets the priority assigned to file transfers

ProtocolVersion Gets and sets the current HTTP protocol version

ProxyPassword Gets and sets the proxy server password for the current user

ProxyPort Gets and sets the port number for the proxy server

 



ProxyServer Gets and sets the host name of the proxy server

ProxyType Gets and sets the current proxy server type

ProxyUser Gets and sets the current proxy user name

ResultCode Return the result code of the previous action

ResultString Return a string describing the results of the previous action

Resource Gets and sets the remote file name or resource path on the server

Secure Specify if a connection to the server is secure

SecureCipher Return the encryption algorithm used to establish the secure connection with the server

SecureHash Return the message digest selected when establishing the secure connection with the server

SecureKeyExchange Return the key exchange algorithm used to establish the secure connection with the server

SecureProtocol Gets and sets the security protocol used to establish the secure connection with the server

ServerDirectory Gets and sets the current working directory on the FTP server

ServerName Gets and sets the host name for the FTP or HTTP server

ServerPort Gets and sets the port number for a remote connection

ServerType Gets and sets the type of the remote FTP or HTTP server

System Return information about the server

TaskCount Return the number of active background file transfers

TaskId Return the task ID for an active background file transfer

TaskList Return the task ID for an active background file transfer

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking network operation is aborted

Trace Enable or disable network function level tracing

TraceFile Return or specify the network function trace output file

TraceFlags Gets and sets the current network function tracing flags

TransferBytes Return the number of bytes transferred from the server

TransferBytesXL Return the number of bytes transferred from the server

TransferRate Return the current data transfer rate in bytes per second

TransferTime Return the number of seconds elapsed during a data transfer

URL Gets and sets the current Uniform Resource Locator value

UserName Gets and sets the current user name

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Account Property  

 

Gets and sets the FTP account name for the current user.

Syntax
object.Account [= account ]

Remarks
The Account property specifies the account name of the current user, if it is required by the server
for authentication.

Note that not all servers require an account name, in which case this property is ignored.

Data Type
String

See Also
Password Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ActivePort Property  

 

Gets and sets the range of local port numbers used for active mode FTP file transfers.

Syntax
object.ActivePort(portrange) [ = localport ]

Remarks
The ActivePort property property array is used to change the range of local port numbers used
for active mode file transfers. The property array index specifies the port that should be changed,
and may be one of the following values:

Value Constant Description

0 ftpActivePortLow Change or return information for the low port number.

1 ftpActivePortHigh Change or return information for the high port number.

The localport value specifies the new port number to be used. Valid port numbers are in the
range of 1025 through 65535.

This property array is used to modify the range of local port numbers used for active mode file
transfers. When using active mode, the client listens for an inbound connection from the server
rather than establishing an outbound connection for the data transfer. In most cases, passive
mode transfers are preferred because they mitigate potential compatibility issues with firewalls and
NAT routers.

If active mode transfers are required, the default port range used when listening for the server
connection is between 1024 and 5000. This is the standard range of ephemeral ports used by the
Windows operating system. However, under some circumstances that range of ports may be too
small, or a firewall may be configured to deny inbound connections on ephemeral ports. In that
case, the ActivePort property can be used to specify a different range of port numbers.

While it is technically permissible to assign the low and high port numbers to the same value,
effectively specifying a single active port number, this is not recommended as it can cause the
transfer to fail unexpectedly if multiple file transfers are performed. A minimum range of at least
1000 ports is recommended. For example, if you specify a low port value of 40000 then it is
recommended that the high port value be at least 41000. The maximum port value is 65535.

Data Type
Integer (Int32)

See Also
Features Property, Connect Method, Disconnect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AppendFile Property  

 

Specify that data should be appended to an existing file during a FTP file transfer.

Syntax
object.AppendFile [= { True | False } ]

Remarks
The AppendFile property specifies that data should be appended to the target file during a file
transfer. The default value for this property is False, which means that the target file will be
overwritten. Note that this property only has an effect when the GetFile or PutFile methods are
used for a FTP transfer.

Data Type
Boolean

See Also
GetFile Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateExpires Property  

 

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssued Property  

 

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssuer Property  

 

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site the
certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
    Dim strFieldValue As String
    Dim cchValue As Integer, cchFieldName As Integer
    Dim nOffset As Integer
     
    GetCertNameValue = ""
    cchValue = Len(strValue)
    cchFieldName = Len(strFieldName)
     
    If cchValue = 0 Or cchFieldName = 0 Then
         Exit Function
    End If
     
    nOffset = InStr(strValue, strFieldName & "=")

 



     
    If nOffset > 0 Then
         '
         ' If the field name was found in the string, then
         ' remove everything to the left of the token from
         ' the string
         '
         strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))
          
         '
         ' If the value is quoted, then strip off the leading
         ' quote and look for the ending quote in the string;
         ' otherwise look for the comma that marks the end of
         ' the field name/value pair
         '
         If Left(strFieldValue, 1) = Chr(34) Then
              strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
              nOffset = InStr(strFieldValue, Chr(34))
         Else
              nOffset = InStr(strFieldValue, ",")
         End If
          
         '
         ' If the offset is 0, then the name/value pair is
         ' the last token in the string; otherwise, remove
         ' everything to the right of that position
         '
         If nOffset > 0 Then
              strFieldValue = Left(strFieldValue, nOffset - 1)
         End If
          
         GetCertNameValue = strFieldValue
    End If
End Function

Dim strIssuer As String
Dim strCompanyName As String
 
strIssuer = FileTransfer1.CertificateIssuer
If Len(strIssuer) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strCompanyName = GetCertNameValue(strIssuer, "O")
     MsgBox "This certificate was issued by " & strCompanyName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the client certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the certificate that should be used to
establish the connection with the server. It is only required that you set this property value if the
server requires a client certificate for authentication. If this property is not set, a client certificate
will not be provided to the server. If a certificate name is specified, the certificate must have a
private key associated with it, otherwise the connection attempt will fail because the control will be
unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the client certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStatus Property  

 

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property returns an integer value which identifies the status of the server
certificate. This property may return one of the following values:

Value Constant Description

0 stCertificateNone No certificate information is available. A secure connection was
not established with the server.

1 stCertificateValid The certificate is valid.

2 stCertificateNoMatch The certificate is valid, however the domain name specified in
the certificate does not match the domain name of the site that
the client has connected to. This is typically the case if the
ServerName property is set to an IP address rather than a host
name. It is recommended that the client examine the
CertificateSubject property to determine the domain name of
the site that the certificate was issued for.

3 stCertificateExpired The certificate has expired and is no longer valid. The client can
examine the CertificateExpires property to determine when the
certificate expired.

4 stCertificateRevoked The certificate has been revoked and is no longer valid. It is
recommended that the client application immediately terminate
the connection if this status is returned.

5 stCertificateUntrusted The certificate has not been issued by a trusted authority, or the
certificate is not trusted on the local host. It is recommended
that the client application immediately terminate the connection
if this status is returned.

6 stCertificateInvalid The certificate is invalid. This typically indicates that the internal
structure of the certificate is damaged. It is recommended that
the client application immediately terminate the connection if
this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
Integer (Int32)

Example
The following example establishes a secure connection to a server and retrieves a file:

FileTransfer1.HostName = strHostName

 



On Error Resume Next: Err.Clear
FileTransfer1.Secure = True

If Err.Number Then
    MsgBox "Unable to initialize the security interface"
    Exit Sub
End If

On Error GoTo 0

nError = FileTransfer1.Connect()

If nError > 0 Then
    MsgBox "Unable to connect to server " & strHostName, vbExclamation
    Exit Sub
End If

If FileTransfer1.CertificateStatus <> stCertificateValid Then
    lResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                     "Are you sure you wish to continue?", vbYesNo)

    If lResult = vbNo Then
        FileTransfer1.Disconnect
        Exit Sub
    End If
End If

nError = FileTransfer1.GetFile(strLocalFile, strRemoteFile)
If nError > 0 Then
    FileTransfer1.Disconnect
    MsgBox "Unable to retrieve file from server " & strHostName
    Exit Sub
End If

FileTransfer1.Disconnect

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the client certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the client certificate that should
be used when establishing a secure connection with the server. The certificate may either be
stored in the registry or in a file. If the certificate is stored in the registry, then this property should
be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateSubject Property  

Returns information about the organization to which the server certificate was issued.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the subject's company or country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site the
certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function



 

     End If

     nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the domain name that the server certificate was issued
for:

Dim strSubject As String
Dim strDomainName As String

strSubject = FileTransfer1.CertificateSubject
If Len(strSubject) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strDomainName = GetCertNameValue(strSubject, "CN")
     MsgBox "This certificate was issued for " & strDomainName
End If

 



See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the client certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the client certificate that will be used to establish
a secure connection with the server. If this property is not set, the certificate store for the current
user will be used when searching for the certificate. If this property is used to specify another user,
the process must have the appropriate permission to access the registry location that contains the
client certificate. On Windows Vista and later versions of the operating system, this requires that
the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ChannelMode Property  

 

Gets and sets the security mode for the specified communications channel.

Syntax
object.ChannelMode(channel) [= mode ]

Remarks
The ChannelMode property property array is used to change the security mode for either the
command or data channel. The property array index specifies the channel that should be
changed, and may be one of the following values:

Value Constant Description

0 ftpChannelCommand Change or return information for the command
channel. This is the communication channel used to
send commands to the server and receive command
result and status information from the server.

1 ftpChannelData Change information for the data channel. This is the
communication channel used to send or receive data
during a file transfer.

The mode value specifies the new security mode for the specified channel. It may be one of the
following values:

Value Constant Description

0 ftpChannelClear Data sent and received on this channel should not be
encrypted.

1 ftpChannelSecure Data sent and received on this channel should be
encrypted. Specifying this option requires that a secure
connection has already been established with the server.

The ChannelMode property array is used to change the default mode for the specified channel,
and is typically used to control whether or not data is encrypted during a file transfer. If a
standard, non-secure connection has been established with the server, an error will be returned if
you specify the ftpChannelSecure mode for either channel.

If you have established a secure connection and then specify the ftpChannelClear mode for the
command channel, the client will send the CCC command to the server to indicate that commands
should no longer be encrypted. If the server does not support this command, an error will be
returned and the channel mode will remain unchanged. Once the command channel has been
changed to clear mode, it cannot be changed back to secure mode. You must disconnect and re-
connect to the server if you want to resume sending commands over an encrypted channel.

Changing the mode for the data channel requires that the server support the PROT command. If
this command is not supported by the server, an exception will be thrown which must be handled
by the application. You can only set a channel to secure mode if the Secure property is also set to
True.

It is important to note that this property array should only be used after a connection has been
established with the server. If you attempt to read the property or change a value prior to calling
the Connect method, an exception will be thrown.

 



Data Type
Integer (Int32)

See Also
Features Property, Secure Property, Connect Method, Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CodePage Property  

 

Gets and sets the code page used when converting text to and from Unicode.

Syntax
object.CodePage [= value ]

Remarks
The CodePage property is an integer value which specifies how text is encoded. Any valid code
page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. You should not use this code page unless you know the
server is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available  code page identifiers can be found in Microsoft's documentation for
the Win32 API.

All data exchanged with an FTP server is sent and received as 8-bit bytes, typically referred to as
"octets" in networking terminology. However, the internal string type used by ActiveX controls are
Unicode, with each character represented using 16 bits. When you send and receive data using
the String data type, they will automatically be converted to a stream of bytes.

By default, strings are converted to an array of bytes using UTF-8 encoding, mapping the 16-bit
Unicode characters to 8-bit bytes. Similarly, when reading data into a string buffer, the stream of

 

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers


bytes received from the remote host are converted to Unicode before they are returned to your
application.

If the text you receive appears to corrupted or characters are being replaced with question marks
or other symbols, it is likely the file on the server is using a different character encoding. Most
applications use UTF-8 encoding to represent non-ASCII characters; however, some text files may
use a localized character set rather than using Unicode. Using the GetText and PutText methods
in combination with this property will change how that text is converted to Unicode.

Strings are only guaranteed to be safe when sending and receiving text. Using a
string data type is not recommended when uploading or downloading binary data. If
possible, you should always use a byte array when using the GetData and PutData
methods.

This property value directly corresponds to Windows code page identifiers, and will accept any
valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Although strings in Visual Basic are internally managed as Unicode, the default common controls
used in Visual Basic 6.0 do not support Unicode. Those controls, such as buttons, text boxes and
labels, will automatically convert the Unicode text to ANSI using the current code page. This
means that text in the end-user’s native language (depending on system settings) may display
correctly, although text in other languages using different character sets may not. Also note that
the VB6 IDE is not Unicode aware and may display corrupted string values or invalid characters,
such as with tooltip values when debugging.

For Unicode support in Visual Basic 6.0, it’s recommended that you use third-party controls. An
alternative that some developers have used is the Microsoft Forms 2.0 Object Library (FM20.DLL)
that is part of Microsoft Office. It includes a collection of controls that support Unicode, however
they are not redistributable and Microsoft has stated that their use with VB6 is unsupported.

Data Type
Integer (Int32)

See Also
FileType Property, GetData Method, GetText Method, PutData Method, PutText Method



 Compression Property  

 

Set or return if data compression should be enabled.

Syntax
object.Compression [= { True | False } ]

Remarks
The Compression property is used to indicate to the server whether or not it is acceptable to
compress the data that is returned to the client. If compression is enabled, the client will advertise
that it will accept compressed data and the server will decide whether a resource being requested
can be compressed. If the data is compressed, the control will automatically expand the data
before returning it to the caller.

Enabling compression does not guarantee that the data returned by the server will actually be
compressed, it only informs the server that the client is willing to accept compressed data.
Whether or not a particular resource is compressed depends on the server configuration, and the
server may decide to only compress certain types of resources, such as text files. Disabling
compression informs the server that the client is not willing to accept compressed data; this is the
default.

This property value is only meaningful when downloading files from an HTTP server that supports
file compression. It has no effect on file uploads or file transfers using FTP.

Data Type
Boolean

See Also
GetData Method, GetFile Method

 



 DirectoryFormat Property  

 

Gets and sets the current FTP directory format type.

Syntax
object.DirectoryFormat [= format ]

Remarks

Value Constant Description

0 ftpDirectoryAutoDetect This value specifies that the library should automatically
determine the format of the file lists returned by the server. It is
recommended that most applications use this value and allow
the control to automatically determine the appropriate file
listing format used by the server. This is the default value of
the property.

1 ftpDirectoryUnix This value specifies that the server returns file lists in the format
commonly used by UNIX servers. Note that many servers can
be configured to return file listings in this format, even if they
are not actually a UNIX based platform. Consult the technical
reference documentation for your server for more information.

2 ftpDirectoryMsdos This value specifies that the server returns file lists in the format
commonly used by MS-DOS based systems. This includes
Windows IIS servers. Long file names will be returned if
supported by the underlying filesystem, such as NTFS or
FAT32.

3 ftpDirectoryVms This value specifies that the server returns file lists in the format
commonly used by VMS servers. Note that VMS servers can be
configured to return a standard UNIX style listing in additional
to the default VMS format.

4 ftpDirectorySterling1 
 

This value specifies that the server returns file listings in a
proprietary format used by the Sterling server, which is used
for EDI (Electronic Data Interchange) applications. This format
uses a 13 byte status code.

5 ftpDirectorySterling2 This value specifies that the server returns file listings in a
proprietary format used by the Sterling server, which is used
for EDI (Electronic Data Interchange) applications. This format
uses a 10 byte status code.

6 ftpDirectoryNetWare This value specifies that the server returns file listings in a
proprietary format used by NetWare servers. The format is
similar to UNIX style listings except that file access and
permissions are indicated by letter codes enclosed in brackets.
This is the default format selected if the server identifies itself
as a NetWare system.

If this property has the default value ftpDirectoryAutoDetect initially, and the control can
determine from the format of the first file in the listing that one of the other supported types is

 



used, then the property will change value upon the first call to the ReadDirectory method. If the
control cannot determine the format of the directory listing, then the directory listing will be
empty. In this case, you can retrieve a directory listing by setting the optional ParseList parameter
of the OpenDirectory method to False. Each line of the directory listing provided by the server
will be returned in FileName parameter of the ReadDirectory function. It will then be the
responsibility of the application to extract desired information from this string.

Data Type
Integer (Int32)

See Also
OpenDirectory Method, ReadDirectory Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Features Property  

Gets and sets the FTP features enabled for the current client session.

Syntax
object.Features [= flags ]

Remarks
The Features property returns a value which may be a combination of one or more of the
following bit flags:

Value Constant Description

&H00001 ftpFeatureSIZE The server supports the SIZE command to determine
the size of a file. If this feature is not enabled, the
control will attempt to use the MLST or STAT
command to determine the file size.

&H00002 ftpFeatureSTAT The server supports using the STAT command to
return information about a specific file. If this feature is
not enabled, the client may not be able to obtain
information about a specific file such as its size,
permissions or modification time.

&H00004 ftpFeatureMDTM The server supports the MDTM command to obtain
information about the modification time for a specific
file. This command may also be used to set the file
time on the server.

&H00008 ftpFeatureREST The server supports restarting file transfers using the
REST command. If this feature is not enabled, the
client will not be able to restart file transfers and must
upload or download the complete file.

&H00010 ftpFeatureSITE The server supports site specific commands using the
SITE command. If this feature is not enabled, no site
specific commands will be sent to the server.

&H00020 ftpFeatureIDLE The server supports setting the idle timeout period
using the SITE IDLE command to specify the number
of seconds that the client may idle before the server
terminates the connection.

&H00040 ftpFeatureCHMOD The server supports modifying the permissions of a
specific file using the SITE CHMOD command. If this
feature is not enabled, the client will not be able to set
the permissions for a file.

&H00080 ftpFeatureAUTH The server supports explicit SSL sessions using the
AUTH command. If this feature is not enabled, the
client will only be able to connect to a secure server
that uses implicit SSL connections. Changing this
feature has no effect on standard, non-secure
connections.



 

&H00100 ftpFeaturePBSZ The server supports the PBSZ command which
specifies the buffer size used with secure data
connections. If this feature is disabled, it may prevent
the client from changing the protection level on the
data channel. Changing this feature has no effect on
standard, non-secure connections.

&H00200 ftpFeaturePROT The server supports the PROT command which
specifies the protection level for the data channel. If
this feature is disabled, the client will be unable to
change the protection level on the data channel.
Changing this feature has no effect on standard, non-
secure connections.

&H00400 ftpFeatureCCC The server supports the CCC command which returns
the command channel to a non-secure mode.
Changing this feature has no effect on standard, non-
secure connections.

&H00800 ftpFeatureHOST The server supports the HOST command which
enables a client to specify the hostname after
establishing a connection with a server that supports
virtual hosting.

&H01000 ftpFeatureMLST The server supports the MLST command which
returns status information for files. If this feature is
enabled, the MLST command will be used instead of
the STAT command.

&H02000 ftpFeatureMFMT The server supports the MFMT command which is
used to change the last modification time for a file. If
this command is supported, it is used instead of the
MDTM command to change the modification time for
a file.

&H04000 ftpFeatureXCRC The server supports the XCRC command which
returns the CRC-32 checksum for the contents of a
specified file. This command is used for file
verification.

&H08000 ftpFeatureMD5 The server supports the XMD5 command which
returns an MD5 hash for the contents of a specified
file. This command is used for file verification.

&H10000 ftpFeatureLANG The server supports the LANG command which sets
the language used for the current client session.
Command responses and file naming conventions will
use the specified language.

&H20000 ftpFeatureUTF8 The server supports the OPTS UTF-8 command which
specifies UTF-8 encoding when specifying filenames.
This feature is typically used in conjunction with
setting the default language for the client session.

&H40000 ftpFeatureXQUOTA The server supports the XQUOTA command which
returns quota information for the current client

 



session.

&H80000 ftpFeatureUTIME The server supports the UTIME command which is
used to change the last modification time for a
specified file.

When a client connection is first established, all features are enabled by default. However, as the
client issues commands to the server, if the server reports that the command is unrecognized that
feature will automatically be disabled in the client.

For example, the first time an application calls the GetFileSize method to determine the size of a
file, the control will try to use the SIZE command. If the server reports that the SIZE command is
not available, that feature will be disabled and the control will not use the command again during
the session unless it is explicitly re-enabled. This is designed to prevent the control from
repeatedly sending invalid commands to a server, which may result in the server aborting the
connection.

Setting the Features property enables those features which have been specified. More than one
feature may be enabled by combining the above constants using a bitwise Or operator. To test if a
particular feature has been enabled, use the bitwise And operator. For example, in Visual Basic this
can be done using the And and Or operators:

' If the SIZE command is enabled, disable it and make sure
' that the STAT command is enabled instead
If (FileTransfer1.Features And ftpFeatureSize) <> 0 Then
    FileTransfer1.Features = FileTransfer1.Features And Not 
ftpFeatureSize
    FileTransfer1.Features = FileTransfer1.Features Or ftpFeatureStat
End If

Because features are specific to the current session, once you disconnect from the server they are
reset. Even if you wish to reconnect to the same server, you must explicitly set the Features
property again to those features which you wish to enable. Setting the Features property when
the control is not connected to a server will cause the client session to only use those specified
features for the next connection that is established. Setting the Features property during an active
connection will change the features available for that session.

Data Type
Integer (Int32)

See Also
ActivePort Property, Connect Method, Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FileType Property  

 

Gets and sets the current file transfer type for FTP transfers.

Syntax
object.FileType [= filetype ]

Remarks
The FileType property specifies the type of file transfer between the local and server. The file
transfer types supported are:

Value Constant Description

0 fileTypeAuto The file type should be automatically determined based on the file
name extension. If the file extension is unknown, the file type should
be determined based on the contents of the file. The control has an
internal list of common text file extensions, and additional file
extensions can be registered using the AddFileType method.

1 fileTypeASCII The file being transferred is an ASCII text file. The characters the mark
the end of a line (for example, a carriage return/linefeed pair under
MS-DOS) are automatically converted to the format used by the target
operating system. The constant fileTypeText is an alias for this value.

2 fileTypeEBCDIC The file being transferred is a text file created using the EBCDIC
character set. If a file is being uploaded, ASCII characters are
automatically converted to EBCDIC. If the file is being downloaded,
EBCDIC characters are automatically converted to ASCII.

3 fileTypeImage The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data files
and executable programs. If the type of file cannot be automatically
determined, it will always be considered a binary file. If this file type is
specified when uploading or downloading text files, the native end-of-
line character sequences will be preserved. The constant
fileTypeBinary is an alias for this value.

Data Type
Integer (Int32)

See Also
AddFileType Method, GetFile Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Fingerprint Property  

 

Returns a string that uniquely identifies the server.

Syntax
object.Fingerprint

Remarks
The Fingerprint property returns a string that consists of a series of hexadecimal values separated
by colons. The value is unique to the server, and is an MD5 hash of the RSA host key. An
application can use this value to determine if a connection has been established with the server
previously by storing the server's host name, IP address and fingerprint in a file, registry key or a
database.

Note that this property only returns a meaningful value after a secure connection has been
established using the SSH protocol. For all other connections, it will return an empty string.

Data Type
String

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Determine if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property can be used to ensure that another blocking operation is not in progress at the time.

If this property returns False, this means there are no blocking operations on the current thread at
that time. If the property returns True, this tells you that you the control is already performing a
blocking operation.

Data Type
Boolean

See Also
LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of True if the control is connected with a
remote host, otherwise the property has a value of false.

Data Type
Boolean

See Also
Connect Method, Disconnect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeepAlive Property  

 

Enable monitoring of the command channel to keep the client session active.

Syntax
object.KeepAlive [= { True | False } ]

Remarks
Setting the KeepAlive property to a value of true specifies that a background worker thread will
be created to monitor the command channel for an FTP connection and periodically send NOOP
commands to the server if no commands have been sent recently. This can prevent the server
from terminating the client connection during idle periods where no commands are being issued.
However, it is important to keep in mind that many servers can be configured to also limit the total
amount of time a client can be connected to the server, as well as the amount of time permitted
between file transfers. If the server does not respond to the NOOP command, this option will be
automatically disabled for the remainder of the client session.

It is recommended that you only enable this option if the connection to the FTP server must be
maintained for a relatively long period of time where there will be periods of inactivity. Never
make the assumption that this option can prevent the server from terminating the connection.
Most sites, particularly public FTP servers accessed over the Internet, have fairly restrictive policies
designed to prevent clients from maintaining long-term connections. In most cases, if there are
periods of time where your application will not be transferring files, it is more appropriate to
disconnect from the server and then reconnect at a later point rather than attempting to hold the
connection open.

The default value for this property is false. This property is only meaningful for FTP connections.

Data Type
Boolean

See Also
Connect Method, GetFile Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error code.

Syntax
object.LastError [= lasterror ]

Remarks
The LastError property can be read to determine the last error that occurred for this instance of
the object. If a value is assigned to this property, it must either be zero (to clear the error) or a
valid error code.

Data Type
Integer (Int32)

See Also
OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error that occurred.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a string that contains a description of the last error that
occurred.

Data Type
String

See Also
LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalAddress Property  

 

Return the Internet address of the local host.

Syntax
object.LocalAddress

Remarks
The LocalAddress property returns the Internet address of the local host as a string in dotted
notation. If there is an active connection to a server, then the return value will depend on the
network interface that was used to establish the connection. If there isn't a connection, then the
default address for the local host will be returned.

Data Type
String

See Also
LocalName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Localize Property  

 

Determines if remote file dates are localized to the current timezone.

Syntax
object.Localize [= { True | False } ]

Remarks
Setting the Localize property controls how remote file date and time values are localized when
the GetFileTime method is called. If the property is set to True, then the file date and time will be
adjusted to the current timezone. If the property is set to False, which is the default value, then the
file date and time are returned as UTC (Coordinated Universal Time) values.

Data Type
Boolean

See Also
GetFileTime Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalName Property  

 

Return the Internet domain name of the local host.

Syntax
object.LocalName

Remarks
The LocalName property returns the Internet domain name for the local host. If there is an active
connection to a server, then the domain name will depend on the network interface that was used
to establish the connection. If there isn't a connection, then the default domain name for the local
host will be returned.

Data Type
String

See Also
LocalAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Options Property  

 

Gets and sets the options for the current object.

Syntax
object.Options [= options ]

Remarks
The Options property returns or modifies the options used for retrieving and sending files. The
value is represented as one or more bit flags which may be combined using the logical or
operator. The following options are defined:

Value Constant Description

1 fileOptionNoCache This instructs an HTTP server to not return a cached
copy of the resource. When connected to an HTTP 1.0
or earlier server, this directive may be ignored.

&H1000 fileOptionSecureImplicit This option specifies the client should immediately
negotiate for a secure session upon establishing a
connection with the server. This is the default method
for connecting to a secure HTTP server and may also be
used with FTP servers that accept secure connections on
port 990.

&H2000 fileOptionSecureExplicit This option specifies the client should use the AUTH
server command to tell an FTP server that it wishes to
explicitly negotiate a secure connection. This requires
that the server support the AUTH TLS or AUTH SSL
commands. Some servers may not require this option,
and some may require the option only if a port other
than 990 is specified. If this option is specified, the
Secure property will automatically be set to True.

&H4000 fileOptionSecureShell This option specifies the client should use the Secure
Shell (SSH) protocol to establish the connection. This
option will automatically be selected if the connection is
established using port 22, the default port for SSH, and
is only required if the server is configured to use a non-
standard port number.

&H8000 fileOptionSecureFallback This option specifies the client should permit the use of
less secure cipher suites for compatibility with legacy
servers. If this option is specified, the client will allow
connections using TLS 1.0 and cipher suites that use
RC4, MD5 and SHA1.

&H40000 fileOptionPreferIPv6 This option specifies the client should only attempt to
resolve a domain name to an IPv6 address. If the
domain name has both an IPv4 and IPv6 address
assigned to it, the default is to use the IPv4 address for
compatibility purposes. Enabling this option forces the
client to always use the IPv6 address if one is available. If

 



the domain name does not have an assigned IPv4
address, the IPv6 address will always be used regardless
if this option is specified.

&H100000 fileOptionHiResTimer This option specifies the elapsed time for data transfers
should be returned in milliseconds instead of seconds.
This will return more accurate transfer times for smaller
files being uploaded or downloaded using fast network
connections.

&H200000 fileOptionTLSReuse This option specifies that TLS session reuse should be
enabled for secure data connections. Some servers may
require this option be enabled, although it should only
used when required. This option is only valid for secure
FTP (FTPS) connections and is not used with SFTP or
secure HTTP connections. See the remarks below for
more information.

The Options property enables you to set the default options for subsequent connections using
the Connect method, and some options may only be available for certain types of connections.
For example, the fileOptionSecureExplicit option is only valid for secure FTP connections.

The fileOptionTLSReuse option is only supported on Windows 8.1 or Windows Server 2012 R2
and later platforms. This option is not compatible with servers built using OpenSSL 1.0.2 and
earlier versions which do not provide Extended Master Secret (EMS) support as outlined in
RFC7627. To avoid potential problems with server compatibility, you should not specify this option
for all FTP connections. It should only be used if specifically required by the server and your end-
users should have the ability to selectively enable or disable this option.

Data Type
Integer (Int32)

See Also
Secure Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Passive Property  

 

Enable or disable passive mode file transfers.

Syntax
object.Passive [= {True | False}]

Remarks
The Passive property enables or disables passive FTP file transfers between the local and server. In
passive transfer mode, the client is responsible for establishing the data connection between the
server and the local system. By default, the Passive property is set to True, with the client
establishing the data connection with the server.

The majority of FTP servers support passive mode transfers, and in most cases, passive mode is
required when attempting to upload or download files when the client is behind a firewall or a
router that performs Network Address Translation (NAT). However, if the Passive property is set to
True and the server does not support passive mode, an error will be returned the next time a file
transfer or directory listing is attempted. In this case, set the Passive property to False and attempt
the transfer again.

Note that setting this property has no effect when uploading or downloading a file using the
Hypertext Transfer Protocol (HTTP).

Data Type
Boolean

See Also
GetFile Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password used to authenticate the user. If a password is not
required by the server, this property is ignored. A server may allow a client to download files
without authentication, but it is usually required when uploading files.

The UserName and Password properties are used together to provide credentials to the server
that will authenticate the client session. If these properties not set when the connection is
established, the session will be anonymous.

Data Type
String

See Also
UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Priority Property  

 

Gets and sets a value which specifies the priority of file transfers.

Syntax
object.Priority [= priority ]

Remarks
The Priority property can be used to control the processor usage, memory and network
bandwidth allocated for file transfers. One of the following values may be specified:

Value Constant Description

0 filePriorityBackground This priority significantly reduces the memory,
processor and network resource utilization for the
transfer. It is typically used with worker threads running
in the background when the amount of time required
perform the transfer is not critical.

1 filePriorityLow This priority lowers the overall resource utilization for
the transfer and meters the bandwidth allocated for the
transfer. This priority will increase the average amount
of time required to complete a file transfer.

2 filePriorityNormal The default priority which balances resource utilization
and transfer speed. It is recommended that most
applications use this priority.

3 filePriorityHigh This priority increases the overall resource utilization for
the transfer, allocating more memory for internal
buffering. It can be used when it is important to transfer
the file quickly, and there are no other threads currently
performing file transfers at the time.

4 filePriorityCritical This priority can significantly increase processor,
memory and network utilization while attempting to
transfer the file as quickly as possible. If the file transfer
is being performed in the main UI thread, this priority
can cause the application to appear to become non-
responsive. No events will be generated during the
transfer.

The filePriorityNormal priority balances resource utilization and transfer speed while ensuring
that a single-threaded application remains responsive to the user. Lower priorities reduce the
overall resource utilization at the expense of transfer speed. For example, if you create a worker
thread to download a file in the background and want to ensure that it has a minimal impact on
the process, the filePriorityBackground value can be used.

Higher priority values increase the memory allocated for the transfers and increases processor
utilization for the transfer. The filePriorityCritical priority maximizes transfer speed at the expense
of system resources. It is not recommended that you increase the file transfer priority unless you
understand the implications of doing so and have thoroughly tested your application. If the file
transfer is being performed in the main UI thread, increasing the priority may interfere with the
normal processing of Windows messages and cause the application to appear to become non-

 



responsive. It is also important to note that when the priority is set to filePriorityCritical, normal
progress events will not be generated during the transfer.

Data Type
Boolean

See Also
GetData Method GetFile Method PutData Method PutFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProtocolVersion Property  

 

Gets and sets the current HTTP protocol version.

Syntax
object.ProtocolVersion [= protocolversion ]

Remarks
The ProtocolVersion property sets or returns the current HTTP version number. It is used to
determine how requests are submitted to the server, as well as what header fields are required.
The default value for this property is "1.0", and should be changed before any connection attempt
is made by the client.

Note that setting the property value to "0.9" tells the control to use the preliminary protocol
specification, circa 1994. This version of the protocol only supported a basic version of the GET
command, and did not have any provisions for features such as user authentication.

Data Type
String

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyPassword Property  

 

Gets and sets the proxy server password for the current user.

Syntax
object.ProxyPassword [= proxypassword ]

Remarks
The ProxyPassword property specifies the password used to authenticate the user to the proxy
server. If a password is not required by the server, this property is ignored.

Data Type
String

See Also
Password Property, ProxyPort Property, ProxyServer Property, ProxyType Property, ProxyUser
Property, ServerName Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyPort Property  

 

Gets and sets the port number for the proxy server.

Syntax
object.ProxyPort [= proxyport ]

Remarks
The ProxyPort property is used to set the port number that the control will use to establish a
connection with the proxy server. A value of zero specifies that the client will connect to the proxy
server using the standard FTP or HTTP service port.

Data Type
Integer (Int32)

See Also
Password Property, ProxyPassword Property, ProxyServer Property, ProxyType Property, ProxyUser
Property, ServerName Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyServer Property  

 

Gets and sets the host name of the proxy server.

Syntax
object.ProxyServer [= proxyserver ]

Remarks
The ProxyServer property should be set to the name of the proxy server that you want to
connect to. This property may be set to either a fully qualified domain name, or an IP address. This
property is only used if the ProxyType property is set to a non-zero value.

Data Type
String

See Also
Password Property, ProxyPassword Property, ProxyPort Property, ProxyType Property, ProxyUser
Property, ServerName Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyType Property  

 

Gets and sets the current proxy server type.

Syntax
object.ProxyType [= proxytype ]

Remarks
FTP and HTTP proxy servers have different characteristics, as described in the following table:

Value Constant Description

0 fileProxyNone No proxy server is being used. This is the default value.

1 fileProxyUser The client is not logged into the proxy server. The USER command is
sent in the format username@ftpsite followed by the password. This
is the format used with the Gauntlet proxy server.

2 fileProxyLogin The client is logged into the proxy server. The USER command is
then sent in the format username@ftpsite followed by the password.
This is the format used by the InterLock proxy server.

3 fileProxyOpen The client is not logged into the proxy server. The OPEN command
is sent specifying the host name, followed by the username and
password.

4 fileProxySite The client is logged into the server. The SITE command is sent,
specifying the host name, followed by the username and the
password.

255 fileProxyOther This special proxy type specifies that another, undefined proxy server
is being used. The client connects to the proxy host, but does not
attempt to authenticate the client. The application is responsible for
negotiating with the proxy server, typically using the Command
method to send specific command sequences.

1 fileProxyCern The client is connected to a proxy server; the resource path is sent as
a complete URL. This proxy type is only valid for HTTP servers.

2 fileProxyTunnel The client is connecting through a non-SSL CERN proxy server to a
secure web server and the resource is specified as a complete URL.
The Secure property should be set to true when using this proxy
type.

3 fileProxyWindows The client should use the default proxy configuration specified for
the system.

There are duplicated values for ProxyType because this property value is interpreted according to
the protocol that is being used.

Data Type
Integer (Int32)

See Also
Password Property, ProxyPassword Property, ProxyPort Property, ProxyServer Property, ProxyUser
Property, ServerName Property, UserName Property, Connect Method

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyUser Property  

 

Gets and sets the current proxy user name.

Syntax
object.ProxyUser [= proxyuser ]

Remarks
The ProxyUser property specifies the user that is logging in to the proxy server. If the proxy server
does not require the user to login, then this property is ignored.

Data Type
String

See Also
Password Property, ProxyPassword Property, ProxyPort Property, ProxyServer Property, ProxyType
Property, ServerName Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Resource Property  

 

Gets and sets the name of a resource on the server.

Syntax
object.Resource [= value ]

Remarks
The Resource property is used to specify the name of a resource on the server. The resource may
be a file, such as an HTML document or an image, or it may be a script used to process data
submitted by the client. Note that this property specifies the name of the resource only, not a
complete URL. To specify a complete URL, set the URL property and the control will automatically
set the Resource property to the correct value.

Data Type
String

See Also
URL Property, Connect Method, GetFile Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultCode Property  

 

Return the result code of the previous action.

Syntax
object.ResultCode

Remarks
The ResultCode read-only property returns the result code of the last action performed by the
client. Result codes are either Boolean (in which a zero value indicates an error and a non-zero
value indicates success), or are three-digit numeric values returned by the server. If the result
codes fall into the later category, they may be broken down into the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

Data Type
Integer (Int32)

See Also
ResultString Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultString Property  

 

Return a string describing the results of the previous action.

Syntax
object.ResultString

Remarks
The ResultString read-only property returns the result string from the last action taken by the
client. This string is generated by the server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition
that caused the error.

Data Type
String

See Also
ResultCode Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Specify if a connection to the server is secure.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application must set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may retrieve
messages from the server as with standard connections.

It is strongly recommended that any application that sets this property to True use error handling
to trap any errors that may occur. If the control is unable to initialize the security libraries, or
otherwise cannot create a secure session for the client, an error will be generated when this
property value is set.

If you are connecting to an FTP server, you should check to see if the server requires the use of
the AUTH command to establish an explicit, secure session. If so, you must set the Options
property to fileOptionSecureExplicit prior to calling the Connect method.

Data Type
Boolean

Example
The following example establishes a secure connection to a server and retrieves a file:

FileTransfer1.ServerType = fileServerHttp
FileTransfer1.ServerName = strHostName
FileTransfer1.ServerPort = 443
FileTransfer1.Secure = True

nError = FileTransfer1.Connect()
If nError > 0 Then
    MsgBox "Unable to connect to server " & strHostName, vbExclamation
    Exit Sub
End If

If FileTransfer1.CertificateStatus <> stCertificateValid Then
    lResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

    If lResult = vbNo Then
        FileTransfer1.Disconnect
        Exit Sub
    End If
End If

nError = FileTransfer1.GetFile(strLocalFile, strRemoteFile)
FileTransfer1.Disconnect

If nError > 0 Then
    MsgBox "Unable to retrieve file from server " & strHostName

 



    Exit Sub
End If

See Also
URL Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 stCipherNone No cipher has been selected. This is not a secure connection
with the server.

1 stCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

2 stCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

4 stCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 stCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 stCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 stCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 stCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 stCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 stCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Value Constant Description

1 stHashMD5 The MD5 algorithm was selected. This algorithm has been deprecated
and is no longer considered to be cryptographically secure.

2 stHashSHA1 The SHA-1 algorithm was selected. This algorithm has been deprecated
and is no longer considered to be cryptographically secure.

4 stHashSHA256 The SHA-256 algorithm has been selected.

8 stHashSHA384 The SHA-384 algorithm has been selected.

16 stHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 stKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 stKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 stKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 stKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 stKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange algorithm
was selected. This is a variant of the Diffie-Hellman
algorithm which uses elliptic curve cryptography. This
key exchange algorithm is only supported on Windows
XP SP3 and later versions of the operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

 



established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerDirectory Property  

 

Gets and sets the current working directory on the FTP server.

Syntax
object.ServerDirectory [= serverdirectory ]

Remarks
The ServerDirectory property specifies the name of a directory on the server. When a connection
is first established with the FTP server, this property is set to the current working directory. Setting
this property is equivalent to using the ChangeDirectory method.

Data Type
String

See Also
ChangeDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerName Property  

 

Gets and sets the host name for the FTP or HTTP server.

Syntax
object.ServerName [= servername ]

Remarks
If the ServerName property is not explicitly set, then an application must provide the host name
or address to the Connect method. Once the connection has been established, this property will
be updated with the appropriate value. If the server uses a non-standard port number, it can be
specified using the ServerPort property.

The IP address of a server may be used as the ServerName.

Data Type
String

See Also
ServerPort Property, ServerType Property, URL Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerPort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.ServerPort [= serverport ]

Remarks
If the ServerPort property is 0, then the port to be used will be inferred from the ServerType and
Secure properties.

Conversely, if the ServerPort is set to one of the standard FTP ports (21 or 990) or standard HTTP
ports (80 or 443), and ServerType is undefined, then the ServerType and Secure properties will
be inferred from the ServerPort.

The ServerPort property will be used by the Connect method if the ServerPort parameter for
Connect is missing.

Data Type
Integer (Int32)

See Also
Secure Property, ServerName Property, ServerType Property, URL Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerType Property  

 

Gets and sets the type of server the control is connecting to.

Syntax
object.ServerType [= servertype ]

Remarks
The ServerType property is used to specify the type of server the control will connect to. If this
property is not explicitly set in code, then the control will attempt to automatically determine the
correct server type based on the values of the ServerPort and Secure properties.

This property may return one of the following values:

Value Constant Description

0 fileServerUndefined Server type has not been set, and may be inferred from the
ServerPort and Secure properties at connection time.

1 fileServerFtp Connection to a FTP server is desired, or has been achieved.

2 fileServerHttp Connection to a HTTP server is desired, or has been achieved

Note that many properties and some methods are specific to a server type. Attempting to use
such properties or methods while connected to a server of a type that is not supported for that
operation will result in an error.

Data Type
Integer (Int32)

See Also
Secure Property, ServerName Property, ServerPort Property, URL Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 System Property  

 

Return information about the server.

Syntax
object.System [= system ]

Remarks
The System property contains information about the server operating system. Currently, this is
only available through FTP servers.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskCount Property  

 

Return the number of active background file transfers.

Syntax
object.TaskCount

Remarks
The TaskCount property returns the number of background file transfers that are currently in
progress. One common use for this property is to create a timer that periodically checks this value
when a series of background transfers are started. When the property returns a value of zero, that
indicates all of the background transfers have completed. This property can also be used to
enumerate the active background tasks in conjunction with the TaskList property.

Data Type
Integer (Int32)

See Also
TaskId Property, TaskList Property, AsyncGetFile Method, AsyncPutFile Method, TaskAbort
Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskId Property  

 

Return the task ID for the last background file transfer.

Syntax
object.TaskId

Remarks
The TaskId property returns the task ID associated with the last background task that started. The
value of this property is only meaningful after the AsyncGetFile or AsyncPutFile method is called
to initiate a background file transfer, and the value will change with each subsequent background
transfer that is performed. If this property returns a value of zero, that indicates that no
background tasks have been started for this instance of the control.

To enumerate the active background tasks, use the TaskCount property and the TaskList
property array.

Data Type
Integer (Int32)

See Also
TaskCount Property, TaskList Property, AsyncGetFile Method, AsyncPutFile Method, TaskAbort
Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskList Property  

 

Return the task ID for an active background file transfer.

Syntax
object.TaskList(Index)

Remarks
The TaskList property is a zero-based array that returns an ID associated with an active
background task. The current number of active tasks can be determined using the TaskCount
property. If the index value specified for this property array exceeds the number of active tasks, an
exception will be thrown.

As background tasks complete and additional tasks are started, the values returned by this
property array will change. The application should never make an assumption about the actual
task ID values returned or the order they are returned. While task IDs are assigned sequentially,
they should be considered opaque values that are unique to the process. When a background
task completes, its corresponding task ID is removed from the list of active tasks and this can
potentially change the task ID values associated with each index into the property array.

Data Type
Integer (Int32)

See Also
TaskCount Property, TaskId Property, AsyncGetFile Method, AsyncPutFile Method, TaskAbort
Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError [= { True | False } ]

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, methods will not raise an exception if an error occurs.
Instead, the application should check the return value of the method and report any errors based
on that value. It is the responsibility of the application to interpret the error code and take an
appropriate action. This is the default value for the property.

If the ThrowError property is set to True, any method which generates an error will cause the
component to raise an exception which must be handled or the application will terminate.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of this property. This property only controls how errors are handled when
calling methods.

Data Type
Boolean

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking network operation is aborted.

Syntax
object.Timeout [= timeout ]

Remarks
The Timeout property controls the amount of time that the component will wait for a network
operation to complete before aborting the operation and returning an error. The default value for
this property is 20 seconds. It may be required to increase this value if a slow or unreliable network
connection is being used.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable network function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the tracing of network function calls and is
primarily used as a debugging tool. When enabled, each function call is logged to a file, including
the function parameters, return value and error code if applicable. This facility can be enabled and
disabled at run time, and the trace log file can be specified by setting the TraceFile property. All
function calls that are being logged are appended to the trace file, if it exists. If no trace file exists
when tracing is enabled, the trace file is created.

The tracing facility is enabled or disabled for an entire process. This means that once tracing is
enabled for a given instance of the object, all of the function calls made by the process will be
logged.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Return or specify the network function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network
function tracing is enabled. If this property is set to an empty string, then a file named
CSTRACE.LOG is created in the system's temporary directory. If no temporary directory exists, then
the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since function
tracing is enabled per-process, the trace file is shared by all instances of the object being used.
Since trace files can grow very quickly, even with modest applications, it is recommended that you
delete the file when it is no longer needed.

The trace file has the following format:

VB6 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced; in this case, it is Visual Basic
6.0. The second column identifies if the trace record is reporting information, a warning, or an
error. What follows is the name of the function being called, the arguments passed to the function
and the function's return value. If a warning or error is reported, the error code is included in
brackets.

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a memory address, it is recorded as a hexadecimal value preceded with "0x". Those
functions which expect Internet addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFlags Property  

 

Gets and sets the current network function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
network function tracing is enabled. The following values may be used:

Value Constant Description

0 fileTraceInfo All function calls are written to the trace file. This is the default
value.

1 fileTraceError Only those function calls which fail are recorded in the trace file.

2 fileTraceWarning Only those function calls which fail, or return values which indicate a
warning, are recorded in the trace file.

4 fileTraceHexDump All function calls are written to the trace file, plus all the data that is
sent or received is logged, in both ASCII and hexadecimal format.

Since network function tracing is enabled per-process, the trace flags are shared by all instances of
the object being used.

Warnings are generated when a non-fatal error is returned by a network function. For example, if
data is being sent to the server and the error 10035 is returned, a warning is generated since the
application simply needs to attempt to write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferBytes Property  

 

Return the number of bytes transferred from the server.

Syntax
object.TransferBytes

Remarks
The TransferBytes property returns the number of bytes that have been copied to or from the
server. If this property is read while a transfer is ongoing, the property returns the number of bytes
that have been copied up to that point. If read after a transfer has completed, the total number of
bytes copied is returned.

If the value would exceed 2,147,483,647 bytes (the maximum value for a 32-bit integer) this
property will return -1 to indicate an overflow condition. If you are potentially transferring files
larger than 2 GiB in size, you should use the TransferBytesXL property instead, which returns the
number of bytes as a Double floating-point value.

This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytesXL Property, TransferRate Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferBytesXL Property  

 

Return the number of bytes transferred from the server.

Syntax
object.TransferBytesXL

Remarks
The TransferBytesXL property returns the number of bytes that have been copied to or from the
FTP server. This property returns the number of bytes as a Double floating-point value instead of
a Long integer, making it suitable for very large files that exceed 2 GiB in size.

If this property is read while a transfer is ongoing, the property returns the number of bytes that
have been copied up to that point. If read after a transfer has completed, the total number of
bytes copied is returned.

This property value is reset with every data transfer.

Data Type
Double

See Also
TransferRate Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferRate Property  

 

Return the current file transfer rate in bytes per second.

Syntax
object.TransferRate

Remarks
The TransferRate property returns the rate at which the file data is being transferred, expressed in
bytes per second. If this property is read while a transfer is ongoing, it returns the current average
transfer rate.

If this property is read after the transfer has completed, it returns the final transfer rate which is
calculated as the total number of bytes transferred divided by the number of seconds to complete
the transfer. This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytes Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferTime Property  

 

Return the number of seconds elapsed during a data transfer.

Syntax
object.TransferTime

Remarks
The TransferTime property returns the number of seconds that have elapsed since the last data
connection was opened on the server. If the property is read while a transfer is ongoing, it returns
the current elapsed time since the file transfer started.

If the property is read after the transfer has completed, it returns the total number of seconds it
took to transfer the file. This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytes Property, TransferRate Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 URL Property  

 

Gets and sets the current URL used to access a resource on the server.

Syntax
object.URL [= url ]

Remarks
The URL property returns the current Uniform Resource Locator string which is used by the control to
access a resource on the server. URLs have a specific format which provides information about the
server, port, resource, as well as optional information such as a username and password for
authentication:

[ftp|ftps|sftp]://[username:
[password]@]hostname[:port]/[path/...]filename[;type=id]

[http|https]://[username:
[password]@]hostname[:port]/resource[?parameters...]

The first part of the URL is the scheme and in this case will always be "ftp", "ftps", "sftp", "http" or
"https" depending on the protocol that is required. If a username and password is required for
authentication, then this will be included in the URL before the name of the server. Next, there is the
name of the server to connect to, optionally followed by a port number. If no port number is given,
then the default port for the protocol will be used. This is followed by the resource, which is usually a
path to a file or script on the server. Parameters to the resource may also be specified, which are
typically used as arguments to a script that is executed on the server.

Here are some common examples of URLs used to access resources on an file server:

ftp://www.example.com/pub/financial/jan2023.xlsx 
In this example, the server is www.example.com, the path is "pub/financial" and the file name
is "jan2023.xlsx". The default port will be used to access the file, and no username and
password is provided for authentication so this file must be publicly available to anonymous
users.

ftps://executive:secret@www.example.com/corporate/projections/sales2024.xlsx

In this example, the server is www.example.com and, the path is "corporate/projections" and
the file name is "sales2024.xlsx". Because the protocol is ftps, a secure connection on port 990
will be established. The user name "executive" and password "secret" will be used to
authenticate the session.

http://www.example.com/products/index.html 
In this example, the server is www.example.com and the resource is /products/index.html.
The default port will be used to access the resource, and no username and password is
provided for authentication.

https://www.example.com/order/confirm.asp 
In this example, the server is www.example.com and the resource is the script
/order/confirm.asp. Because the protocol is https, a secure connection on port 443 will be
established.

When setting the URL property, the control will parse the string and automatically update the
ServerName, ServerPort, UserName, Password and Resource properties according to the values
specified in the URL. This enables an application to simply provide the URL and then call the Connect
method to establish the connection.

Note that if this property is assigned a value which cannot be parsed, the control will throw an error

 



that indicates that the property value is invalid. In a language like Visual Basic it is important that you
implement an error handler, particularly if you are assigning a value to the property based on user
input. If the user enters an invalid URL and there is no error handler, it could result in an exception
which terminates the application.

Data Type
String

Example
' Setup error handling since the control will throw an error
' if an invalid URL is specified

On Error Resume Next: Err.Clear
FileTransfer1.URL = Text1.Text

' Check the Err object to see if an error has occurred, and
' if so, let the user know that the URL is invalid

If Err.Number <> 0 Then
    MsgBox "The specified URL is invalid", vbExclamation
    Text1.SetFocus
    Exit Sub
End If

' Reset error handling and connect to the server using the
' default property values that were updated when the URL
' property was set (ie: ServerName, ServerPort, Resource, etc.)

On Error GoTo 0
nError = FileTransfer1.Connect()

If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

' Download the resource and store it in the specified file
nError = FileTransfer1.GetFile(strLocalFile)

See Also
Password Property, Resource Property, ServerName Property, ServerPort Property, ServerType
Property, UserName Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= username ]

Remarks
The UserName property specifies the name used to authenticate the user. If the property is not
explicitly set, then an application may provide the user name to the Connect method. Once the
connection has been established, this property will be updated with the appropriate value.

The UserName and Password properties are typically required for HTTP uploads and FTP
connections. They are typically not required for HTTP downloads.

If the UserName and Password properties are undefined for an FTP connection attempt, then
anonymous FTP will be used.

Data Type
String

See Also
Password Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Control Methods  

 

Method Description

AddFileType Associate a file name extension with a specific file type

AsyncGetFile Download a file from the server to the local system in the background

AsyncPutFile Upload a file from the local system to the server in the background

Cancel Cancels the current blocking network operation

ChangeDirectory Changes current directory on remote FTP server

CloseDirectory Close the directory that was opened for reading on the FTP server

Command Specify a command to execute on a FTP server

Connect Establish a connection with the specified FTP or HTTP server

DeleteFile Remove a file on the server

Disconnect Disconnect from the FTP or HTTP server

GetData Transfers data from a file on the server and store it in a local buffer

GetDirectory Return the current working directory on the server

GetFile Download a file from the server to the local system

GetFileList Return an unparsed list of files in the specified directory

GetFilePermissions Return the access permissions for a file on the server

GetFileSize Returns the size of the specified file on the server

GetFileStatus Return status information about a specific file on an FTP server

GetFileTime Returns the modification date and time for specified file on the server

GetFileType Return the default file type for the current session

GetMultipleFiles Download multiple files from the server to the local system

GetText Download the contents of a text file to a string buffer

Initialize Initialize the component and load the networking library

MakeDirectory Create a new directory on the remote FTP host

OpenDirectory Open the specified directory on an FTP server for reading

PostFile Upload a file from the local system to a script on a web server

PutData Transfers data from a local buffer and stores it in a file on the server

PutFile Upload a file from the local system to the server

PutMultipleFiles Upload multiple files from the local system to the remote system

PutText Create a text file on the server from the contents of a string buffer

ReadDirectory Read a directory entry from an FTP server

RemoveDirectory Remove a directory on the remote FTP server

 



RenameFile Change the name of an existing file on the FTP server

Reset Reset the internal state of the control

SetFilePermissions Change the access permissions for a file on the server

SetFileTime Changes the modification date and time for a file on the server

TaskAbort Abort the specified asynchronous task

TaskDone Determine if an asynchronous task has completed

TaskResume Resume execution of an asynchronous task

TaskSuspend Suspend execution of an asynchronous task

TaskWait Wait for an asynchronous task to complete

Uninitialize Uninitialize the component and unload the networking library

VerifyFile Compare the contents of a local file against a file stored on the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AddFileType Method  

 

Associate a file name extension with a specific file type.

Syntax
object.AddFileType( FileExtension, FileType )

Parameters
FileExtension

A string that specifies the file name extension.

FileType

Specifies the type of file associated with the file extension. This parameter can be one of the
following values:

Value Constant Description

1 fileTypeText The file being transferred is an ASCII text file. The characters the mark
the end of a line (for example, a carriage return/linefeed pair under
MS-DOS) are automatically converted to the format used by the target
operating system.

2 fileTypeEBCDIC The file being transferred is a text file created using the EBCDIC
character set. If a file is being uploaded, ASCII characters are
automatically converted to EBCDIC. If the file is being downloaded,
EBCDIC characters are automatically converted to ASCII.

3 fileTypeBinary The file is transferred without any modification. This is the default file
transfer type, and should be used when transferring binary (non-text)
data.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AddFileType method is used to associate specific file types with file name extensions. The
control has an internal list of standard text file extensions which it automatically recognizes. This
method can be used to extend or modify that list for the client session.

See Also
Features Property, FileType Property, GetFileStatus Method, GetFileTime Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AsyncGetFile Method  

 

Download a file from the server to the local system in the background.

Syntax
object.AsyncGetFile( LocalFile, RemoteFile, [Offset] )

Parameters
LocalFile

A string that specifies the file on the local system that will be created, overwritten or appended
to. The file pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies the file on the server that will be transferred to the local system. The file
pathing and name conventions must be that of the server.

Offset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local
system. It is similar to the GetFile method, however it retrieves the file using a background worker
thread and does not block the current working thread. This enables the application to continue to
perform other operations while the file is being downloaded from the server. This method requires
that you explicitly establish a connection using the Connect method. All background tasks will
duplicate the active connection and use it establish a secondary connection with the server to
perform the file transfer. If you wish to perform multiple asynchronous file transfers from different
servers, you must create an instance of the control for each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background
task has begun the process of connecting to the server and performing the file transfer. As the file
is downloaded, the control will periodically invoke the OnTaskRun event handler. When the
transfer has completed, the OnTaskEnd event will be fired. It is not required that you implement
handlers for these events.

To determine when a transfer has completed without implementing any event handlers,
periodically call the TaskDone method. If you wish to block the current thread and wait for the
transfer to complete, call the TaskWait method. To stop a background file transfer that is in
progress, call the TaskAbort method. This will signal the background worker thread to cancel the
transfer and terminate the session.

This method can be called multiple times to download more than one file in the background;
however, most servers limit the number of simultaneous connections that can originate from a
single IP address. The application should not make any assumptions about the sequence in which
background transfers are performed or the order in which they may complete.

Example

 



' Establish a connection to the server
nError = FileTransfer1.Connect(strHostName, 21, strUserName, strPassword)
    
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If
    
' Download a file in the background
nError = FileTransfer1.AsyncGetFile(strLocalFile, strRemoteFile)
    
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
TaskId Property, AsyncPutFile Method, TaskAbort Method, TaskDone Method, TaskWait Method,
OnTaskBegin Event, OnTaskEnd Event, OnTaskRun Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AsyncPutFile Method  

 

Upload a file from the local system to the server in the background.

Syntax
object.AsyncPutFile( LocalFile, RemoteFile, [Options], [Offset] )

Parameters
LocalFile

A string that specifies the file on the local system that will be transferred to the server. The file
pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies the file on the server that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the server.

Offset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is
similar to the PutFile method, however it retrieves the file using a background worker thread and
does not block the current working thread. This enables the application to continue to perform
other operations while the file is being uploaded to the server. This method requires that you
explicitly establish a connection using the Connect method. All background tasks will duplicate the
active connection and use it establish a secondary connection with the server to perform the file
transfer. If you wish to perform multiple asynchronous file transfers from different servers, you
must create an instance of the control for each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background
task has begun the process of connecting to the server and performing the file transfer. As the file
is uploaded, the control will periodically invoke the OnTaskRun event handler. When the transfer
has completed, the OnTaskEnd event will be fired. It is not required that you implement handlers
for these events.

To determine when a transfer has completed without implementing any event handlers,
periodically call the TaskDone method. If you wish to block the current thread and wait for the
transfer to complete, call the TaskWait method. To stop a background file transfer that is in
progress, call the TaskAbort method. This will signal the background worker thread to cancel the
transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background;
however, most servers limit the number of simultaneous connections that can originate from a
single IP address. The application should not make any assumptions about the sequence in which
background transfers are performed or the order in which they may complete.

Example

 



' Establish a connection to the server
nError = FileTransfer1.Connect(strHostName, 21, strUserName, strPassword)
    
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If
    
' Upload a file in the background
nError = FileTransfer1.AsyncPutFile(strLocalFile, strRemoteFile)
    
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
TaskId Property, AsyncGetFile Method, TaskAbort Method, TaskDone Method, TaskWait Method,
OnTaskBegin Event, OnTaskEnd Event, OnTaskRun Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

Example
Private Sub cmdCancel_Click()
    Dim nError As Long
    
    nError = FileTransfer1.Cancel()
    If nError > 0 Then
        MsgBox "Cancel error: " & nError
    End If
End Sub

See Also
Disconnect Method, Reset Method, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ChangeDirectory Method  

 

Changes current directory on remote FTP server.

Syntax
object.ChangeDirectory( Path )

Parameters
Path

A string value which specifies the directory on the server.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ChangeDirectory method changes the current working directory on the server. This method
updates the ServerDirectory property to reflect the new path.

Example
Private Sub cmdChgDir_Click()
    Dim nError As Long
    
    nError = FileTransfer1.ChangeDirectory(Trim(txtServerDirectory.Text))
    If nError > 0 Then
        MsgBox "ChangeDirectory error: " & nError
    End If 
    txtServerDirectory.Text = FileTransfer1.ServerDirectory
End Sub

See Also
ServerDirectory Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CloseDirectory Method  

 

Close the directory that was opened for reading on the FTP server.

Syntax
object.CloseDirectory

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CloseDirectory method closes the directory that was opened on the server using the
OpenDirectory method. This method must be called once all of the files have been read from the
server, otherwise an error will be returned on all subsequent attempts to transfer files or read
other directories.

See Also
OpenDirectory Method, ReadDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Command Method  

 

Specify a command to execute on a FTP server.

Syntax
object.Command( Command )

Parameters
Command

A string value which specifies the command that will be executed on the server.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
Invoking the Command method causes the specified command to be executed on the server.
This allows the application to take advantage of extended commands that are not directly
available through the control. The ResultCode property should be checked to determine if the
command was successful or not.

Example
Dim nError As Long

' Report current status of the server
nError = FileTransfer1.Command("STAT")

If nError > 0 Then
    MsgBox "Command error: " & nError
Else
    MsgBox FileTransfer1.ResultCode & ": " & FileTransfer1.ResultString
End If

See Also
ResultCode Property, ResultString Property, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

Establish a connection with the specified FTP or HTTP server.

Syntax
object.Connect( [ServerName] , [ServerPort], [UserName], [Password] , [Timeout], [Options] )

Parameters
ServerName

An optional string value which specifies the host name or IP address of the server.

ServerPort

An optional integer value which specifies the server port number.

UserName

An optional string value which specifies the username.

Password

An optional string value which specifies the password.

Timeout

An optional integer value which specifies the timeout period in seconds.

Options

An optional integer value which specifies one or more options.

Value Constant Description

1 fileOptionNoCache This instructs an HTTP server to not return a
cached copy of the resource. When connected
to an HTTP 1.0 or earlier server, this directive
may be ignored.

&H1000 fileOptionSecureImplicit This option specifies the client should
immediately negotiate for a secure session
upon establishing a connection with the server.
This is the default method for connecting to a
secure HTTP server and may also be used with
FTP servers that accept secure connections on
port 990.

&H2000 fileOptionSecureExplicit This option specifies the client should use the
AUTH server command to tell an FTP server
that it wishes to explicitly negotiate a secure
connection. This requires that the server
support the AUTH TLS or AUTH SSL
commands. Some servers may not require this
option, and some may require the option only if
a port other than 990 is specified. If this option
is specified, the Secure property will
automatically be set to True.

&H4000 fileOptionSecureShell This option specifies the client should use the
Secure Shell (SSH) protocol to establish the



 

connection. This option will automatically be
selected if the connection is established using
port 22, the default port for SSH, and is only
required if the server is configured to use a
non-standard port number.

&H8000 fileOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option is
specified, the client will allow connections using
TLS 1.0 and cipher suites that use RC4, MD5
and SHA1.

&H40000 fileOptionPreferIPv6 This option specifies the client should only
attempt to resolve a domain name to an IPv6
address. If the domain name has both an IPv4
and IPv6 address assigned to it, the default is to
use the IPv4 address for compatibility purposes.
Enabling this option forces the client to always
use the IPv6 address if one is available. If the
domain name does not have an assigned IPv4
address, the IPv6 address will always be used
regardless if this option is specified.

&H100000 fileOptionHiResTimer This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more
accurate transfer times for smaller files being
uploaded or downloaded using fast network
connections.

&H200000 fileOptionTLSReuse This option specifies that TLS session reuse
should be enabled for secure data connections.
Some servers may require this option be
enabled, although it should only used when
required. This option is only valid for secure FTP
(FTPS) connections and is not used with SFTP or
secure HTTP connections. See the remarks
below for more information.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Connect method is used to establish a connection with the specified server. This is the first
method that must be called prior to the application transferring files or issuing FTP commands. If
the Connect method is called when a connection already exists, the current connection will be
closed.

It is permissible to specify a complete URL as the first argument to the method and the connection
will be established with the server using specified protocol. Passing a complete URL to the
Connect method has the same effect as setting the URL property and then calling the method

 



with no arguments.

Additional properties that affect the operation of the Connect method are:

KeepAlive Property (HTTP)
ProtocolVersion Property (HTTP)
ProxyPassword Property
ProxyPort Property
ProxyServer Property
ProxyType Property
ProxyUser Property
Secure Property
ServerType Property
URL Property

If the ServerType property has the value fileServerUndefined, then the Connect method will try
to infer the server type from the value of the ServerPort property. If the server type cannot be
automatically determined, an error will be returned and the server type must be explicitly
specified.

The fileOptionTLSReuse option is only supported on Windows 8.1 or Windows Server 2012 R2
and later platforms. This option is not compatible with servers built using OpenSSL 1.0.2 and
earlier versions which do not provide Extended Master Secret (EMS) support as outlined in
RFC7627. To avoid potential problems with server compatibility, you should not specify this option
for all FTP connections. It should only be used if specifically required by the FTP server and your
end-users should have the ability to selectively enable or disable this option.

This method will return a value of zero if the action was successful. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Example
Example 1:

nError = FileTransfer1.Connect("www.example.com", 80)
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

Example 2:

nError = FileTransfer1.Connect("http://wwww.example.com")
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
KeepAlive Property, Options Property, Secure Property, ServerType Property, ServerName
Property, ServerPort Property, UserName Property, Password Property, Timeout Property, URL
Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteFile Method  

 

Remove a file on the server.

Syntax
object.DeleteFile( Filename )

Parameters
Filename

A string value which specifies the name of the file to be deleted.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The DeleteFile method deletes an existing file from the server. You must have the appropriate
permission to delete the file, or an error will occur.

Example
Private Sub cmdRmFile_Click()
    Dim nError As Long
    
    nError = FileTransfer1.DeleteFile(Trim(txtRemoteFile.Text))
    If nError > 0 Then
        MsgBox "Delete File error: " & nError
    End If
End Sub

See Also
RenameFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Disconnect from the FTP or HTTP server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Disconnect method causes the network connection to be closed.

Example
Private Sub cmdDisconnect_Click()
    Dim nError As Long
    
    nError = FileTransfer1.Disconnect()
    If nError > 0 Then
        MsgBox "Disconnect error: " & nError
    End If
End Sub

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetData Method  

 

Transfers data from a file on the server and store it in a local buffer.

Syntax
object.GetData( RemoteFile, Buffer, [Length], [Reserved] )

Parameters
RemoteFile

A string that specifies the file on the server that will be transferred to the local system. The file
pathing and name conventions must be that of the server.

Buffer

This parameter specifies the local buffer that the data will be stored in. If the variable is a String
type, then the data will be returned as a string of characters. This is the most appropriate data
type to use if the file on the server is a text file. If the remote file contains binary data, it is
recommended that a Byte array variable be specified as the argument to this method.

Length

An optional integer argument that will contain the number of bytes copied into the buffer when
the method returns.

Reserved

An argument reserved for future expansion. This argument should always be omitted or
specified as a numeric value of zero.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetData method transfers data from a file on the server to the local system, storing it in the
specified buffer . This method will cause the current thread to block until the file transfer
completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event
will fire periodically, enabling the application to update any user interface objects such as a
progress bar.

See Also
Priority Property, GetFile Method, PutData Method, PutFile Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetDirectory Method  

 

Return the current working directory on the server.

Syntax
object.GetDirectory( RemotePath )

Parameters
RemotePath

A string variable which will contain the current working directory when the method returns. This
parameter must be passed by reference.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetDirectory method sends the PWD command to the server to get the current working
directory.

See Also
ChangeDirectory, CloseDirectory Method, OpenDirectory Method, ReadDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFile Method  

 

Copy a file from the server to the local system.

Syntax
object.GetFile(LocalFile, [RemoteFile], [Offset])

Parameters
LocalFile

A string that specifies the name of the file that will be created on the local system. The file
pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies specifies the name of the file on the server. You must have permission to
open this file for reading. This is an optional argument; if it is omitted, the value of the
Resource property will be used. It is also permissible to specify a complete URL and the file will
be downloaded from that location.

Offset

An optional integer argument that specifies the byte offset where the file transfer will begin. This
argument is only valid for FTP servers, and is used to resume interrupted transfers.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The GetFile method copies an existing file from the remote system to the local system. If the local
file already exists, it is overwritten.

Not all servers support the ability to restart a file transfer. Notably, a Windows IIS server may
return an error if a non-zero restart offset is specified. It is not recommended that you restart text
file transfers since differences between end-of-line characters can result in byte offset differences
between the local and server system.

If the AppendFile property is true, then the contents of RemoteFile will be appended to the
contents of LocalFile, if it exists. Otherwise, the contents of RemoteFile will overwrite the contents
of LocalFile.

Example
nError = FileTransfer1.GetFile(strLocalFile, strRemoteFile)
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
AppendFile Property, URL Property, GetData Method, GetMultipleFiles Method, PostFile Method,
PutData Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFileList Method  

 

Return an unparsed list of files in the specified directory.

Syntax
object.GetFileList( RemotePath, Buffer, [Length], [Options] )

Parameters
RemotePath

A string which specifies the name of a directory on the server. The list of files and subdirectories
in that directory will be returned to the client. To obtain a list of files in the current working
directory on the server, use an empty string.

Buffer

A buffer that the data will be stored in. It is recommend that a String variable type is used,
although it is also possible to provide a Byte array as this argument, in which case the file listing
will converted to ANSI characters and fill the array. Any other variable type will cause this
method to throw an exception.

Length

A numeric value which specifies the maximum number of characters to read. If the argument is
omitted, then the maximum size of the buffer will be calculated automatically. In most cases, it is
not necessary to provide this argument.

Options

A numeric value which specifies how the list of files should be returned by the server. It may be
one of the following values:

Value Constant Description

0 ftpListDefault This option specifies the server should return a complete file
list, providing all of the information available about that file.
This typically includes the date and time the file was last
modified, the size of the file and access rights. This option is
the default, and will be used if the argument is omitted from
the method call.

1 ftpListNameOnly This option specifies the server should only return a list of file
names, with no additional information. This option may be
used if the server returns the file listing in a format that is not
recognized by the control.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFileList method returns a list of files in the specified directory, copying the data to a string
buffer. Unlike the ReadDirectory method that parses a directory listing, this method returns the
unparsed file list data. The actual format of the data that is returned depends on the operating
system and how the server implements file listings. For example, UNIX servers typically return the
output from the /bin/ls command.

 



Some servers may not support file listings for any directory other than the current working
directory. If an error is returned when specifying a directory name, try changing the current
working directory using the ChangeDirectory method and then call this method again, an empty
string as the RemotePath parameter.

This method can be particularly useful when the client is connected to a server that returns file
listings in a format that is not recognized by the control. The application can retrieve the unparsed
file listing from the server and parse the contents. Note that if you specify the ftpListNameOnly
option, the data will only contain a list of file names and there will be no way for the application to
know if they represent a regular file or a subdirectory.

This method is supported for both FTP and SFTP (SSH) connections, however the format of the
data may differ depending on which protocol is used. Most UNIX based FTP servers will not list
files and subdirectories that begin with a period, however most SFTP servers will return a list of all
files, even those that begin with a period.

This method will cause the current thread to block until the file listing completes, a timeout occurs
or the operation is canceled.

See Also
ChangeDirectory Method, OpenDirectory Method, ReadDirectory Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFilePermissions Method  

 

Return the access permissions for a file on the server.

Syntax
object.GetFilePermissions( RemoteFile, FilePerms )

Parameters
RemoteFile

A string that specifies the name of the file that the access permissions are to be returned for.
The filename cannot contain any wildcard characters.

FilePerms

A numeric variable which is set to the file permissions when the method returns. This parameter
must be passed by reference. The file permissions are represented as bit flags, and may be one
or more of the following values:

Value Constant Description

1 ftpPermWorldExecute All users have permission to execute the contents of
the file. If this permission is set for a directory, this may
also grant all users the right to open that directory and
search for files in that directory.

2 ftpPermWorldWrite All users have permission to open the file for writing.
This permission grants any user the right to replace the
file. If this permission is set for a directory, this grants
any user the right to create and delete files.

4 ftpPermWorldRead All users have permission to open the file for reading.
This permission grants any user the right to download
the file to the local system.

8 ftpPermGroupExecute Users in the specified group have permission to
execute the contents of the file. If this permission is set
for a directory, this may also grant the user the right to
open that directory and search for files in that
directory.

16 ftpPermGroupWrite Users in the specified group have permission to open
the file for writing. On some platforms, this may also
imply permission to delete the file. If the current user is
in the same group as the file owner, this grants the
user the right to replace the file. If this permission is set
for a directory, this grants the user the right to create
and delete files.

32 ftpPermGroupRead Users in the specified group have permission to open
the file for reading. If the current user is in the same
group as the file owner, this grants the user the right
to download the file.

64 ftpPermOwnerExecute The owner has permission to execute the contents of
the file. The file is typically either a binary executable,

 



script or batch file. If this permission is set for a
directory, this may also grant the user the right to
open that directory and search for files in that
directory.

128 ftpPermOwnerWrite The owner has permission to open the file for writing.
If the current user is the owner of the file, this grants
the user the right to replace the file. If this permission
is set for a directory, this grants the user the right to
create and delete files.

256 ftpPermOwnerRead The owner has permission to open the file for reading.
If the current user is the owner of the file, this grants
the user the right to download the file to the local
system.

4096 ftpPermSymbolicLink The file is a symbolic link to another file. Symbolic links
are special types of files found on UNIX based systems
which are similar to Windows shortcuts.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFilePermissions method returns information about the access permissions for a specific
file on the server. This method uses the STAT command to retrieve information about the
specified file. If the server does not support the use of this command, an error will be returned.
You can use the Features property to determine what features are available and/or enabled on
the server.

Note that on some systems, the STAT command will not return information on files that contain
spaces or tabs in the filename. In this case, the method will fail.

Example
The following example demonstrates how to retrieve the access permissions for a file and then test
to see if the file can be read by the owner of that file:

nError = FileTransfer1.GetFilePermissions(strFileName, nFilePerms)
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

If (nFilePerms And ftpPermOwnerRead) <> 0 Then
    MsgBox "The file " & strFileName & " can be read by the owner"
End If

See Also
Features Property, SetFilePermissions Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFileSize Method  

 

Returns the size of the specified file on the server.

Syntax
object.GetFileSize( RemoteFile, FileSize )

Parameters
RemoteFile

A string that specifies the name of the file on the server. The filename cannot contain any
wildcard characters and must follow the naming conventions of the operating system the server
is hosted on.

FileSize

A numeric variable which will be set to the size of the file on the server. Note that if the variable
is not large enough to contain the file size, an overflow error will occur. This parameter must be
passed by reference.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFileSize method uses the SIZE command to determine the length of the specified file. Not
all servers implement this command, in which case the method will fail. You can use the Features
property to determine what features are available and/or enabled on the server.

Note that if the file on the server is a text file, it is possible that the value returned by this method
will not match the size of the file when it is downloaded to the local system. This is because
different operating systems use different sequences of characters to mark the end of a line of text,
and when a file is transferred in text mode, the end of line character sequence is automatically
converted to a carriage return-linefeed, which is the convention used by the Windows platform.

Example
The following example demonstrates how to retrieve the size a file on the server:

Dim nFileSize As Long

nError = FileTransfer1.GetFileSize(strFileName, nFileSize)
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

MsgBox "The size of " & strFileName & " is " & nFileSize " bytes"

See Also
Features Property, GetFileStatus Method, GetFileTime Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFileStatus Method  

Return status information about a specific file on an FTP server.

Syntax
object.GetFileStatus( FileName, [FileLength], [FileDate], [FileOwner], [FileGroup], [FilePerms],
[IsDirectory] )

Parameters
FileName

A string value that specifies the name of the file that status information will be returned for.

FileLength

An integer value that will specify the size of the file on the server when the method returns. This
parameter must be passed by reference. Note that if this is a text file, the file size may be
different on the server than it is on the local system. This is because different operating systems
use different conventions that indicate the end of a line and/or the end of the file. On Windows
platforms, directories have a file size of zero bytes.

FileDate

A string value that will specify the date and time the file was created or last modified on the
server. This parameter must be passed by reference. The date format that is returned is
expressed in local time (in other words, the timezone of the server is not taken into account)
and depends on both the local host settings via the Control Panel and the format of the date
and time information returned by the server

FileOwner

A string value that will specify the owner of the file on the server. This parameter must be
passed by reference. On some platforms, this information may not be available for security
reasons if an anonymous login session was specified

FileGroup

A string value that will specify the group that the file owner belongs to. This parameter must be
passed by reference. On some platforms, this information may not be available for security
reasons if an anonymous login session was specified

FilePerms

An integer value that will specify the permissions assigned to the file. This parameter must be
passed by reference. This value is actually a combination of bits that specify the individual
permissions for the file owner, group and world (all other users). For those familiar with UNIX,
the file permissions are the same as those used by the chmod command. The permissions are
as follows:

Value Constant Description

1 ftpPermWorldExecute All users have permission to execute the contents of
the file. If this permission is set for a directory, this may
also grant all users the right to open that directory and
search for files in that directory.

2 ftpPermWorldWrite All users have permission to open the file for writing.
This permission grants any user the right to replace the
file. If this permission is set for a directory, this grants



 

any user the right to create and delete files.

4 ftpPermWorldRead All users have permission to open the file for reading.
This permission grants any user the right to download
the file to the local system.

8 ftpPermGroupExecute Users in the specified group have permission to
execute the contents of the file. If this permission is set
for a directory, this may also grant the user the right to
open that directory and search for files in that
directory.

16 ftpPermGroupWrite Users in the specified group have permission to open
the file for writing. On some platforms, this may also
imply permission to delete the file. If the current user is
in the same group as the file owner, this grants the
user the right to replace the file. If this permission is set
for a directory, this grants the user the right to create
and delete files.

32 ftpPermGroupRead Users in the specified group have permission to open
the file for reading. If the current user is in the same
group as the file owner, this grants the user the right
to download the file.

64 ftpPermOwnerExecute The owner has permission to execute the contents of
the file. The file is typically either a binary executable,
script or batch file. If this permission is set for a
directory, this may also grant the user the right to
open that directory and search for files in that
directory.

128 ftpPermOwnerWrite The owner has permission to open the file for writing.
If the current user is the owner of the file, this grants
the user the right to replace the file. If this permission
is set for a directory, this grants the user the right to
create and delete files.

256 ftpPermOwnerRead The owner has permission to open the file for reading.
If the current user is the owner of the file, this grants
the user the right to download the file to the local
system.

4096 ftpPermSymbolicLink The file is a symbolic link to another file. Symbolic links
are special types of files found on UNIX based systems
which are similar to Windows shortcuts.

IsDirectory

A boolean value that will specify if the file is a directory or a regular file. This parameter must be
passed by reference.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

 



Remarks
The GetFileStatus method returns information about the specified file. The filename must be
specified using the server file naming conventions, and cannot include wildcard characters. The
primary difference between using this method and using the OpenDirectory and ReadDirectory
methods to obtain file information is that the file status information is returned on the command
channel. This method cannot be used while a file transfer is in progress or while a file listing is
being returned by the server. All output arguments are optional.

Note that this method requires that the server return file status information in response to the
STAT command. Some servers, for example on VMS platforms, do not provide this information.
On some systems, the STAT command will not return information on files that contain spaces or
tabs (whitespace) in the filename. In this case, the method will set the specified arguments to
empty strings and zero values.

See Also
CloseDirectory Method, OpenDirectory Method, ReadDirectory Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFileTime Method  

 

Returns the modification date and time for specified file on the server.

Syntax
object.GetFileTime( RemoteFile, FileDate )

Parameters
RemoteFile

A string that specifies the name of the file on the server. The filename cannot contain any
wildcard characters and must follow the naming conventions of the operating system the server
is hosted on.

FileDate

A variable that will be set to the date and time that the file was last modified. The variable's data
type may either be a Variant, String or Date.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFileTime method uses the MTDM command to determine the modification time for the
file. If the server does not support this command, the function will attempt to use the STAT
command to determine the file modification time. You can use the Features property to
determine what features are available and/or enabled on the server.

The Localize property will determine if the returned file time is adjusted for the local timezone.

Example
The following example demonstrates how to retrieve the size a file on the server:

Dim dateFileTime As Date

nError = FileTransfer1.GetFileTime(strFileName, dateFileTime)
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

MsgBox strFileName & " was modified on " & dateFileTime

See Also
Features Property, Localize Property, GetFileStatus Method, GetFileSize Method, SetFileTime
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFileType Method  

 

Returns the file type for a file on the local system.

Syntax
object.GetFileType( FileName, ScanFile )

Parameters
FileName

A string which specifies the name of a file on the local system. The file does not need to exist if
the ScanFile parameter is False. If an existing file is specified, it cannot be the name of a device
or a directory, otherwise the method will fail.

ScanFile

An optional Boolean value which specifies if the contents of the file should be scanned. A value
of False indicates that only the file extension should be used to determine the file type, while a
value of True specifies the contents of the file should be examined if the file type cannot be
determined based on its extension. If this parameter is omitted, the default value is False.

Return Value
An integer value of zero or greater which identifies the file type using the same values as the
FileType property. If the method fails, it will return -1 indicating an error condition. The value of
the LastError property can be used to determine the cause of the failure.

Remarks
This method is used to determine the file transfer type to be used when uploading or
downloading files. This method is used internally when fileTypeAuto is specified as the default file
type. The return value may be one of the following:

Value Constant Description

1 fileTypeASCII The file is a text file using the ASCII character set. For those
servers which mark the end of a line with characters other
than a carriage return and linefeed, it will be converted to the
native client format. This is the file type used for directory
listings. The constant fileTypeText is an alias for this value.

2 fileTypeEBCDIC The file is a text file using the EBCDIC character set. Local files
will be converted to EBCDIC when sent to the server. Remote
files will be converted to the native ASCII character set when
retrieved from the server. Not all servers support this file type.
It is recommended that you only specify this type if you know
that it is required by the server to transfer data correctly.

3 fileTypeImage The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most
data files and executable programs. If the type of file cannot
be automatically determined, it will always be considered a
binary file. If this file type is specified when uploading or
downloading text files, the native end-of-line character
sequences will be preserved. The constant fileTypeBinary is
an alias for this value.

 



If the file extension or contents are not recognized, the default file transfer type for the client
session will be returned. This will usually be fileTypeImage, however this can be changed by
calling the AddFileType method. The file type for the current client session can be explicitly set
using the FileType property.

If the ScanFile parameter is True, the local file will be opened in a shared reading mode and up to
4,096 bytes will be examined to determine if it contains binary data. If the file is currently locked or
has been opened exclusively by another process, the file type associated with the file extension will
be returned instead. Text files which contain UTF-16 text will always return a file type of
fileTypeImage because they can contain non-ASCII characters and/or embedded null characters.

If the ScanFile parameter is True and the file type cannot be determined based on the file name
extension, the file specified by FileName must exist and be a regular file. If the file does not exist,
an error will be returned and the last error code will be set to stErrorFileNotFound. If the
ScanFile parameter is False, no errors will be returned if the file does not exist, the function will
only check the file name extension to determine the file type. When downloading a file, the
ScanFile parameter should normally be zero because the local file may not exist yet.

See Also
FileType Property, AddFileType Method, GetFile Method, PutFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetMultipleFiles Method  

 

Copy multiple files from the server to the local system via FTP.

Syntax
object.GetMultipleFiles( LocalDir, RemoteDir, FileMask )

Parameters
LocalDir

A string value that specifies the name of the directory on the local system where the files will be
stored. If a file by the same name already exists in the directory, it will be overwritten.

RemoteDir

A string value that specifies the name of the directory on the server where the files will be
copied from. You must have permission to read the contents of the directory.

FileMask

A string value that specifies which files will be copied from the server. Typically this is a wildcard
pattern, such as "*.exe", which would specify all executable programs on a Windows system.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The GetMultipleFiles method copies multiple files from the server to the local system. If the local
file already exists, it is overwritten.

Example
nError = FileTransfer1.GetMultipleFiles(strLocalDir, strServerDirectory, 
"*.wav")

See Also
GetFile Method, PutMultipleFiles Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetText Method  

 

Download a text file from the server and store it in string.

Syntax
object.GetText( RemoteFile, Buffer )

Parameters
RemoteFile

A string that specifies the name of a file on the server that will be downloaded. The file pathing
and name conventions must be that of the server.

Buffer

This parameter is passed by reference and specifies the string buffer which will contain the text
returned by the server. This parameter must be a String or Variant type which will reference a
string when the method returns. This method will not accept a byte array as an argument.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetText method is used to download the contents of a text file and store it in a String
variable. This method should only be used with text files which are known to be textual. For
example, it is safe to use this method when downloading an HTML or XML document, but should
not be used to download executable or compressed files (such as Microsoft Word documents or
Excel spreadsheets) . Always use the GetData method if you wish to retrieve binary data and store
it in a byte array.

The text document returned by the server is automatically converted to Unicode using the code
page specified by the CodePage property. Most text files today will use either ASCII or UTF-8
encoding, however some documents may contain text specific to the locale they were created in.
Because ASCII is a subset of UTF-8, it is safe to specify UTF-8 encoding for ASCII text documents. If
you specify an incorrect code page, this can result in a conversion error.

This method will always attempt to normalize the end-of-line character sequence to use a
carriage-return and linefeed (CRLF) pair. This can potentially result in a discrepancy between the
size of a text file on the server and the actual length of the string buffer.

This method will always use an ASCII file transfer mode, regardless of the value of the FileType
property. If the remote file contains binary data, the string buffer may be empty or contain
unprintable characters as the result of attempting to convert the data to Unicode.

See Also
CodePage Property, FileType Property, GetData Method, PutData Method, PutText Method,
OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the component and load the networking library.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set fileTransfer = CreateObject("SocketTools.FileTransfer.11")

nError = fileTransfer.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MakeDirectory Method  

 

Create a new directory on the remote FTP host.

Syntax
object.MakeDirectory( NewDirectory )

Parameters
NewDirectory

A string value that specifies the name of the directory to create on the server.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The MakeDirectory method creates a new directory on the server. The user must have the
appropriate permissions to create a directory or an error will occur.

Example
Private Sub cmdMakeDir_Click()
    Dim nError As Long
    
    nError = FileTransfer1.MakeDirectory(Trim(txtNewDirectory.Text))
    If nError > 0 Then
        MsgBox "MakeDirectory error: " & nError
    End If
End Sub

See Also
ChangeDirectory Method, RemoveDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OpenDirectory Method  

 

Open the specified directory on an FTP server.

Syntax
object.OpenDirectory( [DirName], [ParseList] )

Parameters
DirName

An optional string value that specifies the directory on the server. If it is an empty string, it
designates the current remote directory. It may also be a file mask that includes wildcards if
supported by the server. If this argument is omitted, then the current working directory will be
opened.

ParseList

An optional boolean value that determines if the directory listing will be parsed as it is read. The
default value is true. If the ParseList parameter is false, then each entire un-parsed line of a
directory listing will be returned in the FileName parameter of the ReadDirectory method, and
all other output parameters will be empty.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The OpenDirectory method opens the specified directory on the server so that the list of files in
that directory may be read.

Note that you must call the CloseDirectory method after the list of files has been returned by the
server. Failure to do so will result in an error when you attempt to transfer a file because the data
channel to the server has been left open. For this same reason, you cannot call the GetFile or
PutFile methods while reading the contents of a directory on the server.

Example
' Request a parsed directory listing.
nError = FileTransfer1.OpenDirectory(strDirName)

' Request a parsed directory listing of the current directory
nError = FileTransfer1.OpenDirectory()

' Request an un-parsed listing of files in the current directory
nError = FileTransfer1.OpenDirectory("", False)

' Request a parsed listing of files in the current directory
' with file extension .exe
nError = FileTransfer1.OpenDirectory("*.exe")

See Also
CloseDirectory Method, ReadDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PostFile Method  

 

Post the contents of the specified file to a script executed on the server.

Syntax
object.PostFile( LocalFile, [Resource], [FieldName], [Options] )

Parameters
LocalFile

A string that specifies the file on the local system that will be transferred to the server. The file
pathing and name conventions must be that of the local host.

Resource

A string that specifies the resource that the data will be posted to on the server. Typically this is
the name of an executable script. This is an optional argument; if it is omitted, the value of the
Resource property will be used. It is also permissible to specify a complete URL and the file will
be uploaded to that location.

FieldName

An optional string argument that specifies the form field name that the script expects. If this
argument is omitted or is an empty string, a default field name of "File1" is used. This is an
optional argument; if it is omitted, the value of the Resource property will be used. It is also
permissible to specify a complete URL and the file will be downloaded from that location.

Options

An optional numeric value which specifies one or more options. This argument is reserved for
future use and the application should either omit this argument, or specify a value of zero.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PostFile method posts the contents of a file to a script that is executed on the server. This
method will cause the current thread to block until the file transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

This method is similar to the PutFile method in that it can be used to upload the contents of a
local file to a server. However, instead of using the PUT command, the POST command is used to
send the file data to a script that is executed on the server. This method has the advantage of not
requiring any special configuration settings on the server, however it does require that the script
be able to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the
action that specifies the script that will accept the file data and process it. For example, the HTML
code could look like this:

<form action="/cgi-bin/upload.cgi" method="post" enctype="multipart/form-
data">
<input type="file" name="datafile" size="20">
<input type="submit">
</form>

 



In this example, the script /cgi-bin/upload.cgi is responsible for processing the file data that is
posted by the client, and the form field name "datafile" is used. The user can select a file, and
when the Submit button is clicked, the file data is posted to the script. To simulate this using the
PostFile method, the LocalFile argument should be set to the name of the local file that will be
posted to the server. The Resource argument should be the name of the script, in this case "/cgi-
bin/upload.cgi". The FieldName argument should be specified as the string "datafile" to match the
name of the field used by the form.

Note that the PostFile function always submits the file contents as multipart/form-data with the
content type set to application/octet-stream. The script that accepts the posted data must be able
to parse the multipart header block and correctly process 8-bit data. If the script assumes that the
data will be posted using a specific encoding type such as base64, then the file data may not be
accepted or may be corrupted by the script.

See Also
Resource Property, URL Property, GetFile Method, PutFile Method, PutMultipleFiles Method,
OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutData Method  

 

Transfers data from a local buffer and stores it in a file on the server.

Syntax
object.PutData( RemoteFile, Buffer, [Length], [Reserved] )

Parameters
RemoteFile

A string that specifies the file on the server that will contain the data being transferred. If the file
already exists, it will be overwritten. The file pathing and name conventions must be that of the
server.

Buffer

This parameter specifies the local buffer that the data will be copied from. If the variable is a
String type, then the data will be written as a string of characters. This is the most appropriate
data type to use if the file on the server is a text file. If the remote file should contain binary
data, it is recommended that a Byte array variable be specified as the argument to this method.

Length

An optional integer argument that specifies the amount of data to be copied from the buffer. If
this argument is omitted, the entire contents of the buffer is transferred to the server.

Reserved

An argument reserved for future expansion. This argument should always be omitted or
specified as a numeric value of zero.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PutData method transfers data from a local buffer and stores it on a file on the server. This
method will cause the current thread to block until the file transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

See Also
Priority Property, GetData Method, GetFile Method, PutFile Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutFile Method  

 

Copy a file from the local system to the server.

Syntax
object.PutFile(LocalFile, [RemoteFile], [Offset])

Parameters
LocalFile

A string that specifies the name of the file that will be uploaded from the local system. The file
pathing and name conventions must be that of the local host. You must have permission to
open this file for reading.

RemoteFile

A string that specifies specifies the name of the file to create on the server. You must have
permission to create or overwrite the file. This is an optional argument; if it is omitted, the value
of the Resource property will be used. It is also permissible to specify a complete URL and the
file will be uploaded to that location.

Offset

An optional integer argument that specifies the byte offset where the file transfer will begin. This
argument is only valid for FTP servers, and is used to resume interrupted transfers.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The PutFile method copies an existing file from the local system to the server. If the local file
already exists, it is overwritten.

Note that not all servers honor the request to restart a file transfer. Notably, a Windows IIS server
will return an error if a non-zero restart offset is specified. It is not recommended that you restart
text file transfers since differences between end-of-line characters can result in byte offset
differences between the local and server system.

If the AppendFile property is True, then the file contents will be appended to the file specified on
the server, if it exists. Otherwise, the remote file will be overwritten.

Note that PutFile for HTTP requires that the server support the PUT command. This typically
requires that you specify version 1.1 of the protocol and authenticate the client session with a user
name and password.

A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Example
nError = FileTransfer1.PutFile(strLocalFile, strRemoteFile)
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also

 



AppendFile Property, URL Property, GetData Method, GetFile Method, PostFile Method, PutData
Method, PutMultipleFiles Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutMultipleFiles Method  

 

Copy multiple files from the local system to the server via FTP.

Syntax
object.PutMultipleFiles( LocalDir, RemoteDir, [FileMask] )

Parameters
LocalDir

A string value that specifies the name of the directory on the local system where the files are
stored. You must have permission to read the contents of the directory.

RemoteDir

A string value that specifies the name of the directory on the server where the files will be
copied to. If a file by the same name already exists in this directory, it will be overwritten.

FileMask

An optional string value specifies which files will be copied from the server. Typically this is a
wildcard pattern, such as "*.exe", which would specify all executable programs on a Windows
system.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The PutMultipleFiles method copies multiple files from the local system to the server. If the
remote file already exists, it is overwritten.

Example
nError = FileTransfer1.PutMultipleFiles(strLocalDir, strServerDirectory, 
"*.wav")

See Also
PostFile Method, PutFile Method, GetMultipleFiles Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutText Method  

 

Upload the contents of a string buffer and store it in a text file on the server.

Syntax
object.PutText( RemoteFile, Buffer )

Parameters
RemoteFile

A string that specifies the name of a file on the server that will be downloaded. The file pathing
and name conventions must be that of the server.

Buffer

A string which contains the text to be stored on the server. This method will not accept a Byte
array as an argument.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PutText method is used to upload the contents of a string and store it as a text file on the
server. Although a String variable may contain binary data, this method should only be used with
strings which contain printable text. Always use the PutData method if you wish to upload binary
data, using a Byte array instead of a String variable.

The text uploaded to the server is automatically converted from Unicode using the code page
specified by the CodePage property. By default, text will be automatically converted to use UTF-8
encoding, however you can change this if you prefer to store the file using a different localized
encoding. In most cases it is recommended you use UTF-8 to ensure the broadest compatibility
with other applications.

This method will always attempt to normalize the end-of-line character sequence to match what is
used on the server. This can potentially result in a discrepancy between the size of a text file on
the server and the actual length of the string buffer. For example, Windows uses a carriage return
and linefeed pair (CRLF) to indicate the end of a line of text. If you are storing the text in a file on a
UNIX system, it will be changed to use only a linefeed (LF) to indicate the end of a line.

This method will always use an ASCII file transfer mode, regardless of the value of the FileType
property. If the string buffer contains binary data, the resulting file may be empty or contain
unprintable characters as the result of the Unicode text conversion.

See Also
CodePage Property, FileType Property, GetData Method, GetText Method, PutData Method,
OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadDirectory Method  

Read a directory entry from an FTP server.

Syntax
object.ReadDirectory(FileName, [FileLength], [FileDate], [FileOwner], [FileGroup], [FilePerms],
[IsDirectory])

Parameters
FileName

A string value that specifies the name of the file that status information will be returned for.

FileLength

An integer value that will specify the size of the file on the server when the method returns. This
parameter must be passed by reference. Note that if this is a text file, the file size may be
different on the server than it is on the local system. This is because different operating systems
use different conventions that indicate the end of a line and/or the end of the file. On Windows
platforms, directories have a file size of zero bytes.

FileDate

A string value that will specify the date and time the file was created or last modified on the
server. This parameter must be passed by reference. The date format that is returned is
expressed in local time (in other words, the timezone of the server is not taken into account)
and depends on both the local host settings via the Control Panel and the format of the date
and time information returned by the server

FileOwner

A string value that will specify the owner of the file on the server. This parameter must be
passed by reference. On some platforms, this information may not be available for security
reasons if an anonymous login session was specified

FileGroup

A string value that will specify the group that the file owner belongs to. This parameter must be
passed by reference. On some platforms, this information may not be available for security
reasons if an anonymous login session was specified

FilePerms

An integer value that will specify the permissions assigned to the file. This parameter must be
passed by reference. This value is actually a combination of bits that specify the individual
permissions for the file owner, group and world (all other users). For those familiar with UNIX,
the file permissions are the same as those used by the chmod command. The permissions are
as follows:

Value Constant Description

1 ftpPermWorldExecute All users have permission to execute the contents of
the file. If this permission is set for a directory, this may
also grant all users the right to open that directory and
search for files in that directory.

2 ftpPermWorldWrite All users have permission to open the file for writing.
This permission grants any user the right to replace the
file. If this permission is set for a directory, this grants



any user the right to create and delete files.

4 ftpPermWorldRead All users have permission to open the file for reading.
This permission grants any user the right to download
the file to the local system.

8 ftpPermGroupExecute Users in the specified group have permission to
execute the contents of the file. If this permission is set
for a directory, this may also grant the user the right to
open that directory and search for files in that
directory.

16 ftpPermGroupWrite Users in the specified group have permission to open
the file for writing. On some platforms, this may also
imply permission to delete the file. If the current user is
in the same group as the file owner, this grants the
user the right to replace the file. If this permission is set
for a directory, this grants the user the right to create
and delete files.

32 ftpPermGroupRead Users in the specified group have permission to open
the file for reading. If the current user is in the same
group as the file owner, this grants the user the right
to download the file.

64 ftpPermOwnerExecute The owner has permission to execute the contents of
the file. The file is typically either a binary executable,
script or batch file. If this permission is set for a
directory, this may also grant the user the right to
open that directory and search for files in that
directory.

128 ftpPermOwnerWrite The owner has permission to open the file for writing.
If the current user is the owner of the file, this grants
the user the right to replace the file. If this permission
is set for a directory, this grants the user the right to
create and delete files.

256 ftpPermOwnerRead The owner has permission to open the file for reading.
If the current user is the owner of the file, this grants
the user the right to download the file to the local
system.

4096 ftpPermSymbolicLink The file is a symbolic link to another file. Symbolic links
are special types of files found on UNIX based systems
which are similar to Windows shortcuts.

IsDirectory

A boolean value that will specify if the file is a directory or a regular file. This parameter must be
passed by reference.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.



 

Remarks
The ReadDirectory method reads the next entry from the directory listing. This method can only
be used after the OpenDirectory method has been called to begin the transfer of file information
to the client. All parameters of ReadDirectory are output parameters. The first parameter,
FileName, is required, and all other are optional. If the ParseList parameter of the OpenDirectory
method was missing, or was explicitly set to True, then the output parameters that are present will
have the meanings described below. If the ParseList parameter of the OpenDirectory method
was False, then the FileName parameter will contain all file information, exactly as provided by the
server, without interpretation.

For the proprietary Sterling directory formats, the "status code" is returned in the FilePerms
argument. This value is a combination of bits. Bits 0-25 correspond to letters of the alphabet, most
of which have distinct meanings in the Sterling formats.

Letter code Bit position Hexadecimal value

A 0 1h

B 1 2h

C 2 4h

n-th letter of alphabet n-1 2 to the (n-1) power

Z 25 2000000h

For the proprietary Sterling directory formats, bits 26-31 represent the transfer protocol associated
with the file:

Protocol Bit position Hexadecimal value Constant

TCP 26 4000000h ftpSterlingStatusTcp

FTP 27 8000000h ftpSterlingStatusFtp

BSC 28 10000000h ftpSterlingStatusBsc

ASC 29 20000000h ftpSterlingStatusAsc

FTS 30 40000000h ftpSterlingStatusFts

other 31 80000000h ftpSterlingStatusOther

Certain error codes should be treated as normal terminations of a directory listing. If the
OpenDirectory method was called with the ParseList parameter specified as True, or if the
ParseList parameter is omitted, then ReadDirectory will return the error fileErrorEndOfDirectory
when the end of the directory listing is reached. If the OpenDirectory method was called with the
ParseList parameter specified as False, then the ReadDirectory method will return the error
fileErrorEndOfData when there are no more filenames to return.

You must call the CloseDirectory method after the list of files has been returned by the server.
Failure to do so will result in an error when you attempt to transfer a file because the data channel
to the server has been left open. For this same reason, you cannot call the GetFile or PutFile
methods while reading the contents of a directory on the server.

Example
Example 1:

    '
    ' Display full file listing for specified directory

 



    '
    nError = FileTransfer1.OpenDirectory(strDirName)
    If nError > 0 Then
        MsgBox "OpenDirectory error: " & nError
        Exit Sub
    End If
    
    Do
        nError = FileTransfer1.ReadDirectory(strFileName, _
                                              dwFileLength, strFileDate, _
                                              strFileOwner, strFileGroup, _
                                              dwFilePerms, bIsDirectory)
        If nError > 0 Then
            If nError <> fileErrorEndOfDirectory Then
                MsgBox "ReadDirectory error: " & nError
            End If
            Exit Do
        End If

        '
        ' See GetFileStatus help topic for FilePerms function
        '
        strPerms = FilePerms(dwFilePerms, bIsDirectory)
        txtFileStatus.Text = txtFileStatus.Text & _
            strFileName & " " & dwFileLength & " " & strFileDate & " " & _
            strFileOwner & " " & strFileGroup & " " & strPerms & vbCrLf
    Loop
    FileTransfer1.CloseDirectory

Example 2:

    '
    ' Display file names and dates for specified directory
    '
    nError = FileTransfer1.OpenDirectory(strDirName)
    If nError > 0 Then
        MsgBox "OpenDirectory error: " & nError
        Exit Sub
    End If
    
    Do
        nError = FileTransfer1.ReadDirectory(strFileName, , strFileDate)
        If nError > 0 Then
            If nError <> fileErrorEndOfDirectory Then
                MsgBox "ReadDirectory error: " & nError
            End If
            Exit Do
        End If
        txtFileStatus.Text = txtFileStatus.Text & _
            strFileName & " " &  strFileDate & vbCrLf
    Loop
    FileTransfer1.CloseDirectory

Example 3:

    '
    ' Display unparsed file listing for specified directory
    '
    nError = FileTransfer1.OpenDirectory(strDirName, False)
    If nError > 0 Then
        MsgBox "OpenDirectory error: " & nError



        Exit Sub
    End If
    
    Do
        nError = FileTransfer1.ReadDirectory(strFileDescription)
        If nError > 0 Then
            If nError <> fileErrorEndOfData Then
                MsgBox "ReadDirectory error: " & nError
            End If
            Exit Do
        End If
        txtFileStatus.Text = txtFileStatus.Text & strFileDescription & vbCrLf
    Loop
    FileTransfer1.CloseDirectory

See Also
GetFileStatus Method, CloseDirectory Method, OpenDirectory Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemoveDirectory Method  

 

Remove a directory on the remote FTP server.

Syntax
object.RemoveDirectory( DirectoryName )

Parameters
DirectoryName

A string value which specifies the name of the directory to remove on the server.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The RemoveDirectory method removes an existing directory on the server. You must have the
appropriate permission to remove the directory, or an error will occur. Note that most systems will
not allow you to remove a directory if it contains files.

Example
Private Sub cmdRmdir_Click()
    Dim nError As Long
    
    nError = FileTransfer1.RemoveDirectory(Trim(txtDirectory.Text))
    If nError > 0 Then
        MsgBox "RemoveDirectory error: " & nError
    End If
End Sub

See Also
ChangeDirectory Method, MakeDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RenameFile Method  

 

Change the name of an existing file on the FTP server.

Syntax
object.RenameFile(OldFileName, NewFileName)

Parameters
OldFileName

A string value that specifies the current name of the file on the server.

NewFileName

A string value that specifies the name that the existing file will be changed to.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The RenameFile method renames an existing file on the server to the new name. You must have
permission to change the file name or an error will occur.

Example
nError = FileTransfer1.RenameFile(strOldFileName, strNewFileName)
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString
End If

See Also
DeleteFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

The Reset and Uninitialize methods will abort all active background transfers and wait for those
tasks to complete before returning to the caller. It is recommended that your application explicitly
wait for background transfers to complete or abort them using this method before allowing the
program to terminate. This will ensure that your program can perform any necessary cleanup
operations. If there are active background tasks running at the time that the control instance is
destroyed, it can force the control to stop those worker threads immediately without waiting for
them to terminate gracefully.

See Also
Cancel Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SetFilePermissions Method  

Change the access permissions for a file on the server.

Syntax
object.SetFilePermissions( RemoteFile, FilePerms )

Parameters
RemoteFile

A string that specifies the name of the file that the access permissions are to be returned for.
The filename cannot contain any wildcard characters.

FilePerms

A numeric value which specifies the new permissions for the file. The file permissions are
represented as bit flags, and may be one or more of the following values:

Value Constant Description

1 ftpPermWorldExecute All users have permission to execute the contents of
the file. If this permission is set for a directory, this may
also grant all users the right to open that directory and
search for files in that directory.

2 ftpPermWorldWrite All users have permission to open the file for writing.
This permission grants any user the right to replace the
file. If this permission is set for a directory, this grants
any user the right to create and delete files.

4 ftpPermWorldRead All users have permission to open the file for reading.
This permission grants any user the right to download
the file to the local system.

8 ftpPermGroupExecute Users in the specified group have permission to
execute the contents of the file. If this permission is set
for a directory, this may also grant the user the right to
open that directory and search for files in that
directory.

16 ftpPermGroupWrite Users in the specified group have permission to open
the file for writing. On some platforms, this may also
imply permission to delete the file. If the current user is
in the same group as the file owner, this grants the
user the right to replace the file. If this permission is set
for a directory, this grants the user the right to create
and delete files.

32 ftpPermGroupRead Users in the specified group have permission to open
the file for reading. If the current user is in the same
group as the file owner, this grants the user the right
to download the file.

64 ftpPermOwnerExecute The owner has permission to execute the contents of
the file. The file is typically either a binary executable,
script or batch file. If this permission is set for a



 
directory, this may also grant the user the right to
open that directory and search for files in that
directory.

128 ftpPermOwnerWrite The owner has permission to open the file for writing.
If the current user is the owner of the file, this grants
the user the right to replace the file. If this permission
is set for a directory, this grants the user the right to
create and delete files.

256 ftpPermOwnerRead The owner has permission to open the file for reading.
If the current user is the owner of the file, this grants
the user the right to download the file to the local
system.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The SetFilePermissions method uses the SITE CHMOD command to set the permissions for the
file. This command is typically only supported on servers that are hosted on UNIX based systems.
If the command is not supported, an error will be returned. You can use the Features property to
determine what features are available and/or enabled on the server.

Users who are familiar with the UNIX operating system will recognize the chmod command used
to change the file permissions. However, it should be noted that the numeric value used as an
argument to the command is in octal, not decimal. For example, issuing the command chmod
644 filename.txt on a UNIX based system will make the file readable and writable by the owner,
and readable by other users in the owner's group as well as all other users. The value 644 is an
octal value, which is equivalent to the decimal value 420. If you were to mistakenly specify 644 as
the value for the Permissions argument, rather than the decimal value of 420, the permissions on
the file would be incorrect. It is strongly recommended that you use the pre-defined constants to
prevent this sort of error.

Visual Basic allows you to specify an integer value in octal by prefixing it with &O. For example,
&O644 could be used as the file permissions value. C and C++ consider any integer with a
preceding 0 to be an octal number, so 0644 would be a valid permissions value. Consult the
technical reference for your programming language if you are unsure if it supports expressing
integer constants in octal.

Example
The following example demonstrates how to change the permissions so that only the owner can
read and write to the file:

nFilePerms = ftpPermOwnerRead Or ftpPermOwnerWrite
nError = FileTransfer1.SetFilePermissions(strFileName, nFilePerms)
If nError > 0 Then
    MsgBox FileTransfer1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
Features Property, GetFilePermissions Method

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SetFileTime Method  

 

Changes the modification date and time for a file on the server.

Syntax
object.SetFileTime( RemoteFile, FileTime )

Parameters
RemoteFile

A string that specifies the name of the file on the server. The filename cannot contain any
wildcard characters and must follow the naming conventions of the operating system the server
is hosted on.

FileTime

A string that specifies the new date and time for the file. The date must be in a format
recognized by the local system, otherwise an error will occur. The date and time value must also
be specified in UTC (Coordinated Universal Time), not local time.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The SetFileTime method changes the modification date and time for the specified file on the
server. When connected to an FTP server, this method uses the MTDM command to change the
modification time for the file. If the server does not support this command, the method will return
an error. Note that some servers only support the MDTM command to return, but not change, the
file modification time.

See Also
Localize Property, GetFileStatus Method, GetFileSize Method, GetFileTime Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskAbort Method  

 

Abort the specified asynchronous task.

Syntax
object.TaskAbort ( [TaskId], [Milliseconds] )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Milliseconds

An optional integer value that specifies the number of milliseconds to wait for the background
task to abort.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The TaskAbort method signals the background worker thread associated with the task ID to abort
the current operation and terminate as soon as possible. If the TaskId parameter is omitted, this
method will abort all active background file transfers, otherwise it will only abort the specified task.
If the Milliseconds parameter is omitted or has a value of zero, the method returns immediately
after the background thread has been signaled. If the Milliseconds parameter is non-zero, the
method will wait that amount of time for the background thread to terminate.

The Reset and Uninitialize methods will abort all active background transfers and wait for those
tasks to complete before returning to the caller. It is recommended that your application explicitly
wait for background transfers to complete or abort them using this method before allowing the
program to terminate. This will ensure that your program can perform any necessary cleanup
operations. If there are active background tasks running at the time that the control instance is
destroyed, it can force the control to stop those worker threads immediately without waiting for
them to terminate gracefully.

See Also
TaskCount Property, TaskList Property, TaskDone Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskDone Method  

 

Determine if an asynchronous task has completed.

Syntax
object.TaskDone ( [TaskId] )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
A Boolean value that specifies if the task has completed. A return value of True specifies that the
background task has completed. A return value of False specifies that the background task is
active.

Remarks
The TaskDone method is used to determine if the specified asynchronous task has completed. If
the TaskId parameter is omitted, the method will check the status of the last background task that
was started.

If you use this method to poll the status of a background task from within the main UI thread, you
must ensure that Windows messages are processed so that the application remains responsive to
the end-user. To check if a background transfer has completed, it is recommended that you use a
timer to periodically call this method rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the TaskWait method will provide the last error
code associated with the task. Note that if this method returns True, it is guaranteed that calling
TaskWait using the same task ID will return the error code to the caller immediately without
causing the application to block.

See Also
TaskCount Property, TaskId Property, TaskList Property, TaskAbort Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskResume Method  

 

Resume execution of an asynchronous task.

Syntax
object.TaskResume ( TaskId )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The TaskResume method resumes execution of the background worker thread that was
previously suspended using the TaskSuspend method. If the TaskId parameter is omitted, the
method will resume execution of the last background task that was started.

See Also
TaskId Property, TaskSuspend Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskSuspend Method  

 

Suspend execution of an asynchronous task.

Syntax
object.TaskSuspend ( TaskId )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The TaskSuspend method will suspend execution of the background worker thread associated
with the task. If the TaskId parameter is omitted, the method will suspend the last background task
that was started.

Once the task has been suspended, it will no longer be scheduled for execution, however the
client session will remain active and the task may be resumed using the TaskResume method.
Note that if a task is suspended for a long period of time, the background operation may fail
because it has exceeded the timeout period imposed by the server.

See Also
TaskId Property, TaskResume Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskWait Method  

 

Wait for an asynchronous task to complete.

Syntax
object.TaskWait ( [ TaskId ], [ Milliseconds ], [ TimeElapsed ], [ TaskError ] )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Milliseconds

An optional integer value that specifies the number of milliseconds to wait for the background
task to complete.

TimeElapsed

An optional integer value passed by reference that will contain the elapsed time for the task in
milliseconds when the method returns. If this information is not required, this parameter may be
omitted. This parameter is ignored if the TaskId parameter is omitted.

TaskError

An optional integer value passed by reference that will contain the last error code for the task
when the method returns. If this information is not required, this parameter may be omitted.
This parameter is ignored if the TaskId parameter is omitted.

Return Value
A Boolean value that specifies if the task has completed. A return value of True specifies that the
background task has completed. A return value of False specifies that the background task is
active.

Remarks
The TaskWait method waits for the specified task to complete. If the TaskId parameter is omitted,
this method will wait for all active tasks to complete. If a task ID is specified and the Milliseconds
parameter is non-zero, this method will cause the current working thread to block until the task
completes or the amount of time exceeds the number of milliseconds specified by the caller. If the
Milliseconds parameter is zero, then this function will poll the status of the task and return
immediately to the caller. If the Milliseconds parameter is omitted, then the method will wait an
infinite period of time for the task to complete.

If the specified task has already completed at the time this method is called, the method will return
immediately without causing the current thread to block. If the TimeElapsed parameter has been
specified, it will contain the number of milliseconds that it took for the task to complete. If the
TaskError parameter has been specified, it will contain the last error code value that was set by the
worker thread before it terminated. If the TaskError value is zero, that means that the background
task was successful and no error occurred. A non-zero value will indicate that the background task
has failed.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is
blocked waiting for the background task to complete, and this can cause your application to
appear non-responsive to the end-user. If you have a GUI application and you need to determine
if a background task has finished, create a timer to periodically call the TaskDone method. When
it returns True (indicating that the task has completed), you can safely call TaskWait to obtain the

 



elapsed time and last error code without blocking the current thread.

See Also
TaskCount Property, TaskList Property, TaskAbort Method, TaskDone Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

The Reset and Uninitialize methods will abort all active background transfers and wait for those
tasks to complete before returning to the caller. It is recommended that your application explicitly
wait for background transfers to complete or abort them using this method before allowing the
program to terminate. This will ensure that your program can perform any necessary cleanup
operations. If there are active background tasks running at the time that the control instance is
destroyed, it can force the control to stop those worker threads immediately without waiting for
them to terminate gracefully.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 VerifyFile Method  

 

Verify that the contents of a file on the local system are the same as the specified file on the
server..

Syntax
object.VerifyFile( LocalFile, RemoteFile, [Options] )

Parameters
LocalFile

A string that specifies the name of the file on the local system.

RemoteFile

A string that specifies the name of the file on the server.

Options

A numeric bitmask which specifies the options that may be used when comparing the files. This
argument may be any one of the following values:

Value Constant Description

0 fileVerifyDefault File verification should use the best option available based on
the available server features. If the server supports the XMD5
command, the control will calculate an MD5 has of the local
file contents and compare the value with the file on the
server. If the server does not support the XMD5 command,
but it does support the XCRC command, the control will
calculate a CRC32 checksum of the local file contents and
compare the value with the file on the server. If the server
does not support either the XMD5 or XCRC commands, the
control will compare the size of the local and remote files.

1 fileVerifySize Files are verified by comparing the number of bytes of data in
the local and remote files. This is the least reliable method,
and should only be used if the server does not support either
the XMD5 or XCRC commands.

2 fileVerifyCRC32 Files are verified by calculating a CRC-32 checksum of the
local file contents and comparing it with the value returned
by the server in response to the XCRC command. This
method should only be used if the server does not support
the XMD5 command.

4 fileVerifyMD5 Files are verified by calculating an MD5 hash of the local file
contents and comparing it with the value returned by the
server in response to the XMD5 command. This is the
preferred method for performing file verification.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks

 



The VerifyFile method will attempt to verify that the contents of the local and remote files are
identical using one of several methods, based on the features that the server supports. Preference
will be given to the most reliable method available, using either an MD5 hash, a CRC-32 checksum
or comparing the size of the file, in that order.

It is not recommended that you use this method with text files because of the different end-of-line
conventions used by different operating systems. For example, a text file on a Windows system
uses a carriage-return and linefeed pair to indicate the end of a line of text. However, on a UNIX
system, a single linefeed is used to indicate the end of a line. This can cause the VerifyFile method
to indicate the files are not identical, even though the only difference is in the end-of-line
characters that are used.

See Also
Priority Property, GetData Method, GetFile Method, GetMultipleFiles Method, PutData Method,
PutFile Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Control Events  

 

Event Description

OnCancel This event is generated when an operation is canceled

OnCommand This event is generated when the server processes a command issued by the client

OnError This event is generated when an error occurs

OnProgress This event is generated when retrieving or sending files

OnTaskBegin This event is generated when a background task begins

OnTaskEnd This event is generated when a background task completes

OnTaskRun This event is generated while a background task is active

OnTimeout This event is generated after an operation times out

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when an operation is canceled.

Syntax
Private Sub object_OnCancel([Index As Integer])

Remarks
The OnCancel event is generated after an operation is canceled by calling the Cancel method.

Example
Private Sub FileTransfer1_OnCancel()
    lblFileStatus.Caption = "Operation canceled"
End Sub

See Also
OnError Event, Cancel Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCommand Event  

 

The OnCommand event is generated when the client receives a response to a command from
the server.

Syntax
Private Sub object_OnCommand([Index As Integer,] ByVal ResultCode As Variant, ByVal
ResultString As Variant)

Remarks
The OnCommand event is generated when the client receives a reply from the server after some
action has been taken. The ResultCode argument contains the numeric result code returned by
the server. The result codes returned from an FTP or HTTP server fall into one of the following
categories:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

The ResultString argument contains the descriptive string returned by the server which describes
the result. The string contents may vary depending on the type of server.

The ResultCode property and ResultString property contain the most recent server responses.
Use of the OnCommand event will allow the application to receive intermediate responses as
well.

Example
Private Sub FileTransfer1_OnCommand(ByVal ResultCode As Variant, _
                                    ByVal ResultString As Variant)
    Dim startpos As Integer
    Dim crlfpos As Integer

    '
    ' Command response to debug window
    '
    Debug.Print ResultCode & " " & ResultString

    '
    ' The text control needs a little help with line terminators
    ' in multi-line responses
    '
    txtResultStream.Text = txtResultStream.Text & ResultCode & " "
    startpos = 1

 



    Do
        crlfpos = InStr(startpos, ResultString, Chr(10))
        If crlfpos > 0 Then
            txtResultStream.Text = txtResultStream.Text & _
                Mid(ResultString, startpos, crlfpos - startpos) & vbCrLf
            startpos = crlfpos + 1
        Else
            txtResultStream.Text = txtResultStream.Text & _
                Mid(ResultString, startpos) & vbCrLf
            Exit Do
        End If
    Loop
End Sub

See Also
ResultCode Property, ResultString Property, Command Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when an error occurs.

Syntax
Private Sub object_OnError([Index As Integer,] ByVal Error As Variant, ByVal Description As
Variant)

Remarks
The OnError event is generated when an error occurs while the component is performing an
operation. Visual Basic errors do not generate this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error. This corresponds to the
LastErrorString property.

Example
Private Sub FileTransfer1_OnError(ByVal Error As Variant, ByVal Description As 
Variant)
        Debug.Print "Error " & Error & ": " & Description
End Sub

See Also
LastError Property, LastErrorString Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnProgress Event  

 

The OnProgress event is generated when retrieving or sending files.

Syntax
Private Sub object_OnProgress([Index As Integer,] ByVal FileName As Variant, ByVal FileSize
As Variant, ByVal BytesCopied As Variant, ByVal Percent As Variant)

Remarks
The OnProgress event is generated during a file transfer and can be used to update the user
interface, such as displaying a progress bar during the transaction. To cancel the current file
transfer, the application can call the Cancel method within the event handler. The following
arguments are passed to the event:

The FileName argument is the name of the file being transferred. If the GetMultipleFiles or
PutMultipleFiles methods were used, each individual file name is returned instead of the wildcard
mask.

The FileSize argument is a long integer which specifies the size of the file in bytes that is currently
being sent or received. This value may be zero if the control cannot obtain the size of the file from
the server. If the total number of bytes is less than 2 GiB, the value will be a Long (32-bit) integer.
For very large transfers, it will be a Double floating-point value.

The BytesCopied argument is a long integer which specifies the number of bytes that have been
sent or received for the current file transfer. If the number of bytes copied is less than 2 GiB, the
value will be a Long (32-bit) integer. For very large transfers, it will be a Double floating-point
value.

The Percent argument is an integer which specifies the completion percentage between a value of
0 and 100. When the GetMultipleFiles or PutMultipleFiles methods are being used, this value
refers to the transfer status of a single file, not a percentage of the total number of files being
transferred.

Example
Private Sub FileTransfer1_OnProgress(ByVal FileName As Variant, _
                                     ByVal FileSize As Variant, _
                                     ByVal BytesCopied As Variant, _
                                     ByVal Percent As Variant)

    txtFileStatus.Text = txtFileStatus.Text & _
        FileName & " " & FileSize & " " & _
        BytesCopied & " " & Percent & " " & _
        FileTransfer1.TransferTime & vbCrLf

    txtFileStatus.SelStart = Len(txtResultStream.Text)  
    txtFileStatus.SelLength = 0

    If FileSize > 0 Then
        ProgressBar1.Value = Percent
    End If
End Sub

See Also
Cancel Method

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTaskBegin Event  

 

The OnTaskBegin event occurs when a background task starts.

Syntax
Sub object_OnTaskBegin ( [Index As Integer], ByVal TaskId As Variant )

Remarks
The OnTaskBegin event is generated when a background task associated with an asynchronous
file transfer begins running. The arguments to this event are:

TaskId

An integer value that uniquely identifies the background task.

This event can be used in conjunction with the OnTaskEnd event to monitor one or more
background tasks that are created to perform asynchronous file transfers. The task ID passed to
this event can be used to uniquely identify the task and corresponds to the worker thread that has
been created to manage the client session. The application should consider the ID to be an
opaque value and never make assumptions about how an ID is assigned to a background task.

See Also
AsyncGetFile Method, AsyncPutFile Method, OnTaskEnd Event, OnTaskRun Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTaskEnd Event  

 

The OnTaskEnd event occurs when a background task completes.

Syntax
Sub object_OnTaskEnd ( [Index As Integer], ByVal TaskId As Variant, ByVal TimeElapsed As
Variant, ByVal ErrorCode As Variant )

Remarks
The OnTaskEnd event is generated when a file transfer completes and the background task has
terminated. The arguments to this event are:

TaskId

An integer value that uniquely identifies the background task.

TimeElapsed

An integer value that specifies the amount of elapsed time in milliseconds.

ErrorCode

An integer value that specifies the last error code for the task.

This event can be used in conjunction with the OnTaskBegin event to monitor one or more
background tasks that are created to perform asynchronous file transfers. The TimeElapsed
parameter will specify the number of milliseconds that the background task was active. The
ErrorCode parameter specifies the last error code associated with the background task. If this
value is zero, that indicates that the task completed successfully. A non-zero value indicates that
the task failed and the error code value identifies why the task failed.

See Also
AsyncGetFile Method, AsyncPutFile Method, OnTaskBegin Event, OnTaskRun Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTaskRun Event  

 

The OnTaskRun event occurs while a background task is active.

Syntax
Sub object_OnTaskRun ( [Index As Integer], ByVal TaskId As Variant, ByVal TimeElapsed As
Variant, ByVal Completed As Variant )

Remarks
The OnTaskRun event is generated periodically during a file transfer while the background task is
active. The arguments to this event are:

TaskId

An integer value that uniquely identifies the background task.

TimeElapsed

An integer value that specifies the amount of elapsed time in milliseconds.

Completed

An integer value that specifies an estimated percentage of completion.

The rate and number of times that this event will be generated depends on the task being
performed. This event is generally analogous to the OnProgress event for file transfers that are
performed in the current working thread, however the OnTaskRun event will occur for each
individual background task that is active. The TimeElapsed parameter specifies the amount of time
that the task has been active, and the Completed parameter specifies an estimated percentage of
completion. This can be used to update the user interface if needed, however it is the application's
responsibility to determine which UI component (such as a ProgressBar control) is associated with
a particular task.

See Also
AsyncGetFile Method, AsyncPutFile Method, OnTaskBegin Event, OnTaskEnd Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is generated after an operation times out.

Syntax
Private Sub object_OnTimeout([Index As Integer])

Remarks
The OnTimeout event is generated after an operation times out. The amount of time that the
component will wait for an operation to complete can be controlled by the Timeout property.

Example
Private Sub FileTransfer1_OnTimeout()
        lblStatus.Caption =  "Operation timed out"
End Sub

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



File Transfer Protocol Control

Transfer files between a local and server and perform common file management functions on the
server.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name FtpClientCtl.FtpClient

File Name CSFTPX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.FtpClient.11

ClassID 42456D99-030C-4D03-A366-FA2975318C94

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 959, RFC 1579, RFC 2228

Overview
The File Transfer Protocol (FTP) control provides a comprehensive API which supports both high
level operations, such as uploading or downloading files, as well as a collection of lower-level file
I/O functions. In addition to file transfers, an application can create, rename and delete files and
directories, search for files using wildcards and perform other common file management functions.

Files can be stored on the local file system or in memory, depending on the needs of your
application and multiple file transfers be performed using a single function call. The control can
also be used to manage files on the server and supports many of the common protocol
extensions that can be used to access the remote file system. It understands a number of different
directory listing formats, including those typically used with UNIX and Linux based systems,
Windows server platforms, NetWare servers and VMS systems.

This control supports active and passive mode file transfers, firewall compatibility options, proxy
servers and secure file transfers using the standard SSL/TLS and SFTP protocols. Secure file
transfers support implicit and explicit SSL sessions, client certificates and up to 256-bit AES
encryption.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.



This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Protocol Control Properties  

Property Description

Account The account name for the current user

ActivePort Gets and sets the range of ports used for active mode file transfers

AutoResolve Determines if host names and IP addresses are automatically resolved

Blocking Gets and sets the blocking state of the control

BufferSize Gets and sets the size in bytes of an internal buffer that will be used during data transfers

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the client certificate

CertificatePassword Gets and sets the password associated with the client certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the client certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was issued

CertificateUser Gets and sets the user that owns the client certificate

ChannelMode Gets and sets the security mode for the specified communications channel

CipherStrength Return the length of the key used by the encryption algorithm

CodePage Gets and sets the code page used for Unicode text conversion

DirectoryFormat Gets and sets the current directory format type

Encoding Gets and sets the character encoding that is used when a file name is sent to the server

Features Gets and sets the features enabled for the current client session

FileMask Gets and sets the current file mask

FileType Gets and sets the current file transfer type

Fingerprint Returns a string that uniquely identifies the server

HashStrength Return the length of the message digest that was selected

HostAddress Gets and sets the IP address of the server

HostName Gets and sets the name of the server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsReadable Return if data can be read from the server without blocking

IsWritable Return if data can be sent to the server without blocking

KeepAlive Enable monitoring of the command channel to keep the client session active

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur



 Localize Determines if remote file dates are localized to the current time zone

Options Gets and sets the options that are used in establishing a connection

ParseList Specify that file listings should be parsed by the control

Passive Enable passive file transfers

Password Gets and sets the password for the current user

Priority Gets and sets the priority assigned to file transfers

ProxyHost Gets and sets the host name of the proxy server

ProxyPassword Gets and sets the proxy server password for the current user

ProxyPort Gets and sets the port number for the proxy server

ProxyType Gets and sets the current proxy server type

ProxyUser Gets and sets the current proxy user name

RemoteFile Gets and sets the file name specified in the current URL

RemotePath Gets and sets the path specified in the current URL

RemotePort Gets and sets the port number for a remote connection

ResultCode Return the result code of the previous action

ResultString Return a string describing the results of the previous action

Secure Set or return if a connection to the server is secure

SecureCipher Return the encryption algorithm used to establish the secure connection with the server

SecureHash Return the message digest selected when establishing the secure connection with the server

SecureKeyExchange Return the key exchange algorithm used to establish the secure connection with the server

SecureProtocol Gets and sets the security protocol used to establish the secure connection with the server

System Return information about the server

TaskCount Return the number of active background file transfers

TaskId Return the task ID for the last background file transfer

TaskList Return the task ID for an active background file transfer

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

TransferBytes Return the number of bytes transferred from the server

TransferBytesXL Return the number of bytes transferred from the server

TransferRate Return the current file transfer rate in bytes per second

TransferTime Return the number of seconds elapsed during a data transfer

URL Gets and sets the current URL used to access a file on the server

UserName Gets and sets the current user name

Version Return the current version of the object

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Account Property  

 

The account name for the current user.

Syntax
object.Account [= account ]

Remarks
The Account property specifies the account name of the current user, if it is required by the server
for authentication. Not all servers require an account name, in which case this property is ignored.

Data Type
String

See Also
Password Property, UserName Property, Connect Method, Login Method, Logout Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ActivePort Property  

 

Gets and sets the range of local port numbers used for active mode file transfers.

Syntax
object.ActivePort(portrange) [ = localport ]

Remarks
The ActivePort property property array is used to change the range of local port numbers used
for active mode file transfers. The property array index specifies the port that should be changed,
and may be one of the following values:

Value Constant Description

0 ftpActivePortLow Change or return information for the low port number.

1 ftpActivePortHigh Change or return information for the high port number.

The localport value specifies the new port number to be used. Valid port numbers are in the
range of 1025 through 65535.

This property array is used to modify the range of local port numbers used for active mode file
transfers. When using active mode, the client listens for an inbound connection from the server
rather than establishing an outbound connection for the data transfer. In most cases, passive
mode transfers are preferred because they mitigate potential compatibility issues with firewalls and
NAT routers.

If active mode transfers are required, the default port range used when listening for the server
connection is between 1024 and 5000. This is the standard range of ephemeral ports used by the
Windows operating system. However, under some circumstances that range of ports may be too
small, or a firewall may be configured to deny inbound connections on ephemeral ports. In that
case, the ActivePort property can be used to specify a different range of port numbers.

While it is technically permissible to assign the low and high port numbers to the same value,
effectively specifying a single active port number, this is not recommended as it can cause the
transfer to fail unexpectedly if multiple file transfers are performed. A minimum range of at least
1000 ports is recommended. For example, if you specify a low port value of 40000 then it is
recommended that the high port value be at least 41000. The maximum port value is 65535.

Data Type
Integer (Int32)

See Also
Features Property, Connect Method, Disconnect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnConnect, OnDisconnect,
OnRead and OnWrite are only fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, IsReadable Property, IsWritable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 BufferSize Property  

 

Gets and sets the size in bytes of an internal buffer that will be used during data transfers.

Syntax
object.BufferSize [= bytes ]

Remarks
Setting the BufferSize property specifies the size in bytes of an internal buffer that will be used
during data transfers. Any set value greater than or equal to zero is acceptable. If the value is set
to zero, then the default value of 4096 will be used. If the set value is between 1 and 255, inclusive,
the buffer size will be set to 256. The maximum value is 1048576.

The speed of data transfers, particularly on uploads, may be sensitive to network type and
configuration, and the size of the internal buffer used for data transfers. The default size of this
buffer will result in good performance for a wide range of network characteristics. A larger buffer
will not necessarily result in better performance. For example, a value of 1460, which is the typical
Maximum Transmission Unit (MTU), may be optimal in many situations.

Data Type
Integer (Int32)

See Also
GetFile Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateExpires Property  

 

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssued Property  

 

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssuer Property  

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function
     End If



 
     nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then
          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '
          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the name of the company who issued the server
certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = FtpClient1.CertificateIssuer
If Len(strIssuer) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strCompanyName = GetCertNameValue(strIssuer, "O")
     MsgBox "This certificate was issued by " & strCompanyName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the client certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the certificate that should be used to
establish the connection with the server. It is only required that you set this property value if the
server requires a client certificate for authentication. If this property is not set, a client certificate
will not be provided to the server. If a certificate name is specified, the certificate must have a
private key associated with it, otherwise the connection attempt will fail because the control will be
unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the client certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStatus Property  

 

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property returns an integer value which identifies the status of the server
certificate. This property may return one of the following values:

Constant Value Description

stCertificateNone 0 No certificate information is available. A secure
connection was not established with the server.

stCertificateValid 1 The certificate is valid.

stCertificateNoMatch 2 The certificate is valid, however the domain name
specified in the certificate does not match the domain
name of the site that the client has connected to. This is
typically the case if the HostAddress property is used
rather than the HostName property. It is
recommended that the client examine the
CertificateSubject property to determine the domain
name of the site that the certificate was issued for.

stCertificateExpired 3 The certificate has expired and is no longer valid. The
client can examine the CertificateExpires property to
determine when the certificate expired.

stCertificateRevoked 4 The certificate has been revoked and is no longer valid.
It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateUntrusted 5 The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the local
host. It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateInvalid 6 The certificate is invalid. This typically indicates that the
internal structure of the certificate is damaged. It is
recommended that the client application immediately
terminate the connection if this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
Integer (Int32)

Example

 



The following example establishes a secure connection to a server:

FtpClient1.HostName = strHostName
FtpClient1.Secure = True

nError = FtpClient1.Connect()
If nError > 0 Then
     MsgBox "Unable to connect to server " & strHostName, vbExclamation
     Exit Sub
End If

If FtpClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          FtpClient1.Disconnect
          Exit Sub
     End If
End If

FtpClient1.Disconnect

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the client certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the client certificate that should
be used when establishing a secure connection with the server. The certificate may either be
stored in the registry or in a file. If the certificate is stored in the registry, then this property should
be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateSubject Property  

Returns information about the organization that the server certificate was issued to.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the subject's company or country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function



 

     End If

     nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the domain name that the server certificate was issued
for:

Dim strSubject As String
Dim strDomainName As String

strSubject = FtpClient1.CertificateSubject
If Len(strSubject) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strDomainName = GetCertNameValue(strSubject, "CN")
     MsgBox "This certificate was issued for " & strDomainName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus

 



Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the client certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the client certificate that will be used to establish
a secure connection with the server. If this property is not set, the certificate store for the current
user will be used when searching for the certificate. If this property is used to specify another user,
the process must have the appropriate permission to access the registry location that contains the
client certificate. On Windows Vista and later versions of the operating system, this requires that
the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ChannelMode Property  

 

Gets and sets the security mode for the specified communications channel.

Syntax
object.ChannelMode(channel) [= mode ]

Remarks
The ChannelMode property property array is used to change the security mode for either the
command or data channel. The property array index specifies the channel that should be
changed, and may be one of the following values:

Value Constant Description

0 ftpChannelCommand Change or return information for the command
channel. This is the communication channel used to
send commands to the server and receive command
result and status information from the server.

1 ftpChannelData Change information for the data channel. This is the
communication channel used to send or receive data
during a file transfer.

The mode value specifies the new security mode for the specified channel. It may be one of the
following values:

Value Constant Description

0 ftpChannelClear Data sent and received on this channel should not be
encrypted.

1 ftpChannelSecure Data sent and received on this channel should be
encrypted. Specifying this option requires that a secure
connection has already been established with the server.

The ChannelMode property array is used to change the default mode for the specified channel,
and is typically used to control whether or not data is encrypted during a file transfer. If a
standard, non-secure connection has been established with the server, an error will be returned if
you specify the ftpChannelSecure mode for either channel.

If you have established a secure connection and then specify the ftpChannelClear mode for the
command channel, the client will send the CCC command to the server to indicate that commands
should no longer be encrypted. If the server does not support this command, an error will be
returned and the channel mode will remain unchanged. Once the command channel has been
changed to clear mode, it cannot be changed back to secure mode. You must disconnect and re-
connect to the server if you want to resume sending commands over an encrypted channel.

Changing the mode for the data channel requires that the server support the PROT command. If
this command is not supported by the server, an exception will be thrown which must be handled
by the application. You can only set a channel to secure mode if the Secure property is also set to
True.

It is important to note that this property array should only be used after a connection has been
established with the server. If you attempt to read the property or change a value prior to calling
the Connect method, an exception will be thrown.

 



Data Type
Integer (Int32)

See Also
Features Property, Secure Property, Connect Method, Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CodePage Property  

 

Gets and sets the code page used when converting text to and from Unicode.

Syntax
object.CodePage [= value ]

Remarks
The CodePage property is an integer value which specifies how text is encoded. Any valid code
page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. You should not use this code page unless you know the
server is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available  code page identifiers can be found in Microsoft's documentation for
the Win32 API.

All data exchanged with an FTP server is sent and received as 8-bit bytes, typically referred to as
"octets" in networking terminology. However, the internal string type used by ActiveX controls are
Unicode, with each character represented using 16 bits. When you send and receive data using
the String data type, they will automatically be converted to a stream of bytes.

By default, strings are converted to an array of bytes using UTF-8 encoding, mapping the 16-bit
Unicode characters to 8-bit bytes. Similarly, when reading data into a string buffer, the stream of

 

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers


bytes received from the remote host are converted to Unicode before they are returned to your
application.

If the text you receive appears to corrupted or characters are being replaced with question marks
or other symbols, it is likely the file on the server is using a different character encoding. Most
applications use UTF-8 encoding to represent non-ASCII characters; however, some text files may
use a localized character set rather than using Unicode. Using the GetText and PutText methods
in combination with this property will change how that text is converted to Unicode.

Strings are only guaranteed to be safe when sending and receiving text. Using a
string data type is not recommended when uploading or downloading binary data. If
possible, you should always use a byte array when using the GetData and PutData
methods.

This property value directly corresponds to Windows code page identifiers, and will accept any
valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Although strings in Visual Basic are internally managed as Unicode, the default common controls
used in Visual Basic 6.0 do not support Unicode. Those controls, such as buttons, text boxes and
labels, will automatically convert the Unicode text to ANSI using the current code page. This
means that text in the end-user’s native language (depending on system settings) may display
correctly, although text in other languages using different character sets may not. Also note that
the VB6 IDE is not Unicode aware and may display corrupted string values or invalid characters,
such as with tooltip values when debugging.

For Unicode support in Visual Basic 6.0, it’s recommended that you use third-party controls. An
alternative that some developers have used is the Microsoft Forms 2.0 Object Library (FM20.DLL)
that is part of Microsoft Office. It includes a collection of controls that support Unicode, however
they are not redistributable and Microsoft has stated that their use with VB6 is unsupported.

Data Type
Integer (Int32)

See Also
FileType Property, GetData Method, GetText Method, PutData Method, PutText Method



 DirectoryFormat Property  

 

Gets and sets the current directory format type.

Syntax
object.DirectoryFormat [= format ]

Remarks
The DirectoryFormat property specifies the format of a directory listing used by a FTP server. The
directory format types supported are:

Value Constant Description

0 ftpDirectoryAuto This value specifies that the control should automatically
determine the format of the file lists returned by the server. It is
recommended that most applications use this value and allow the
control to automatically determine the appropriate file listing
format used by the server.

1 ftpDirectoryUNIX This value specifies that the server returns file lists in the format
commonly used by UNIX servers. Note that many servers can be
configured to return file listings in this format, even if they are not
actually a UNIX based platform. Consult the technical reference
documentation for your server for more information.

2 ftpDirectoryMSDOS This value specifies that the server returns file lists in the format
commonly used by MS-DOS based systems. This includes
Windows IIS servers. Long file names will be returned if
supported by the underlying filesystem, such as NTFS or FAT32.

3 ftpDirectoryVMS This value specifies that the server returns file lists in the format
commonly used by VMS servers. Note that VMS servers can be
configured to return a standard UNIX style listing in additional to
the default VMS format.

4 ftpDirectorySterling1 This value specifies that the server returns file listings in a
proprietary format used by the Sterling server, which is used for
EDI (Electronic Data Interchange) applications. This format uses a
13 byte status code.

5 ftpDirectorySterling2 This value specifies that the server returns file listings in a
proprietary format used by the Sterling server, which is used for
EDI (Electronic Data Interchange) applications. This format uses a
10 byte status code.

6 ftpDirectoryNetWare This value specifies that the server returns file listings in a
proprietary format used by NetWare servers. The format is similar
to UNIX style listings except that file access and permissions are
indicated by letter codes enclosed in brackets. This is the default
format selected if the server identifies itself as a NetWare system.

7 ftpDirectoryMLSD This value specifies that the server should return file listings in a
machine-independent format as defined by RFC 3659. This
format specifies file information as a sequence of name/value

 



pairs, with the same format being used regardless of the
operating system that the server is hosted on. Note that not all
servers support this format, and some proxy servers may reject
the command even if the remote server supports its use.

This property should only be set if the control cannot automatically determine the directory format
returned by the server. The default directory format is determined both by the server's operating
system and by analyzing the format of the data returned by the server. If the control is unable to
automatically determine the format, it will attempt to parse the list of files as though it is a UNIX
style listing.

If this property is set to the default value ftpDirectoryAuto and the control can determine from
the format of the file listing returned by the server, then the property will change value upon the
first call to the ReadDirectory method or the first time the FileList event is generated.

Data Type
Integer (Int32)

See Also
System Property, ReadDirectory Method, FileList Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Encoding Property  

 

Gets and sets the character encoding that is used when a file name is sent to the server

Syntax
object.Encoding [= flags ]

Remarks
The Encoding property returns one of the following integer values:

Value Constant Description

1 ftpEncodingANSI File names are sent as 8-bit characters using the default
character encoding for the current codepage. If the Unicode
version of the functions are used, file names are converted
from Unicode to ANSI using the current codepage before
being sent to the server. This is the default encoding type.

2 ftpEncodingUTF8 File names that contain non-ASCII characters are sent using
UTF-8 encoding. This encoding type is only available on
servers that advertise support for UTF-8 encoding and
permit that encoding type to be enabled by the client.

The Encoding property can be used to enable UTF-8 encoding of file names, which provides
improved support for the use of international character sets. However, the server must provide
support for UTF-8 encoding by advertising it in response to the FEAT command and it must
support the OPTS command which is used to enable UTF-8 encoding. If the server does not
advertise support for UTF-8, or the OPTS command fails with an error, then an exception will be
thrown and the encoding type will not change.

Although it is possible to use the Features property to explicitly enable the ftpFeatureUTF8
feature, this is not recommended. If the server has not advertised support for UTF-8 encoding in
response to the FEAT command, that typically indicates that UTF-8 encoding is not supported.
Attempting to force UTF-8 encoding can result in unpredictable behavior when file names contain
non-ASCII characters.

It is important to note that not all FTP servers support UTF-8 encoding, and in some cases servers
which advertise support for UTF-8 encoding do not implement the feature correctly. For example,
a server may allow a client to enable UTF-8 encoding, but once enabled will not permit the client
to disable it. Some servers may advertise support for UTF-8 encoding, however if the underlying
file system does not support UTF-8 encoded file names, any attempt to upload or download a file
may fail with an error indicating that the file cannot be found or created.

Data Type
Integer (Int32)

See Also
Features Property, Command Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Features Property  

Gets and sets the features enabled for the current client session.

Syntax
object.Features [= flags ]

Remarks
The Features property returns a value which may be a combination of one or more of the
following bit flags:

Value Constant Description

&H00001 ftpFeatureSIZE The server supports the SIZE command to determine
the size of a file. If this feature is not enabled, the
control will attempt to use the MLST or STAT
command to determine the file size.

&H00002 ftpFeatureSTAT The server supports using the STAT command to
return information about a specific file. If this feature is
not enabled, the client may not be able to obtain
information about a specific file such as its size,
permissions or modification time.

&H00004 ftpFeatureMDTM The server supports the MDTM command to obtain
information about the modification time for a specific
file. This command may also be used to set the file
time on the server.

&H00008 ftpFeatureREST The server supports restarting file transfers using the
REST command. If this feature is not enabled, the
client will not be able to restart file transfers and must
upload or download the complete file.

&H00010 ftpFeatureSITE The server supports site specific commands using the
SITE command. If this feature is not enabled, no site
specific commands will be sent to the server.

&H00020 ftpFeatureIDLE The server supports setting the idle timeout period
using the SITE IDLE command to specify the number
of seconds that the client may idle before the server
terminates the connection.

&H00040 ftpFeatureCHMOD The server supports modifying the permissions of a
specific file using the SITE CHMOD command. If this
feature is not enabled, the client will not be able to set
the permissions for a file.

&H00080 ftpFeatureAUTH The server supports explicit SSL sessions using the
AUTH command. If this feature is not enabled, the
client will only be able to connect to a secure server
that uses implicit SSL connections. Changing this
feature has no effect on standard, non-secure
connections.



 

&H00100 ftpFeaturePBSZ The server supports the PBSZ command which
specifies the buffer size used with secure data
connections. If this feature is disabled, it may prevent
the client from changing the protection level on the
data channel. Changing this feature has no effect on
standard, non-secure connections.

&H00200 ftpFeaturePROT The server supports the PROT command which
specifies the protection level for the data channel. If
this feature is disabled, the client will be unable to
change the protection level on the data channel.
Changing this feature has no effect on standard, non-
secure connections.

&H00400 ftpFeatureCCC The server supports the CCC command which returns
the command channel to a non-secure mode.
Changing this feature has no effect on standard, non-
secure connections.

&H00800 ftpFeatureHOST The server supports the HOST command which
enables a client to specify the hostname after
establishing a connection with a server that supports
virtual hosting.

&H01000 ftpFeatureMLST The server supports the MLST command which
returns status information for files. If this feature is
enabled, the MLST command will be used instead of
the STAT command.

&H02000 ftpFeatureMFMT The server supports the MFMT command which is
used to change the last modification time for a file. If
this command is supported, it is used instead of the
MDTM command to change the modification time for
a file.

&H04000 ftpFeatureXCRC The server supports the XCRC command which
returns the CRC-32 checksum for the contents of a
specified file. This command is used for file
verification.

&H08000 ftpFeatureMD5 The server supports the XMD5 command which
returns an MD5 hash for the contents of a specified
file. This command is used for file verification.

&H10000 ftpFeatureLANG The server supports the LANG command which sets
the language used for the current client session.
Command responses and file naming conventions will
use the specified language.

&H20000 ftpFeatureUTF8 The server supports the OPTS UTF-8 command which
specifies UTF-8 encoding when specifying filenames.
This feature is typically used in conjunction with
setting the default language for the client session.

&H40000 ftpFeatureXQUOTA The server supports the XQUOTA command which
returns quota information for the current client

 



session.

&H80000 ftpFeatureUTIME The server supports the UTIME command which is
used to change the last modification time for a
specified file.

When a client connection is first established, the FEAT command is sent to the server to determine
what features are available. However, as the client issues commands to the server, if the server
reports that the command is unrecognized that feature will automatically be disabled in the client.

For example, the first time an application calls the GetFileSize method to determine the size of a
file, the control will try to use the SIZE command. If the server reports that the SIZE command is
not available, that feature will be disabled and the control will not use the command again during
the session unless it is explicitly re-enabled. This is designed to prevent the control from
repeatedly sending invalid commands to a server, which may result in the server aborting the
connection.

Setting the Features property enables those features which have been specified. More than one
feature may be enabled by combining the above constants using a bitwise Or operator. To test if a
particular feature has been enabled, use the bitwise And operator. For example, in Visual Basic this
can be done using the And and Or operators:

' If the SIZE command is enabled, disable it and make sure
' that the STAT command is enabled instead
If (FtpClient1.Features And ftpFeatureSIZE) <> 0 Then
    FtpClient1.Features = FtpClient1.Features And Not ftpFeatureSIZE
    FtpClient1.Features = FtpClient1.Features Or ftpFeatureSTAT
End If

Because features are specific to the current session, once you disconnect from the server they are
reset. Even if you wish to reconnect to the same server, you must explicitly set the Features
property again to those features which you wish to enable. Setting the Features property when
the control is not connected to a server will cause the client session to only use those specified
features for the next connection that is established. Setting the Features property during an active
connection will change the features available for that session.

Data Type
Integer (Int32)

See Also
Encoding Property, Connect Method,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FileMask Property  

 

Gets and sets the current file mask.

Syntax
object.FileMask [= wildcard ]

Remarks
The FileMask property specifies the default wildcard mask to be used when uploading or
downloading multiple files. The default value of an empty string indicates that all files in the
specified directory should be uploaded or downloaded. Typically, this property is set to a wildcard
mask that limits the files downloaded from the server to those which match a specific extension.
For example, to download only those files that end in a ".dat" extension, the property could be set
to the value "*.dat"

Note that the type of wildcards which may be used depend on the server and the type of file
system that it is using. Take particular care when dealing with file systems that distinguish between
upper- and lower-case letters in a filename.

Data Type
String

See Also
GetMultipleFiles Method, PutMultipleFiles Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FileType Property  

 

Gets and sets the current file transfer type.

Syntax
object.FileType [= filetype ]

Remarks
The FileType property specifies the type of file transfer between the local and server. The file
transfer types supported are:

Value Constant Description

0 ftpFileTypeAuto The file type should be automatically determined based on the file
name extension. If the file extension is unknown, the file type should
be determined based on the contents of the file. The control has an
internal list of common text file extensions, and additional file
extensions can be registered using the AddFileType method.

1 ftpFileTypeASCII The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings. The constant
ftpFileTypeText is an alias for this value.

2 ftpFileTypeEBCDIC The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved from
the server. Not all servers support this file type. It is recommended
that you only specify this type if you know that it is required by the
server to transfer data correctly.

3 ftpFileTypeImage The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data files
and executable programs. If the type of file cannot be automatically
determined, it will always be considered a binary file. If this file type
is specified when uploading or downloading text files, the native
end-of-line character sequences will be preserved. The constant
ftpFileTypeBinary is an alias for this value.

4 ftpFileTypeLocal The file is a binary file that uses the local byte size for the server
platform. On most servers, this file type is considered to be the
same as ftpFileTypeBinary. Not all servers support this file type. It
is recommended that you only specify this type if you know it is
required by the server to transfer data correctly.

The file type should be set before a file is opened or created on the server. Once the file type is
set, it is in effect for all files that are subsequently opened or created. Some methods, such as
OpenDirectory, will temporarily change the default file type to ftpFileTypeText and then restore
the current file type when they return.

Changing the value of this property has no practical effect when connected to an SFTP (SSH)
server. They do not differentiate between text and binary files and the default file type will always
be ftpFileTypeBinary. If your application is uploading or downloading a text file, this difference

 



between FTP and SFTP is important because the operating system that hosts the server may have
different end-of-line character conventions than the client system. For example, if you download a
text file from a UNIX system using SFTP, the end-of-line is indicated by a single linefeed (LF)
character However, on the Windows platform, the end-of-line is indicated by a carriage-return
and linefeed sequence (CRLF).

If you are transferring binary data, you should always use ftpFileTypeImage and store the data in
a Byte array using either the GetData or PutData methods. This will ensure that the data is sent
or received exactly as-is without any character set or end-of-line conversion.

If you need to upload or download text stored in String variable, use the GetText and PutText
methods. They will always set the file type to ftpFileTypeText and then restore the previous file
type when the method returns. The value of the CodePage property will allow you to control how
the text is converted to Unicode.

Data Type
Integer (Int32)

See Also
CodePage Property, AddFileType Method, GetData Method, GetFile Method, GetText Method,
PutData Method, PutFile Method, PutText Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Fingerprint Property  

 

Returns a string that uniquely identifies the server.

Syntax
object.Fingerprint

Remarks
The Fingerprint property returns a string that consists of a series of hexadecimal values separated
by colons. The value is unique to the server, and is an MD5 hash of the RSA host key. An
application can use this value to determine if a connection has been established with the server
previously by storing the server's host name, IP address and fingerprint in a file, registry key or a
database.

Note that this property only returns a meaningful value after a secure connection has been
established using the SSH protocol. For all other connections, it will return an empty string.

Data Type
String

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of true if the control is connected with a
server, otherwise the property has a value of false.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsReadable Property  

 

Return if data can be read from the server without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the server without blocking. For
non-blocking connections, this property can be checked before the application attempts to read
the data, preventing an error.

Data Type
Boolean

See Also
IsConnected Property, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Return if data can be sent to the server without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written without blocking. For non-blocking
connections, this property can be checked before the application attempts to send data to the
server, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
send data without an error. The next operation may result in an stErrorOperationWouldBlock or
stErrorOperationInProgress error. The application must treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
IsReadable Property, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeepAlive Property  

 

Enable monitoring of the command channel to keep the client session active.

Syntax
object.KeepAlive [= { True | False } ]

Remarks
Setting the KeepAlive property to a value of true specifies that a background worker thread will
be created to monitor the command channel and periodically send NOOP commands to the
server if no commands have been sent recently. This can prevent the server from terminating the
client connection during idle periods where no commands are being issued. However, it is
important to keep in mind that many servers can be configured to also limit the total amount of
time a client can be connected to the server, as well as the amount of time permitted between file
transfers. If the server does not respond to the NOOP command, this option will be automatically
disabled for the remainder of the client session.

It is recommended that you only enable this option if the connection to the server must be
maintained for a relatively long period of time where there will be periods of inactivity. Never
make the assumption that this option can prevent the server from terminating the connection.
Most sites, particularly public FTP servers accessed over the Internet, have fairly restrictive policies
designed to prevent clients from maintaining long-term connections. In most cases, if there are
periods of time where your application will not be transferring files, it is more appropriate to
disconnect from the server and then reconnect at a later point rather than attempting to hold the
connection open.

The default value for this property is false.

Data Type
Boolean

See Also
Connect Method, GetFile Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Localize Property  

 

Determines if remote file dates are localized to the current timezone.

Syntax
object.Localize [= { True | False } ]

Remarks
Setting the Localize property controls how remote file date and time values are localized when
the GetFileTime method is called. If the property is set to True, then the file date and time will be
adjusted to the current timezone. If the property is set to False, which is the default value, then the
file date and time are returned as UTC (Coordinated Universal Time) values.

Data Type
Boolean

See Also
GetFileTime Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Options Property  

Gets and sets the options that are used in establishing a connection.

Syntax
object.Options [= value ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when connecting to the server. The property
value is created by using a bitwise operator with one or more of the following values:

Value Constant Description

1 ftpOptionPassive This option specifies the client should attempt to
establish a passive connection to the server. This
means that instead of the client opening a port
on the local system and waiting for the server to
establish a connection back to the client, the
client will establish a second data connection to
the server. This mode is recommended for most
systems that are behind a NAT router or firewall.

2 ftpOptionFirewall This option specifies the client should always use
the host IP address to establish the data
connection with the server, not the address
returned by the server in response to the PASV
command. This option may be necessary if the
server is behind a router that performs Network
Address Translation (NAT) and it returns an
unreachable IP address for the data connection.
If this option is specified, it will also enable
passive mode data transfers.

4 ftpOptionNoAuth This option specifies the server does not require
authentication, or that it requires an alternate
authentication method. When this option is used,
the client connection is flagged as authenticated
as soon as the connection to the server has been
established. Note that using this option to bypass
authentication may result in subsequent errors
when attempting to retrieve a directory listing or
transfer a file. It is recommended that you
consult the technical reference documentation
for the server to determine its specific
authentication requirements.

8 ftpOptionKeepAlive This option specifies the client should attempt to
keep the connection with the server active for an
extended period of time. It is important to note
that regardless of this option, the server may still
choose to disconnect client sessions that are



holding the command channel open but are not
performing file transfers.

&H10 ftpOptionNoAuthRSA This option specifies that RSA authentication
should not be used with SSH-1 connections. This
option is ignored with SSH-2 connections and
should only be specified if required by the server.
This option has no effect on standard or secure
connections using SSL.

&H20 ftpOptionNoPwdNul This option specifies the user password cannot
be terminated with a null character. This option is
ignored with SSH-2 connections and should only
be specified if required by the server. This option
has no effect on standard or secure connections
using SSL.

&H40 ftpOptionNoRekey This option specifies the client should never
attempt a repeat key exchange with the server.
Some SSH servers do not support rekeying the
session, and this can cause the client to become
non-responsive or abort the connection after
being connected for an hour. This option has no
effect on standard or secure connections using
SSL.

&H80 ftpOptionCompatSID This compatibility option changes how the
session ID is handled during public key
authentication with older SSH servers. This
option should only be specified when connecting
to servers that use OpenSSH 2.2.0 or earlier
versions. This option has no effect on standard
or secure connections using SSL.

&H100 ftpOptionCompatHMAC This compatibility option changes how the
HMAC authentication codes are generated. This
option should only be specified when connecting
to servers that use OpenSSH 2.2.0 or earlier
versions. This option has no effect on standard
or secure connections using SSL.

&H200 ftpOptionVirtualHost This option specifies the server supports virtual
hosting, where multiple domains are hosted by a
server using the same external IP address. If this
option is enabled, the client will send the HOST
command to the server upon establishing a
connection.

&H400 ftpOptionVerify This option specifies that file transfers should be
automatically verified after the transfer has
completed. If the server supports the XMD5
command, the transfer will be verified by
calculating an MD5 hash of the file contents. If
the server does not support the XMD5



 

command, but does support the XCRC
command, the transfer will be verified by
calculating a CRC32 checksum of the file
contents. If neither the XMD5 or XCRC
commands are supported, the transfer is verified
by comparing the size of the file. Automatic file
verification is only performed for binary mode
transfers because of the end-of-line conversion
that may occur when text files are uploaded or
downloaded.

&H800 ftpOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

&1000 ftpOptionSecure This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.

&H2000 ftpOptionSecureExplicit This option specifies the client should use the
AUTH TLS-P command to negotiate an explicit
secure connection. Some servers may only
require this when connecting to the server on
ports other than 990.

&H4000 ftpOptionSecureShell This option specifies the client should use the
Secure Shell (SSH) protocol to establish the
connection. This option will automatically be
selected if the connection is established using
port 22, the default port for SSH, and is only
required if the server is configured to use a non-
standard port number.

&H8000 ftpOptionSecureFallback This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

&H10000 ftpOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards
to internal checks of the destination IP address
and remote port number, default capability
selection and how the connection is established.
This option also forces all connections to be
outbound and enables the firewall compatibility
features in the client.

&H20000 ftpOptionKeepAliveData This option specifies the client should attempt to

 



keep the control connection active during a file
transfer. Normally, when a data transfer is in
progress, no additional commands are issued on
the control channel until the transfer completes.
Specifying this option automatically enables the
ftpOptionKeepAlive option and forces the
client to continue to issue NOOP commands
during the file transfer. This option only applies
to FTP and FTPS connections and has no effect
on connections using SFTP (SSH).

&40000 ftpOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option
has been specified.

&100000 ftpOptionHiResTimer This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller files being uploaded or
downloaded using fast network connections.

&200000 ftpOptionTLSReuse This option specifies that TLS session reuse
should be enabled for secure data connections.
Some servers may require this option be
enabled, although it should only used when
required. This option is only valid for secure FTP
(FTPS) connections and is not used with SFTP or
secure HTTP connections. See the remarks below
for more information.

Note that setting the ftpOptionPassive option is the same as setting the Passive property to
True.

If the ftpOptionSecureExplicit option is specified, the client will first send an AUTH TLS command
to the server. If the server does not accept this command, it will then send an AUTH SSL
command. If both commands are rejected by the server, an explicit SSL session cannot be
established. By default, both the command and data channels will be encrypted when a secure
connection is established. To change this, set the ChannelMode property.

If the amount of time required to perform the transfer exceeds the server idle timeout period, the
server may abort the connection. Using the ftpOptionKeepAliveData option tells the client to
periodically send NOOP commands during the transfer to maintain the control connection. Some
servers may not accept client commands while a transfer is in progress. You should only use this
option if the server is timing out the control connection during large file transfers.

The ftpOptionTLSReuse option is only supported on Windows 8.1 or Windows Server 2012 R2
and later platforms. This option is not compatible with servers built using OpenSSL 1.0.2 and



earlier versions which do not provide Extended Master Secret (EMS) support as outlined in
RFC7627. To avoid potential problems with server compatibility, you should not specify this option
for all FTP connections. It should only be used if specifically required by the server and your end-
users should have the ability to selectively enable or disable this option.

Data Type
Integer (Int32)

Example
'
' The Ipswitch WS_FTP server accepts the AUTH command to establish
' an explicit SSL session on the default FTP port
'

FtpClient1.Options = ftpOptionSecureExplicit
nError = FtpClient1.Connect(strHostName)

'
' When the GlobalSCAPE Secure FTP server is configured in implicit
' authorization mode, it negotiates a secure session as soon as the
' connection is established and does not require a command
'

FtpClient1.Options = ftpOptionSecure
nError = FtpClient1.Connect(strHostName)

See Also
Priority Property, Secure Property, Connect Method



 ParseList Property  

 

Specify that file listings should be parsed by the control.

Syntax
object.ParseList [= { True | False } ]

Remarks
The ParseList property is used to control how remote file lists are processed. If the property is set
to False (the default value), then file lists are not processed by the control. The client application is
responsible for reading through and parsing the list of files returned by the server. If the property
is set to True, the control will parse the file list and generate a FileList event for each file in the list.

The control recognizes file listings in UNIX, MS-DOS and VMS formats, and will attempt to
automatically determine the format that is being returned by the server. If the server does not
return file lists in one of these formats, the ParseList property should be set to False, and the
client application must parse the file listing itself.

Data Type
Boolean

See Also
FileList Method, GetFileStatus Method, FileList Event, LastFile Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/ftp/control/method/filelist.html


 Passive Property  

 

Enable passive file transfers.

Syntax
object.Passive [= {True | False} ]

Remarks
The Passive property enables or disables passive file transfers between the local and server. In
passive transfer mode, the client is responsible for establishing the data connection between the
server and the local system. If the local system is behind a firewall or NAT router, it is
recommended that you set this property to True.

Note that not all servers support passive file transfers. If the Passive property is set and the server
does not support passive mode, an error will be returned the next time a file transfer is attempted.

Data Type
Boolean

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password used to authenticate the user. If a password is not
required by the server, this property is ignored.

Data Type
String

See Also
Account Property, UserName Property, Connect Method, Login Method, Logout Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Priority Property  

 

Gets and sets a value which specifies the priority of file transfers.

Syntax
object.Priority [= priority ]

Remarks
The Priority property can be used to control the processor usage, memory and network
bandwidth allocated for file transfers. One of the following values may be specified:

Value Constant Description

0 ftpPriorityBackground This priority significantly reduces the memory,
processor and network resource utilization for the
transfer. It is typically used with worker threads running
in the background when the amount of time required
perform the transfer is not critical.

1 ftpPriorityLow This priority lowers the overall resource utilization for
the transfer and meters the bandwidth allocated for the
transfer. This priority will increase the average amount
of time required to complete a file transfer.

2 ftpPriorityNormal The default priority which balances resource utilization
and transfer speed. It is recommended that most
applications use this priority.

3 ftpPriorityHigh This priority increases the overall resource utilization for
the transfer, allocating more memory for internal
buffering. It can be used when it is important to transfer
the file quickly, and there are no other threads currently
performing file transfers at the time.

4 ftpPriorityCritical This priority can significantly increase processor,
memory and network utilization while attempting to
transfer the file as quickly as possible. If the file transfer
is being performed in the main UI thread, this priority
can cause the application to appear to become non-
responsive. No events will be generated during the
transfer.

The ftpPriorityNormal priority balances resource utilization and transfer speed while ensuring
that a single-threaded application remains responsive to the user. Lower priorities reduce the
overall resource utilization at the expense of transfer speed. For example, if you create a worker
thread to download a file in the background and want to ensure that it has a minimal impact on
the process, the ftpPriorityBackground value can be used.

Higher priority values increase the memory allocated for the transfers and increases processor
utilization for the transfer. The ftpPriorityCritical priority maximizes transfer speed at the expense
of system resources. It is not recommended that you increase the file transfer priority unless you
understand the implications of doing so and have thoroughly tested your application. If the file
transfer is being performed in the main UI thread, increasing the priority may interfere with the
normal processing of Windows messages and cause the application to appear to become non-

 



responsive. It is also important to note that when the priority is set to ftpPriorityCritical, normal
progress events will not be generated during the transfer.

Data Type
Integer (Int32)

See Also
GetData Method GetFile Method PutData Method PutFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyHost Property  

 

Gets and sets the host name of the proxy server.

Syntax
object.ProxyHost [= hostname ]

Remarks
The ProxyHost property should be set to the name of the proxy server that you want to connect
to. This property may be set to either a fully qualified domain name, or an IP address. This
property is only used if the ProxyType property is set to a non-zero value.

Data Type
String

See Also
HostAddress Property, Password Property, ProxyPassword Property, ProxyPort Property,
ProxyType Property, ProxyUser Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyPassword Property  

 

Gets and sets the proxy server password for the current user.

Syntax
object.ProxyPassword [= password ]

Remarks
The ProxyPassword property specifies the password used to authenticate the user to the proxy
server. If a password is not required by the server, this property is ignored.

Data Type
String

See Also
HostAddress Property, Password Property, ProxyHost Property, ProxyPort Property, ProxyType
Property, ProxyUser Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyPort Property  

 

Gets and sets the port number for the proxy server.

Syntax
object.ProxyPort [= portno%]

Remarks
The ProxyPort property is used to set the port number that the control will use to establish a
connection with the proxy server. A value of zero specifies that the client will connect to the proxy
server using the standard FTP service port.

Data Type
Integer (Int32)

See Also
HostAddress Property, Password Property, ProxyHost Property, ProxyPassword Property,
ProxyType Property, ProxyUser Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyType Property  

 

Gets and sets the current proxy server type.

Syntax
object.ProxyType [= proxytype ]

Remarks
The ProxyType property specifies the type of proxy server that the client is connecting to. The
supported proxy server types are as follows:

Value Constant Description

0 ftpProxyTypeNone No proxy server is being used. This is the default value.

1 ftpProxyTypeUser The client is not logged into the proxy server. The USER command
is sent in the format username@ftpsite followed by the password.
This is the format used with the Gauntlet proxy server.

2 ftpProxyTypeLogin The client is logged into the proxy server. The USER command is
then sent in the format username@ftpsite followed by the
password. This is the format used by the InterLock proxy server.

3 ftpProxyTypeOpen The client is not logged into the proxy server. The OPEN command
is sent specifying the host name, followed by the username and
password.

4 ftpProxyTypeSite The client is logged into the server. The SITE command is sent,
specifying the host name, followed by the username and the
password.

255 ftpProxyTypeOther This special proxy type specifies that another, undefined proxy
server is being used. The client connects to the proxy host, but
does not attempt to authenticate the client. The application is
responsible for negotiating with the proxy server, typically using the
Command property to send specific command sequences.

Data Type
Integer (Int32)

See Also
HostAddress Property, Password Property, ProxyHost Property, ProxyPassword Property,
ProxyPort Property, ProxyUser Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyUser Property  

 

Gets and sets the current proxy user name.

Syntax
object.ProxyUser [= username ]

Remarks
The ProxyUser property specifies the user that is logging in to the proxy server. If the proxy server
does not require the user to login, then this property is ignored.

Data Type
String

See Also
HostAddress Property, Password Property, ProxyHost Property, ProxyPassword Property,
ProxyPort Property, ProxyType Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemoteFile Property  

 

Sets or returns the file name specified in the current URL.

Syntax
object.RemoteFile [= value ]

Remarks
The RemoteFile property returns the name of the file that was specified when the URL property
was set. Changing the value of this property causes the URL to change. Note that the control does
not check to make sure that the remote file name is valid or that it exists on the server, it is simply
a string that is part of the FTP URL.

Data Type
String

See Also
RemotePath Property, URL Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePath Property  

 

Sets or returns the path specified in the current URL.

Syntax
object.RemotePath [= value ]

Remarks
The RemotePath property returns the path that was specified when the URL property was set.
Changing the value of this property causes the URL to change. Note that the control does not
check to make sure that the remote path is valid or that it exists on the server, it is simply a string
that is part of the FTP URL.

Note that the path is relative to the user's home directory and should not be considered an
absolute path from the root directory on the server. If no username and password is provided,
then an anonymous session is used and the path is relative to the public directory used by the FTP
server.

Data Type
String

See Also
RemoteFile Property, URL Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultCode Property  

 

Return the result code of the previous action.

Syntax
object.ResultCode

Remarks
The ResultCode read-only property returns the result code of the last action performed by the
client. This property should be checked after the Command method is used to execute a
command on the server to determine if the operation was successful. Result codes are three-digit
numeric values returned by the server and may be broken down into the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being
initiated, and the client should expect another reply from the server before
proceeding.

200-
299

Positive completion result. This indicates that the server has successfully
completed the requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot
complete until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action
did not take place, but the error condition is temporary and may be attempted
again.

500-
599

Permanent negative completion result. This indicates that the requested action
did not take place.

It is important to note that while some result codes have become standardized, not all servers
respond to commands using the same result codes. For example, one server may respond with a
result code of 221 to indicate success, while another may respond with a value of 235. It is
recommended that applications check for ranges of values to determine if a command was
successful, not a specific value.

Data Type
Integer (Int32)

See Also
ResultString Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultString Property  

 

Return a string describing the results of the previous action.

Syntax
object.ResultString

Remarks
The ResultString read-only property returns the result string from the last action taken by the
client. This string is generated by the server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition
that caused the error.

Data Type
String

See Also
ResultCode Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if a connection to the server is secure.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application must set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may request files or
submit queries to the server as with standard connections.

It is strongly recommended that any application that sets this property True use error handling to
trap an errors that may occur. If the control is unable to initialize the security libraries, or otherwise
cannot create a secure session for the client, an error will be generated when this property value is
set.

Data Type
Boolean

Example
The following example establishes a secure connection to a server and retrieves a file:

FtpClient1.HostName = strHostName
FtpClient1.RemotePort = 21
FtpClient1.UserName = strUserName
FtpClient1.Password = strPassword
FtpClient1.Secure = True

nError = FtpClient1.Connect()
If nError > 0 Then
    MsgBox "Unable to connect to server " & strHostName, vbExclamation
    Exit Sub
End If

If FtpClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          FtpClient1.Disconnect
          Exit Sub
     End If
End If

nError = FtpClient1.GetFile(strLocalFile, strRemoteFile)
FtpClient1.Disconnect

If nError > 0 Then
    MsgBox "Unable to download " & strRemoteFile, vbExclamation
    Exit Sub
End If

 



See Also
CertificateStatus Property, Connect Method



 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 stCipherNone No cipher has been selected. This is not a secure connection
with the server.

1 stCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

2 stCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

4 stCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 stCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 stCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 stCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 stCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 stCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 stCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Value Constant Description

1 stHashMD5 The MD5 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

2 stHashSHA1 The SHA-1 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

4 stHashSHA256 The SHA-256 algorithm has been selected.

8 stHashSHA384 The SHA-384 algorithm has been selected.

16 stHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 stKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 stKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 stKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 stKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 stKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange algorithm
was selected. This is a variant of the Diffie-Hellman
algorithm which uses elliptic curve cryptography. This
key exchange algorithm is only supported on Windows
XP SP3 and later versions of the operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

 



established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 System Property  

 

Return information about the server.

Syntax
object.System

Remarks
The System property returns information about the server operating system. This is a read-only
property that can be used by the application to identify the type of server that the client has
connected to. Reading this property will cause the SYST command to be sent to the server and will
only return a useful value after a connection has been established with the server.

By convention, the first whitespace separated token in the string identifies the general operating
system platform. For example, here are some strings commonly returned by various FTP servers:

Example Description

UNIX Type: L8 A standard UNIX based server. This is the most common value
returned by servers, and this indicates that the server supports UNIX
file naming and directory listing conventions. This string may also
include additional information such as the specific variant of UNIX
and its version. The L8 portion of the string is a convention that lets
the client know that a byte consists of 8 bits.

Windows_NT
Version 5.0

A standard Windows based server, typically part of Internet
Information Services (ISS). The server will use Windows file naming
and directory listing conventions. The version identifies the specific
release of Windows. For example, version 4.0 specifies Windows NT
4.0 and 5.0 specifies Windows 2000.

VMS V7.1
AlphaServer

A server running the VMS operating system. The server will use the
standard file naming and directory listing conventions for that
platform. Note that it is possible that a VMS system may also be
configured to operate in a UNIX emulation mode, in which case it will
return UNIX instead of VMS.

NetWare
system type

A server running the NetWare operating system. The server will use
the standard file naming and directory listing conventions for that
platform. Note that it is possible that a NetWare system may be
configured to operate in a UNIX emulation mode, in which case it
return UNIX instead of NetWare.

WORLDGROUP
Type: L8

A server running the WorldGroup software on the Windows platform.
This server supports UNIX file naming and directory listing
conventions. WorldGroup is a collaborative workgroup, email and file
sharing service which includes an FTP server.

Data Type
String

See Also
DirectoryFormat Property, IsConnected Property, Connect Method, Disconnect Method

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskCount Property  

 

Return the number of active background file transfers.

Syntax
object.TaskCount

Remarks
The TaskCount property returns the number of background file transfers that are currently in
progress. One common use for this property is to create a timer that periodically checks this value
when a series of background transfers are started. When the property returns a value of zero, that
indicates all of the background transfers have completed. This property can also be used to
enumerate the active background tasks in conjunction with the TaskList property.

Data Type
Integer (Int32)

See Also
TaskList Property, AsyncGetFile Method, AsyncPutFile Method, TaskAbort Method, TaskWait
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskId Property  

 

Return the task ID for the last background file transfer.

Syntax
object.TaskId

Remarks
The TaskId property returns the task ID associated with the last background task that started. The
value of this property is only meaningful after the AsyncGetFile or AsyncPutFile method is called
to initiate a background file transfer, and the value will change with each subsequent background
transfer that is performed. If this property returns a value of zero, that indicates that no
background tasks have been started for this instance of the control.

To enumerate the active background tasks, use the TaskCount property and the TaskList
property array.

Data Type
Integer (Int32)

See Also
TaskCount Property, TaskList Property, AsyncGetFile Method, AsyncPutFile Method, TaskAbort
Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskList Property  

 

Return the task ID for an active background file transfer.

Syntax
object.TaskList(Index)

Remarks
The TaskList property is a zero-based array that returns an ID associated with an active
background task. The current number of active tasks can be determined using the TaskCount
property. If the index value specified for this property array exceeds the number of active tasks, an
exception will be thrown.

As background tasks complete and additional tasks are started, the values returned by this
property array will change. The application should never make an assumption about the actual
task ID values returned or the order they are returned. While task IDs are assigned sequentially,
they should be considered opaque values that are unique to the process. When a background
task completes, its corresponding task ID is removed from the list of active tasks and this can
potentially change the task ID values associated with each index into the property array.

Data Type
Integer (Int32)

See Also
TaskCount Property, TaskId Property, AsyncGetFile Method, AsyncPutFile Method, TaskAbort
Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

FtpClient1.ThrowError = False
nError = FtpClient1.Connect(strHostName)

If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

FtpClient1.ThrowError = True
FtpClient1.Connect strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 ftpTraceInfo All function calls are written to the trace file, including
information about successful calls made to the networking
library. This is the default value.

1 ftpTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 ftpTraceWarning Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file. Successful
function calls are not logged.

4 ftpTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII and
hexadecimal format. This is useful for examining the actual
byte stream that is exchanged between the application and
the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferBytes Property  

 

Return the number of bytes transferred from the server.

Syntax
object.TransferBytes

Remarks
The TransferBytes property returns the number of bytes that have been copied to or from the
FTP server. If this property is read while a transfer is ongoing, the property returns the number of
bytes that have been copied up to that point. If read after a transfer has completed, the total
number of bytes copied is returned.

If the value would exceed 2,147,483,647 bytes (the maximum value for a 32-bit integer) this
property will return -1 to indicate an overflow condition. If you are potentially transferring files
larger than 2 GiB in size, you should use the TransferBytesXL property instead, which returns the
number of bytes as a Double floating-point value.

This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytesXL Property, TransferRate Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferBytesXL Property  

 

Return the number of bytes transferred from the server.

Syntax
object.TransferBytesXL

Remarks
The TransferBytesXL property returns the number of bytes that have been copied to or from the
FTP server. This property returns the number of bytes as a Double floating-point value instead of
a Long integer, making it suitable for very large files that exceed 2 GiB in size.

If this property is read while a transfer is ongoing, the property returns the number of bytes that
have been copied up to that point. If read after a transfer has completed, the total number of
bytes copied is returned.

This property value is reset with every data transfer.

Data Type
Double

See Also
TransferRate Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferRate Property  

 

Return the current file transfer rate in bytes per second.

Syntax
object.TransferRate

Remarks
The TransferRate property returns the rate at which the file data is being transferred, expressed in
bytes per second. If this property is read while a transfer is ongoing, it returns the current average
transfer rate.

If this property is read after the transfer has completed, it returns the final transfer rate which is
calculated as the total number of bytes transferred divided by the number of seconds to complete
the transfer. This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytes Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferTime Property  

 

Return the number of seconds elapsed during a data transfer.

Syntax
object.TransferTime

Remarks
The TransferTime property returns the number of seconds that have elapsed since the last data
connection was opened on the server. If the property is read while a transfer is ongoing, it returns
the current elapsed time since the file transfer started.

If the property is read after the transfer has completed, it returns the total number of seconds it
took to transfer the file. This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytes Property, TransferRate Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 URL Property  

 

Gets and sets the current URL used to access a file on the server.

Syntax
object.URL [= url ]

Remarks
The URL property returns the current Uniform Resource Locator string which is used by the control to
access a file on the server. URLs have a specific format which provides information about the server,
port, path and file name, as well as optional information such as a username and password for
authentication:

[ftp|ftps|sftp]://[username:
[password]@]hostname[:port]/[path/...]filename[;type=id]

The first part of the URL is the scheme, and in this case will always be "ftp", "ftps" or "sftp" depending
on which protocol is required. If a username and password is required for authentication, then this will
be included in the URL before the name of the server; otherwise an anonymous FTP session is
assumed. Next, there is the name of the server to connect to, optionally followed by a port number. If
no port number is given, then the default port for the protocol will be used. This is followed by the
path, and then the name of the file on the server. An optional file type may be specified as well, with
the type identifier being either "a" for text files or "i" for binary files.

One important consideration when using FTP URLs is that the path is relative to the user's home
directory and should not be considered an absolute path from the root directory on the server. If no
username and password is provided, then an anonymous session is used and the path is relative to
the public directory used by the FTP server.

Here are some common examples of URLs used to access files on an FTP server:

ftp://www.example.com/pub/financial/jan2023.xlsx 
In this example, the server is www.example.com, the path is "pub/financial" and the file name
is "jan2023.xlsx". The default port will be used to access the file, and no username and
password is provided for authentication so this file must be publicly available to anonymous
users.

ftp://www.example.com:2121/employees/picnic.docx 
In this example, the server is www.example.com, the path is "employees" and the file name is
"picnic.docx". However, the client should connect to an alternative port number, in this case
2121. This file must also be available to anonymous users because no username or password
has been specified.

ftps://executive:secret@www.example.com/corporate/projections/sales2024.xlsx

In this example, the server is www.example.com and, the path is "corporate/projections" and
the file name is "sales2024.xlsx". Because the protocol is ftps, a secure connection on port 990
will be established. The user name "executive" and password "secret" will be used to
authenticate the session.

When setting the URL property, the control will parse the string and automatically update the
HostName, RemotePort, UserName, Password, RemotePath and RemoteFile properties
according to the values specified in the URL. This enables an application to simply provide the URL
and then call the Connect method to establish the connection.

Note that if this property is assigned a value which cannot be parsed, the control will throw an error
that indicates that the property value is invalid. In a language like Visual Basic it is important that you

 



implement an error handler, particularly if you are assigning a value to the property based on user
input. If the user enters an invalid URL and there is no error handler, it could result in an exception
which terminates the application.

Data Type
String

Example
' Setup error handling since the control will throw an error
' if an invalid URL is specified

On Error Resume Next: Err.Clear
FtpClient1.URL = Text1.Text

' Check the Err object to see if an error has occurred, and
' if so, let the user know that the URL is invalid

If Err.Number <> 0 Then
    MsgBox "The specified URL is invalid", vbExclamation
    Text1.SetFocus
    Exit Sub
End If

' Reset error handling and connect to the server using the
' default property values that were updated when the URL
' property was set (ie: HostName, RemotePort, UserName, etc.)

On Error GoTo 0
nError = FtpClient1.Connect()

If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' Change to the directory specified by the RemotePath property

nError = FtpClient1.ChangeDirectory(FtpClient1.RemotePath)
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' Download the file to the local system
strLocalFile = strLocalPath & "\" & FtpClient1.RemoteFile
nError = FtpClient1.GetFile(FtpClient1.RemoteFile, strLocalFile)

See Also
HostAddress Property, HostName Property, Password Property, RemoteFile Property, RemotePath
Property, RemotePort Property, UserName Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= username ]

Remarks
The UserName property specifies the user that is logging in to the server, and is required for
authentication purposes.

Data Type
String

See Also
Account Property, Password Property, Connect Method, Login Method, Logout Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Protocol Control Methods  

 

Method Description

AddFileType Associate a file name extension with a specific file type

AsyncGetFile Download a file from the server to the local system in the background

AsyncPutFile Upload a file from the local system to the server in the background

Cancel Cancels the current blocking network operation

ChangeDirectory Return data read from the server

CloseDirectory Close the directory that was opened for reading on the server

CloseFile Close the remote file that was opened for reading or writing

Command Send a custom command to the server

Connect Establish a connection with a server

CreateFile Create a new file or overwrite an existing file

DeleteFile Delete a file on the server

Disconnect Terminate the connection with a server

GetData Download the contents of a file and return it in the specified buffer

GetDirectory Return the current working directory on the server

GetFile Download a file from the server to the local system

GetFileList Return an unparsed list of files in the specified directory

GetFilePermissions Return the access permissions for a file on the remote system

GetFileSize Returns the size of the specified file on the server

GetFileStatus Return status information about a specific file

GetFileTime Returns the modification date and time for specified file on the server

GetFileType Returns the file type for a file on the local system

GetMultipleFiles Download multiple files from the server to the local system

GetText Download the contents of a text file and return it in a string buffer

Initialize Initialize the control and validate the runtime license key

Login Login to the server

Logout Log the current user off the server

MakeDirectory Create a new directory on the server

OpenDirectory Open the specified directory on the server for reading

OpenFile Open an existing file or creates a new file on the server

PutData Upload the contents of buffer and store it in a file on the server

PutFile Upload a file from the local system to the server

 



PutMultipleFiles Upload multiple files from the local system to the server

PutText Upload the contents of a string buffer and store it in a text file on the server

Read Return data read from the server

ReadDirectory Read a directory entry from the server

RemoveDirectory Remove a directory on the server

RenameFile Change the name of a file on the server

Reset Reset the internal state of the control

SetFilePermissions Change the access permissions for a file on the server

SetFileTime Changes the modification date and time for a file on the server

TaskAbort Abort the specified asynchronous task

TaskDone Determine if an asynchronous task has completed

TaskResume Resume execution of an asynchronous task

TaskSuspend Suspend execution of an asynchronous task

TaskWait Wait for an asynchronous task to complete

Uninitialize Uninitialize the control and release any system resources that were allocated

VerifyFile Compare the contents of a local file against a file stored on the server

Write Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AddFileType Method  

 

Associate a file name extension with a specific file type.

Syntax
object.AddFileType( FileExtension, FileType )

Parameters
FileExtension

A string that specifies the file name extension.

FileType

Specifies the type of file associated with the file extension. This parameter can be one of the
following values:

Value Constant Description

1 ftpFileTypeASCII The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings. The constant
ftpFileTypeText is an alias for this value.

2 ftpFileTypeEBCDIC The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved from
the server. Not all servers support this file type. It is recommended
that you only specify this type if you know that it is required by the
server to transfer data correctly.

3 ftpFileTypeImage The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data files
and executable programs. If the type of file cannot be automatically
determined, it will always be considered a binary file. If this file type
is specified when uploading or downloading text files, the native
end-of-line character sequences will be preserved. The constant
ftpFileTypeBinary is an alias for this value.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AddFileType method is used to associate specific file types with file name extensions. The
control has an internal list of standard text file extensions which it automatically recognizes. This
method can be used to extend or modify that list for the client session.

See Also
FileType Property, GetFile Method, GetFileType Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/ftp/control/method/getfilestype.html


 AsyncGetFile Method  

 

Download a file from the server to the local system in the background.

Syntax
object.AsyncGetFile( LocalFile, RemoteFile, [Options], [Offset] )

Parameters
LocalFile

A string that specifies the file on the local system that will be created, overwritten or appended
to. The file pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies the file on the server that will be transferred to the local system. The file
pathing and name conventions must be that of the server.

Options

A numeric bitmask which specifies one or more options. This argument may be any one of the
following values:

Value Constant Description

0 ftpTransferDefault This option specifies the default transfer mode should be
used. If the local file exists, it will be overwritten with the
contents of the remote file. If the Options argument is
omitted, this is the transfer mode which will be used.

1 ftpTransferAppend This option specifies that if the local file exists, the contents
of file on the server is appended to the local file. If the
local file does not exist, it is created.

Offset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local
system. It is similar to the GetFile method, however it retrieves the file using a background worker
thread and does not block the current working thread. This enables the application to continue to
perform other operations while the file is being downloaded from the server. This method requires
that you explicitly establish a connection using the Connect method. All background tasks will
duplicate the active connection and use it establish a secondary connection with the server to
perform the file transfer. If you wish to perform multiple asynchronous file transfers from different
servers, you must create an instance of the control for each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background
task has begun the process of connecting to the server and performing the file transfer. As the file

 



is downloaded, the control will periodically invoke the OnTaskRun event handler. When the
transfer has completed, the OnTaskEnd event will be fired. It is not required that you implement
handlers for these events.

To determine when a transfer has completed without implementing any event handlers,
periodically call the TaskDone method. If you wish to block the current thread and wait for the
transfer to complete, call the TaskWait method. To stop a background file transfer that is in
progress, call the TaskAbort method. This will signal the background worker thread to cancel the
transfer and terminate the session.

This method can be called multiple times to download more than one file in the background;
however, most servers limit the number of simultaneous connections that can originate from a
single IP address. The application should not make any assumptions about the sequence in which
background transfers are performed or the order in which they may complete.

Example
' Establish a connection to the server
nError = FtpClient1.Connect(strHostName, 21, strUserName, strPassword)
    
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If
    
' Download a file in the background
nError = FtpClient1.AsyncGetFile(strLocalFile, strRemoteFile)
    
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
TaskId Property, AsyncPutFile Method, TaskAbort Method, TaskDone Method, TaskWait Method,
OnTaskBegin Event, OnTaskEnd Event, OnTaskRun Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AsyncPutFile Method  

 

Upload a file from the local system to the server in the background.

Syntax
object.AsyncPutFile( LocalFile, RemoteFile, [Options], [Offset] )

Parameters
LocalFile

A string that specifies the file on the local system that will be transferred to the server. The file
pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies the file on the server that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the server.

Options

A numeric bitmask which specifies one or more options. This argument may be any one of the
following values:

Value Constant Description

0 ftpTransferDefault This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with the
contents of the local file. If the Options argument is
omitted, this is the transfer mode which will be used.

1 ftpTransferAppend This option specifies that if the remote file exists, the
contents of file on the local system is appended to the
remote file. If the remote file does not exist, it is created.

Offset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is
similar to the PutFile method, however it retrieves the file using a background worker thread and
does not block the current working thread. This enables the application to continue to perform
other operations while the file is being uploaded to the server. This method requires that you
explicitly establish a connection using the Connect method. All background tasks will duplicate the
active connection and use it establish a secondary connection with the server to perform the file
transfer. If you wish to perform multiple asynchronous file transfers from different servers, you
must create an instance of the control for each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background
task has begun the process of connecting to the server and performing the file transfer. As the file

 



is uploaded, the control will periodically invoke the OnTaskRun event handler. When the transfer
has completed, the OnTaskEnd event will be fired. It is not required that you implement handlers
for these events.

To determine when a transfer has completed without implementing any event handlers,
periodically call the TaskDone method. If you wish to block the current thread and wait for the
transfer to complete, call the TaskWait method. To stop a background file transfer that is in
progress, call the TaskAbort method. This will signal the background worker thread to cancel the
transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background;
however, most servers limit the number of simultaneous connections that can originate from a
single IP address. The application should not make any assumptions about the sequence in which
background transfers are performed or the order in which they may complete.

Example
' Establish a connection to the server
nError = FtpClient1.Connect(strHostName, 21, strUserName, strPassword)
    
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If
    
' Upload a file in the background
nError = FtpClient1.AsyncPutFile(strLocalFile, strRemoteFile)
    
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
TaskId Property, AsyncGetFile Method, TaskAbort Method, TaskDone Method, TaskWait Method,
OnTaskBegin Event, OnTaskEnd Event, OnTaskRun Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Disconnect Method, Reset Method, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ChangeDirectory Method  

 

Change the current working directory on the server.

Syntax
object.ChangeDirectory( RemotePath )

Parameters
RemotePath

A string which specifies the directory on the server. The file naming conventions must be that of
the host operating system.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ChangeDirectory method changes the current working directory on the server. This function
uses the CWD command to change the current working directory. The user must have the
appropriate permission to access the specified directory.

See Also
CloseDirectory Method, GetDirectory Method, OpenDirectory Method, ReadDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CloseDirectory Method  

 

Close the directory that was opened for reading on the server.

Syntax
object.CloseDirectory

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The CloseDirectory method closes the directory that was opened on the server using the
OpenDirectory method. This method must be called once all of the files have been read from the
server, otherwise an error will be returned on all subsequent attempts to transfer files or read
other directories.

See Also
OpenDirectory Method, ReadDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CloseFile Method  

 

Close the remote file that was opened for reading or writing.

Syntax
object.CloseFile

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The CloseFile method closes the file that was created using the CreateFile method, or opened for
reading using the OpenFile method.

See Also
CreateFile Method, OpenFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Command Method  

 

Send a custom command to the server.

Syntax
object.Command( Command, [Parameters], [Options] )

Parameters
Command

A string which specifies the command to send. Valid commands vary based on the Internet
protocol and the type of server that the client is connected to. Consult the protocol standard
and/or the technical reference documentation for the server to determine what commands may
be issued by a client application.

Parameters

An optional string which specifies one or more parameters to be sent along with the command.
If more than one parameter is required, most Internet protocols require that they be separated
by a single space character. Consult the protocol standard and/or technical reference
documentation for the server to determine what parameters should be provided when issuing a
specific command. If no parameters are required for the command, this argument may be
omitted.

Options

A numeric value which specifies one or more options. Currently this argument is reserved and
should either be omitted, or a value of zero should always be used.

Return Value
A value of zero is returned if the command was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure. To determine the result code returned by the
server in response to the command, read the value of the ResultCode property.

Remarks
The Command method sends a command to the server and processes the result code sent back
in response to that command. This method can be used to send custom commands to a server to
take advantage of features or capabilities that may not be supported internally by the control.

This method should only be used when the application needs to send a custom, site-specific
command or send a command that is not directly supported by the control. This method should
never be used to issue a command that opens a data channel. If the application needs to
transform data as it is being sent or received, and cannot use the GetFile or PutFile methods,
then use the OpenFile method to open a data channel with the server.

By default, file names which are sent to the server using the Command method are sent as ANSI
characters. If the server supports UTF-8 encoded file names, the Encoding property can be used
to specify that file names with non-ASCII characters should be sent as UTF-8 encoded values. It is
important to note that this option is only available if the server advertises support for UTF-8 and
permits that encoding type.

See Also
Encoding Property, Features Property, ResultCode Property, ResultString Property, OnCommand
Event

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

Establish a connection with a server.

Syntax
object.Connect( [RemoteHost], [RemotePort], [UserName], [Password], [Account], [Timeout],
[Options] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero indicates that the default
port number for this service should be used to establish the connection. If the secure port
number is specified, an implicit SSL/TLS connection will be established by default.

UserName

A string that specifies the user name to be used to authenticate the current client session. If this
argument is omitted, then the value of the UserName property will be used. If the user name is
specified as an empty string, then the login is considered to be anonymous.

Password

A string that specifies the password to be used to authenticate the current client session. If this
argument is omitted, then the value of the Password property will be used. This argument may
be empty string if no password is required for the specified user, or if no username has been
specified.

Account

A string that specifies the account name to be used to authenticate the current client session. If
this argument is omitted, then the value of the Account property will be used. This parameter
may be an empty string if no account name is required for the specified user.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

A numeric value which specifies one or more options. If this argument is omitted or a value of
zero is specified, a default, standard connection will be established. This argument is
constructed by using a bitwise operator with any of the following values:

Value Constant Description

1 ftpOptionPassive This option specifies the client should attempt to
establish a passive connection to the server. This
means that instead of the client opening a port
on the local system and waiting for the server to
establish a connection back to the client, the
client will establish a second data connection to



the server. This mode is recommended for most
systems that are behind a NAT router or firewall.

2 ftpOptionFirewall This option specifies the client should always use
the host IP address to establish the data
connection with the server, not the address
returned by the server in response to the PASV
command. This option may be necessary if the
server is behind a router that performs Network
Address Translation (NAT) and it returns an
unreachable IP address for the data connection.
If this option is specified, it will also enable
passive mode data transfers.

4 ftpOptionNoAuth This option specifies the server does not require
authentication, or that it requires an alternate
authentication method. When this option is used,
the client connection is flagged as authenticated
as soon as the connection to the server has been
established. Note that using this option to bypass
authentication may result in subsequent errors
when attempting to retrieve a directory listing or
transfer a file. It is recommended that you
consult the technical reference documentation
for the server to determine its specific
authentication requirements.

8 ftpOptionKeepAlive This option specifies the client should attempt to
keep the connection with the server active for an
extended period of time. It is important to note
that regardless of this option, the server may still
choose to disconnect client sessions that are
holding the command channel open but are not
performing file transfers.

&H10 ftpOptionNoAuthRSA This option specifies that RSA authentication
should not be used with SSH-1 connections. This
option is ignored with SSH-2 connections and
should only be specified if required by the server.
This option has no effect on standard or secure
connections using SSL.

&H20 ftpOptionNoPwdNul This option specifies the user password cannot
be terminated with a null character. This option is
ignored with SSH-2 connections and should only
be specified if required by the server. This option
has no effect on standard or secure connections
using SSL.

&H40 ftpOptionNoRekey This option specifies the client should never
attempt a repeat key exchange with the server.
Some SSH servers do not support rekeying the
session, and this can cause the client to become



 

non-responsive or abort the connection after
being connected for an hour. This option has no
effect on standard or secure connections using
SSL.

&H80 ftpOptionCompatSID This compatibility option changes how the
session ID is handled during public key
authentication with older SSH servers. This
option should only be specified when connecting
to servers that use OpenSSH 2.2.0 or earlier
versions. This option has no effect on standard
or secure connections using SSL.

&H100 ftpOptionCompatHMAC This compatibility option changes how the
HMAC authentication codes are generated. This
option should only be specified when connecting
to servers that use OpenSSH 2.2.0 or earlier
versions. This option has no effect on standard
or secure connections using SSL.

&H200 ftpOptionVirtualHost This option specifies the server supports virtual
hosting, where multiple domains are hosted by a
server using the same external IP address. If this
option is enabled, the client will send the HOST
command to the server upon establishing a
connection.

&H400 ftpOptionVerify This option specifies that file transfers should be
automatically verified after the transfer has
completed. If the server supports the XMD5
command, the transfer will be verified by
calculating an MD5 hash of the file contents. If
the server does not support the XMD5
command, but does support the XCRC
command, the transfer will be verified by
calculating a CRC32 checksum of the file
contents. If neither the XMD5 or XCRC
commands are supported, the transfer is verified
by comparing the size of the file. Automatic file
verification is only performed for binary mode
transfers because of the end-of-line conversion
that may occur when text files are uploaded or
downloaded.

&H800 ftpOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

&1000 ftpOptionSecure This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure

 



connections using either the SSL or TLS protocol.

&H2000 ftpOptionSecureExplicit This option specifies the client should use the
AUTH TLS-P command to negotiate an explicit
secure connection. Some servers may only
require this when connecting to the server on
ports other than 990.

&H4000 ftpOptionSecureShell This option specifies the client should use the
Secure Shell (SSH) protocol to establish the
connection. This option will automatically be
selected if the connection is established using
port 22, the default port for SSH, and is only
required if the server is configured to use a non-
standard port number.

&H8000 ftpOptionSecureFallback This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

&H10000 ftpOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards
to internal checks of the destination IP address
and remote port number, default capability
selection and how the connection is established.
This option also forces all connections to be
outbound and enables the firewall compatibility
features in the client.

&H20000 ftpOptionKeepAliveData This option specifies the client should attempt to
keep the control connection active during a file
transfer. Normally, when a data transfer is in
progress, no additional commands are issued on
the control channel until the transfer completes.
Specifying this option automatically enables the
ftpOptionKeepAlive option and forces the
client to continue to issue NOOP commands
during the file transfer. This option only applies
to FTP and FTPS connections and has no effect
on connections using SFTP (SSH).

&40000 ftpOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a



connection using IPv6 regardless if this option
has been specified.

&100000 ftpOptionHiResTimer This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller files being uploaded or
downloaded using fast network connections.

&200000 ftpOptionTLSReuse This option specifies that TLS session reuse
should be enabled for secure data connections.
Some servers may require this option be
enabled, although it should only used when
required. This option is only valid for secure FTP
(FTPS) connections and is not used with SFTP or
secure HTTP connections. See the remarks below
for more information.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
If the Options argument is omitted, then the value of the Options property will be used. Note that
specifying the ftpOptionPassive option is the same as setting the Passive property to True.

If the ftpOptionNoAuth option is specified, the control will not attempt to authenticate the client
session. Note that you may still explicitly call the Login method after the connection has been
established.

If the ftpOptionSecureExplicit option is specified, the client will first send an AUTH TLS command
to the server. If the server does not accept this command, it will then send an AUTH SSL
command. If both commands are rejected by the server, an explicit SSL session cannot be
established. By default, both the command and data channels will be encrypted when a secure
connection is established. To change this, set the ChannelMode property.

The fileOptionTLSReuse option is only supported on Windows 8.1 or Windows Server 2012 R2
and later platforms. This option is not compatible with servers built using OpenSSL 1.0.2 and
earlier versions which do not provide Extended Master Secret (EMS) support as outlined in
RFC7627. To avoid potential problems with server compatibility, you should not specify this option
for all FTP connections. It should only be used if specifically required by the server and your end-
users should have the ability to selectively enable or disable this option.

See Also
ActivePort Property, HostAddress Property, HostName Property, Options Property, Passive
Property. RemotePort Property, URL Property, Disconnect Method, OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreateFile Method  

 

Create a new file or overwrite an existing file.

Syntax
object.CreateFile( RemoteFile )

Parameters
RemoteFile

A string which specifies the name of the file to create on the server. The file pathing and name
conventions must be that of the server.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The CreateFile method creates a new file on the server using the specified file name. The Write
method may then be used to copy data to the open file. The user must have the appropriate
permission to create the file on the server.

See Also
CloseFile Method, OpenFile Method, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteFile Method  

 

Delete a file on the server.

Syntax
object.DeleteFile( RemoteFile )

Parameters
RemoteFile

A string which specifies the name of the file on the server that will be deleted. The file pathing
and name conventions must be that of the server.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The DeleteFile method deletes an existing file from the server. The user must have the
appropriate permission to delete the specified file.

See Also
RenameFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
IsConnected Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetData Method  

 

Download the contents of a file on the server and return it in a string or byte array.

Syntax
object.GetData( RemoteFile, Buffer, [Length], [Reserved] )

Parameters
RemoteFile

A string that specifies the file on the server that will be transferred to the local system. The file
pathing and name conventions must be that of the server.

Buffer

This parameter specifies the local buffer that the data will be stored in. If the variable is a String
type, then the data will be returned as a string of characters. This is the most appropriate data
type to use if the file on the server is a text file. If the remote file contains binary data, it is
recommended that a Byte array variable be specified as the argument to this method.

Length

An optional integer argument passed by reference which will specify the amount of data
received from the server when the method returns. For strings, this value specifies the number
of characters that were returned by the server. For byte arrays, this value specifies the number
of bytes that were returned.

Reserved

An argument reserved for future expansion. This argument should always be omitted or
specified as a numeric value of zero.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetData method transfers data from a file on the server to the local system, storing it in the
specified buffer . This method will cause the current thread to block until the file transfer
completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event
will fire periodically, enabling the application to update any user interface objects such as a
progress bar.

If you are returning the data into a String variable and the text you receive appears to corrupted
or characters are being replaced with question marks or other symbols, it is likely the file on the
server is using a different character encoding. Most applications use UTF-8 encoding to represent
non-ASCII characters; however, some text files may use a localized character set rather than using
Unicode. Using the GetText and PutText methods in combination with this property will change
how that text is converted to Unicode.

The value returned in the Length parameter may not be identical to the size of a text file on the
server. The end-of-line conventions may differ between the server and the local system, and
conversion to Unicode may cause differences in the character count. For example, if this method is
used to download a UTF-8 encoded text file which includes non-ASCII characters, those characters
will be converted to 16-bit Unicode characters. If you want an exact copy of the file as it is on the
server, make sure the FileType property is set to ftpFileTypeBinary and store the data in a Byte
array instead of a String variable.

 



See Also
CodePage Property, FileType Property, GetFile Method, GetText Method, PutData Method, PutFile
Method, PutText Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetDirectory Method  

 

Return the current working directory on the server.

Syntax
object.GetDirectory( RemotePath )

Parameters
RemotePath

A string variable which will contain the current working directory when the method returns.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetDirectory method returns the current working directory on the server. The method sends
the PWD command to the server.

See Also
ChangeDirectory, CloseDirectory Method, OpenDirectory Method, ReadDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFile Method  

 

Copy a file from the server to the local system.

Syntax
object.GetFile( LocalFile, RemoteFile, [Options], [Offset] )

Parameters
LocalFile

A string that specifies the file on the local system that will be created, overwritten or appended
to. The file pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies the file on the server that will be transferred to the local system. The file
pathing and name conventions must be that of the server.

Options

A numeric bitmask which specifies one or more options. This argument may be any one of the
following values:

Value Constant Description

0 ftpTransferDefault This option specifies the default transfer mode should be
used. If the local file exists, it will be overwritten with the
contents of the remote file. If the Options argument is
omitted, this is the transfer mode which will be used.

1 ftpTransferAppend This option specifies that if the local file exists, the contents
of file on the server is appended to the local file. If the
local file does not exist, it is created.

Offset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will
cause the current thread to block until the file transfer completes, a timeout occurs or the transfer
is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
BufferSize Property, Priority Property, GetData Method, GetMultipleFiles Method, PutData Method,
PutFile Method, VerifyFile Method, OnGetFile Event, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 GetFileList Method  

 

Return an unparsed list of files in the specified directory.

Syntax
object.GetFileList( RemotePath, Buffer, [Length], [Options] )

Parameters
RemotePath

A string which specifies the name of a directory on the server. The list of files and subdirectories
in that directory will be returned to the client. To obtain a list of files in the current working
directory on the server, use an empty string.

Buffer

A buffer that the data will be stored in. It is recommend that a String variable type is used,
although it is also possible to provide a Byte array as this argument, in which case the file listing
will converted to ANSI characters and fill the array. Any other variable type will cause this
method to throw an exception.

Length

A numeric value which specifies the maximum number of characters to read. If the argument is
omitted, then the maximum size of the buffer will be calculated automatically. In most cases, it is
not necessary to provide this argument.

Options

A numeric value which specifies how the list of files should be returned by the server. It may be
one of the following values:

Value Constant Description

0 ftpListDefault This option specifies the server should return a complete file
list, providing all of the information available about that file.
This typically includes the date and time the file was last
modified, the size of the file and access rights. This option is
the default, and will be used if the argument is omitted from
the method call.

1 ftpListNameOnly This option specifies the server should only return a list of file
names, with no additional information. This option may be
used if the server returns the file listing in a format that is not
recognized by the control.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFileList method returns a list of files in the specified directory, copying the data to a string
buffer. Unlike the ReadDirectory method that parses a directory listing, this method returns the
unparsed file list data. The actual format of the data that is returned depends on the operating
system and how the server implements file listings. For example, UNIX servers typically return the
output from the /bin/ls command.

 



Some servers may not support file listings for any directory other than the current working
directory. If an error is returned when specifying a directory name, try changing the current
working directory using the ChangeDirectory method and then call this method again, an empty
string as the RemotePath parameter.

This method can be particularly useful when the client is connected to a server that returns file
listings in a format that is not recognized by the control. The application can retrieve the unparsed
file listing from the server and parse the contents. Note that if you specify the ftpListNameOnly
option, the data will only contain a list of file names and there will be no way for the application to
know if they represent a regular file or a subdirectory.

This method is supported for both FTP and SFTP (SSH) connections, however the format of the
data may differ depending on which protocol is used. Most UNIX based FTP servers will not list
files and subdirectories that begin with a period, however most SFTP servers will return a list of all
files, even those that begin with a period.

This method will cause the current thread to block until the file listing completes, a timeout occurs
or the operation is canceled.

See Also
ChangeDirectory Method, OpenDirectory Method, ReadDirectory Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFilePermissions Method  

 

Return the access permissions for a file on the server.

Syntax
object.GetFilePermissions( RemoteFile, FilePerms )

Parameters
RemoteFile

A string that specifies the name of the file that the access permissions are to be returned for.
The filename cannot contain any wildcard characters.

FilePerms

A numeric variable which is set to the file permissions when the method returns. The file
permissions are represented as bit flags, and may be one or more of the following values:

Value Constant Description

1 ftpPermWorldExecute All users have permission to execute the contents of
the file. If this permission is set for a directory, this may
also grant all users the right to open that directory and
search for files in that directory.

2 ftpPermWorldWrite All users have permission to open the file for writing.
This permission grants any user the right to replace the
file. If this permission is set for a directory, this grants
any user the right to create and delete files.

4 ftpPermWorldRead All users have permission to open the file for reading.
This permission grants any user the right to download
the file to the local system.

8 ftpPermGroupExecute Users in the specified group have permission to
execute the contents of the file. If this permission is set
for a directory, this may also grant the user the right to
open that directory and search for files in that
directory.

16 ftpPermGroupWrite Users in the specified group have permission to open
the file for writing. On some platforms, this may also
imply permission to delete the file. If the current user is
in the same group as the file owner, this grants the
user the right to replace the file. If this permission is set
for a directory, this grants the user the right to create
and delete files.

32 ftpPermGroupRead Users in the specified group have permission to open
the file for reading. If the current user is in the same
group as the file owner, this grants the user the right
to download the file.

64 ftpPermOwnerExecute The owner has permission to execute the contents of
the file. The file is typically either a binary executable,
script or batch file. If this permission is set for a

 



directory, this may also grant the user the right to
open that directory and search for files in that
directory.

128 ftpPermOwnerWrite The owner has permission to open the file for writing.
If the current user is the owner of the file, this grants
the user the right to replace the file. If this permission
is set for a directory, this grants the user the right to
create and delete files.

256 ftpPermOwnerRead The owner has permission to open the file for reading.
If the current user is the owner of the file, this grants
the user the right to download the file to the local
system.

4096 ftpPermSymbolicLink The file is a symbolic link to another file. Symbolic links
are special types of files found on UNIX based systems
which are similar to Windows shortcuts.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFilePermissions method returns information about the access permissions for a specific
file on the server. This method uses the STAT command to retrieve information about the
specified file. If the server does not support the use of this command, an error will be returned.
You can use the Features property to determine what features are available and/or enabled on
the server.

Note that on some systems, the STAT command will not return information on files that contain
spaces or tabs in the filename. In this case, the method will fail.

Example
The following example demonstrates how to retrieve the access permissions for a file and then test
to see if the file can be read by the owner of that file:

nError = FtpClient1.GetFilePermissions(strFileName, nFilePerms)
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

If (nFilePerms And ftpPermOwnerRead) <> 0 Then
    MsgBox "The file " & strFileName & " can be read by the owner"
End If

See Also
Features Property, SetFilePermissions Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFileSize Method  

 

Returns the size of the specified file on the server.

Syntax
object.GetFileSize( RemoteFile, FileSize )

Parameters
RemoteFile

A string that specifies the name of the file on the server. The filename cannot contain any
wildcard characters and must follow the naming conventions of the operating system the server
is hosted on.

FileSize

A numeric variable which will be set to the size of the file on the server. Note that if the variable
is not large enough to contain the file size, an overflow error will occur. This parameter must be
passed by reference.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
This method uses the SIZE command to determine the length of the specified file. Not all servers
implement this command, in which case the method will fail. You can use the Features property
to determine what features are available and/or enabled on the server.

Note that if the file on the server is a text file, it is possible that the value returned by this method
will not match the size of the file when it is downloaded to the local system. This is because
different operating systems use different sequences of characters to mark the end of a line of text,
and when a file is transferred in text mode, the end of line character sequence is automatically
converted to a carriage return-linefeed, which is the convention used by the Windows platform.

Some FTP servers will refuse to return the size of a file if the current file type is set to
ftpFileTypeText because the size of a text file on the server may not accurately reflect what the
size of the file will be on the local system.

Example
The following example demonstrates how to retrieve the size a file on the server:

Dim nFileSize As Long

nError = FtpClient1.GetFileSize(strFileName, nFileSize)
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

MsgBox "The size of " & strFileName & " is " & nFileSize " bytes"

See Also
Features Property, GetFileStatus Method, GetFileTime Method

 

  



Copyright © 2024 Catalyst Development Corporation. All rights reserved.



 GetFileStatus Method  

Return status information about a specific file.

Syntax
object.GetFileStatus( FileName, [FileLength], [FileDate], [FileOwner], [FileGroup], [FilePerms],
[IsDirectory] )

Parameters
FileName

A string which specifies the name of the file that status information will be returned for.

FileLength

An optional numeric argument which will specify the size of the file on the server. Note that if
this is a text file, the file size may be different on the server than it is on the local system. This is
because different operating systems use different conventions that indicate the end of a line
and/or the end of the file. On MS-DOS and Windows platforms, directories have a file size of
zero bytes. This parameter must be passed by reference.

FileDate

An optional string argument which will specify the date and time the file was created or last
modified on the server. The date format that is returned is expressed in local time (in other
words, the timezone of the server is not taken into account) and depends on both the local host
settings via the Control Panel and the format of the date and time information returned by the
server. This parameter must be passed by reference.

FileOwner

An optional string argument which will specify the owner of the file on the server. On some
platforms, this information may not be available for security reasons if an anonymous login
session was specified. This parameter must be passed by reference.

FileGroup

An optional string argument which will specify the group that the file owner belongs to. On
some platforms, this information may not be available for security reasons if an anonymous
login session was specified. This parameter must be passed by reference.

FilePerms

An optional numeric argument which will specify the permissions assigned to the file. This value
is actually a combination of one or more bit flags that specify the individual permissions for the
file owner, group and world (all other users). This parameter must be passed by reference. The
permissions are as follows:

Value Constant Description

1 ftpPermWorldExecute All users have permission to execute the contents of
the file. If this permission is set for a directory, this may
also grant all users the right to open that directory and
search for files in that directory.

2 ftpPermWorldWrite All users have permission to open the file for writing.
This permission grants any user the right to replace the
file. If this permission is set for a directory, this grants
any user the right to create and delete files.



 

4 ftpPermWorldRead All users have permission to open the file for reading.
This permission grants any user the right to download
the file to the local system.

8 ftpPermGroupExecute Users in the specified group have permission to
execute the contents of the file. If this permission is set
for a directory, this may also grant the user the right to
open that directory and search for files in that
directory.

16 ftpPermGroupWrite Users in the specified group have permission to open
the file for writing. On some platforms, this may also
imply permission to delete the file. If the current user is
in the same group as the file owner, this grants the
user the right to replace the file. If this permission is set
for a directory, this grants the user the right to create
and delete files.

32 ftpPermGroupRead Users in the specified group have permission to open
the file for reading. If the current user is in the same
group as the file owner, this grants the user the right
to download the file.

64 ftpPermOwnerExecute The owner has permission to execute the contents of
the file. The file is typically either a binary executable,
script or batch file. If this permission is set for a
directory, this may also grant the user the right to
open that directory and search for files in that
directory.

128 ftpPermOwnerWrite The owner has permission to open the file for writing.
If the current user is the owner of the file, this grants
the user the right to replace the file. If this permission
is set for a directory, this grants the user the right to
create and delete files.

256 ftpPermOwnerRead The owner has permission to open the file for reading.
If the current user is the owner of the file, this grants
the user the right to download the file to the local
system.

4096 ftpPermSymbolicLink The file is a symbolic link to another file. Symbolic links
are special types of files found on UNIX based systems
which are similar to Windows shortcuts.

IsDirectory

An optional boolean value which will specify if the file is a directory or a regular file. This
parameter must be passed by reference.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks

 



The GetFileStatus method returns information about the specified file. The filename must be
specified using the server file naming conventions, and cannot include wildcard characters. The
primary difference between using this method and using the OpenDirectory and ReadDirectory
methods to obtain file information is that the file status information is returned on the command
channel. This method cannot be used while a file transfer is in progress or while a file listing is
being returned by the server.

Note that this method requires that the server return file status information in response to the
STAT command. Some servers, for example on VMS platforms, do not provide this information.
On some systems, the STAT command will not return information on files that contain spaces or
tabs (whitespace) in the filename. In this case, the method will set the specified arguments to
empty strings and zero values.

See Also
ParseList Property, CloseDirectory Method, OpenDirectory Method, ReadDirectory Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFileTime Method  

 

Returns the modification date and time for specified file on the server.

Syntax
object.GetFileTime( RemoteFile, FileDate )

Parameters
RemoteFile

A string that specifies the name of the file on the server. The filename cannot contain any
wildcard characters and must follow the naming conventions of the operating system the server
is hosted on.

FileDate

A variable that will be set to the date and time that the file was last modified. The variable's data
type must either be Variant, String or Date. This parameter must be passed by reference.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFileTime method returns the modification date and time for the specified file on the
server using the MTDM command. If the server does not support this command, the method will
attempt to use the STAT command to determine the file modification time. You can use the
Features property to determine what features are available and/or enabled on the server.

The Localize property will determine if the returned file time is adjusted for the local timezone.

Example
The following example demonstrates how to retrieve the size a file on the server:

Dim dateFileTime As Date

nError = FtpClient1.GetFileTime(strFileName, dateFileTime)
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

MsgBox strFileName & " was modified on " & dateFileTime

See Also
Features Property, Localize Property, GetFileStatus Method, GetFileSize Method, SetFileTime
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFileType Method  

 

Returns the file type for a file on the local system.

Syntax
object.GetFileType( FileName, ScanFile )

Parameters
FileName

A string which specifies the name of a file on the local system. The file does not need to exist if
the ScanFile parameter is False. If an existing file is specified, it cannot be the name of a device
or a directory, otherwise the method will fail.

ScanFile

An optional Boolean value which specifies if the contents of the file should be scanned. A value
of False indicates that only the file extension should be used to determine the file type, while a
value of True specifies the contents of the file should be examined if the file type cannot be
determined based on its extension. If this parameter is omitted, the default value is False.

Return Value
An integer value of zero or greater which identifies the file type using the same values as the
FileType property. If the method fails, it will return -1 indicating an error condition. The value of
the LastError property can be used to determine the cause of the failure.

Remarks
This method is used to determine the file transfer type to be used when uploading or
downloading files. This method is used internally when ftpFileTypeAuto is specified as the default
file type. The return value may be one of the following:

Value Constant Description

1 ftpFileTypeASCII The file is a text file using the ASCII character set. For those
servers which mark the end of a line with characters other
than a carriage return and linefeed, it will be converted to
the native client format. This is the file type used for
directory listings. The constant ftpFileTypeText is an alias
for this value.

2 ftpFileTypeEBCDIC The file is a text file using the EBCDIC character set. Local
files will be converted to EBCDIC when sent to the server.
Remote files will be converted to the native ASCII character
set when retrieved from the server. Not all servers support
this file type. It is recommended that you only specify this
type if you know that it is required by the server to transfer
data correctly.

3 ftpFileTypeImage The file is a binary file and no data conversion of any type
is performed on the file. This is the default file type for
most data files and executable programs. If the type of file
cannot be automatically determined, it will always be
considered a binary file. If this file type is specified when
uploading or downloading text files, the native end-of-line

 



character sequences will be preserved. The constant
ftpFileTypeBinary is an alias for this value.

If the file extension or contents are not recognized, the default file transfer type for the client
session will be returned. This will usually be ftpFileTypeImage, however this can be changed by
calling the AddFileType method. The file type for the current client session can be explicitly set
using the FileType property.

If the ScanFile parameter is True, the local file will be opened in a shared reading mode and up to
4,096 bytes will be examined to determine if it contains binary data. If the file is currently locked or
has been opened exclusively by another process, the file type associated with the file extension will
be returned instead. Text files which contain UTF-16 text will always return a file type of
ftpFileTypeImage because they can contain non-ASCII characters and/or embedded null
characters.

If the ScanFile parameter is True and the file type cannot be determined based on the file name
extension, the file specified by FileName must exist and be a regular file. If the file does not exist,
an error will be returned and the last error code will be set to stErrorFileNotFound. If the
ScanFile parameter is False, no errors will be returned if the file does not exist, the function will
only check the file name extension to determine the file type. When downloading a file, the
ScanFile parameter should normally be zero because the local file may not exist yet.

See Also
FileType Property, AddFileType Method, GetFile Method, PutFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetMultipleFiles Method  

 

Transfer multiple files from the server to the local system.

Syntax
object.GetMultipleFiles( LocalPath, RemotePath, [FileMask], [Reserved] )

Parameters
LocalPath

A string argument which specifies the name of the directory on the local system where the files
will be stored. If a file by the same name already exists, it will be overwritten.

RemotePath

A string argument which specifies the name of the directory on the server where the files will be
copied from. You must have permission to read the contents of the directory.

FileMask

An optional string argument which specifies the wildcard mask to be used when selecting what
files should be transferred. If this argument is omitted, the value of the FileMask property will
be used. The default value of an empty string indicates that all files in the specified directory
should be downloaded. Typically, this argument is a wildcard mask that limits the files
downloaded from the server to those which match a specific extension. For example, to
download only those files that end in a ".dat" extension, the argument could be specified as
"*.dat"

Reserved

An argument reserved for future expansion. This argument should always be omitted or
specified as a numeric value of zero.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetMultipleFiles method copies multiple files from the server to the local system. If the local
file already exists, it is overwritten. This method will cause the current thread to block until all of
the files have been transferred, a timeout occurs or the transfer is canceled. During the transfer,
the OnProgress event will fire periodically, enabling the application to update any user interface
objects such as a progress bar.

See Also
BufferSize Property, GetData Method, GetFile Method, PutData Method, PutFile Method,
PutMultipleFiles Method, OnGetFile Event, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetText Method  

 

Download a text file from the server and store it in string.

Syntax
object.GetText( RemoteFile, Buffer )

Parameters
RemoteFile

A string that specifies the name of a file on the server that will be downloaded. The file pathing
and name conventions must be that of the server.

Buffer

This parameter is passed by reference and specifies the string buffer which will contain the text
returned by the server. This parameter must be a String or Variant type which will reference a
string when the method returns. This method will not accept a byte array as an argument.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetText method is used to download the contents of a text file and store it in a String
variable. This method should only be used with text files which are known to be textual. For
example, it is safe to use this method when downloading an HTML or XML document, but should
not be used to download executable or compressed files (such as Microsoft Word documents or
Excel spreadsheets) . Always use the GetData method if you wish to retrieve binary data and store
it in a byte array.

The text document returned by the server is automatically converted to Unicode using the code
page specified by the CodePage property. Most text files today will use either ASCII or UTF-8
encoding, however some documents may contain text specific to the locale they were created in.
Because ASCII is a subset of UTF-8, it is safe to specify UTF-8 encoding for ASCII text documents. If
you specify an incorrect code page, this can result in a conversion error.

This method will always attempt to normalize the end-of-line character sequence to use a
carriage-return and linefeed (CRLF) pair. This can potentially result in a discrepancy between the
size of a text file on the server and the actual length of the string buffer.

This method will always use an ASCII file transfer mode, regardless of the value of the FileType
property. If the remote file contains binary data, the string buffer may be empty or contain
unprintable characters as the result of attempting to convert the data to Unicode.

See Also
CodePage Property, FileType Property, GetData Method, PutData Method, PutText Method,
OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set ftpClient = CreateObject("SocketTools.FtpClient.11")

nError = ftpClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Login Method  

 

Login to the server.

Syntax
object.Login( [UserName], [Password], [Account] )

Parameters
UserName

A string that specifies the name of the user logging into the server. This argument is optional,
and if it is omitted, the value of the UserName property will be used. If the UserName property
has not been set, an anonymous user session is established.

Password

A string that specifies the password used to authenticate the user. This argument is optional,
and if it is omitted, the value of the Password property will be used. If no user name has been
specified, then an anonymous user session is established; in this case, the common convention
that is used is that the password is specified as the current user's email address.

Account

A string that specifies the account name to be used when authenticating the user. This
argument is optional, and if omitted, the value of the Account property will be used. An
account name should only be specified if required by the server. Most UNIX and Windows
based FTP servers do not require an account name.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Login method identifies the user to the server. If the user name or password is invalid, an
error will occur. By default, when a connection is established, the UserName, Password and
Account properties are used to automatically log the user in to the server.

This method should only be used after calling the Logout method, enabling you to log in as
another user during the same session. Not all servers will permit a client to change user credentials
during the same session. In most cases, it is preferable to disconnect from the server and re-
connect using the new credentials rather than using this method.

This method is not supported with secure connections using the SSH protocol.

See Also
Account Property, Password Property, UserName Property, Connect Method, Logout Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Logout Method  

 

Log the current user off the server.

Syntax
object.Logout

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Logout method logs the current user off the server. The Login method may then be used to
login as another user during the same session. Note that this method will not terminate the
connection with the server.

This method is not supported with secure connections using the SSH protocol.

See Also
Connect Method, Login Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MakeDirectory Method  

 

Create a new directory on the server.

Syntax
object.MakeDirectory( RemotePath )

Parameters
RemotePath

A string that specifies the name of the directory to create on the server. The naming and
pathing conventions used for the directory must be compatible with what is used on the
operating system that hosts the server.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The MakeDirectory method creates a new directory on the server. Note that you must have the
appropriate permission to create a directory or an error will occur.

Servers may not support creating multiple subdirectories in a single call, so applications should not
assume that this can be done. For example, an error may be returned by the server if the new
directory name "/Projects/Today" is specified, but the "/Projects" directory does not already exist.

It is also important to note that files and directories on UNIX based systems are case sensitive, so
the directory names "Projects" and "projects" refer to two different directories. This is not the case
on Windows systems, where either name would refer to the same directory.

See Also
ChangeDirectory Method, RemoveDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OpenDirectory Method  

 

Open the specified directory on the server for reading.

Syntax
object.OpenDirectory( RemotePath )

Parameters
RemotePath

A string that specifies the name of the directory to open on the server. The naming and pathing
conventions used for the directory must be compatible with what is used on the operating
system that hosts the server.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The OpenDirectory method opens the specified directory on the server so that the list of files in
that directory may be read using the ReadDirectory method.

Once all of the files in the directory have been read, the application must call the CloseDirectory
method in order to close the data channel to the server. Failure to do this will result in an error the
next time the application attempts to transfer a file or open another directory.

Note that files and directories on UNIX based systems are case sensitive, so the directory names
"Projects" and "projects" refer to two different directories. This is not the case on Windows
systems, where either name would refer to the same directory.

See Also
CloseDirectory Method, GetDirectory Method, ReadDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OpenFile Method  

 

Open an existing file or creates a new file on the server.

Syntax
object.OpenFile( RemoteFile, [FileMode], [Offset] )

Parameters
RemoteFile

A string that specifies the name of the file on the server. The filename cannot contain any
wildcard characters and must follow the naming conventions of the operating system the server
is hosted on.

FileMode

A numeric value which specifies how the file will be accessed. It may be one of the following
values:

Value Constant Description

0 ftpFileRead The file is opened for reading on the server. A data channel is
created and the contents of the file are returned to the client.

1 ftpFileWrite The file is opened for writing on the server. If the file does not
exist, it will be created. If it does exist, it will be overwritten.

2 ftpFileAppend The file is opened for writing on the server. All data will be
appended to the end of the file.

Offset

An optional byte offset which specifies where the file transfer should begin. If this argument is
omitted, this specifies that the file transfer should start at the beginning of the file. A value
greater than zero is typically used to restart a transfer that has not completed successfully. Note
that specifying a non-zero offset using FTP requires that the server support the REST command
to restart transfers.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The OpenFile method opens an existing file or creates a file on the server using the specified file
name. The Read method may then be used to read data from the file and the Write method may
be used to write data to the file. Once the all of the data has been read or written, the CloseFile
method must be called to close the data channel.

Only one file may be opened at a time for each client session. Attempting to perform an action
such as uploading or downloading another file while a file is currently open will result in an error.
Typically this indicates that the application failed to call the CloseFile method.

It is strongly recommended that most applications use the GetFile or PutFile methods to perform
file transfers. These methods are easier to use, and have internal optimizations that improves the
overall data transfer rate when compared to implementing the file transfer code in your own
application.

 



See Also
CloseFile Method, CreateFile Method, GetFile Method, PutFile Method, Read Method, Write
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutData Method  

 

Upload the contents of a string or byte array and store it in a file on the server.

Syntax
object.PutData( RemoteFile, Buffer, [Length], [Reserved] )

Parameters
RemoteFile

A string that specifies the file on the server that will contain the data being transferred. If the file
already exists, it will be overwritten. The file pathing and name conventions must be that of the
server.

Buffer

This parameter specifies the local buffer that the data will be copied from. If the parameter is a
String type, then the data will be written as a string of characters. For binary data, it is
recommended that this parameter specify a Byte array.

Length

An optional integer argument that specifies the amount of data to be copied from the buffer. If
this argument is omitted, the entire contents of the buffer is transferred to the server. For
strings, this value specifies the number of characters to be copied. For byte arrays, this value
specifies the number of bytes.

Reserved

An argument reserved for future expansion. This argument should always be omitted or
specified as a numeric value of zero.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PutData method transfers data from a local buffer and stores it on a file on the server. This
method will cause the current thread to block until the file transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

If you are using a String buffer, the contents of the buffer will automatically be converted to UTF-
8 encoded text. Most applications support UTF-8 encoding, however if you need to store the text
using a different encoding you can change the value of the CodePage property and use the
PutText method instead.

Never use a String variable to upload binary data. This method will automatically attempt to
convert the contents of the string to UTF-8 encoded text and this can corrupt the data. If you
need to upload binary data using the PutData method, you should always use a Byte array.

The value specified with the Length parameter may not be identical to the size of the text file
created on the server. The end-of-line conventions may differ between the server and the local
system, and conversion to Unicode may cause differences in the character count. For example, if
this method is used to upload text which includes non-ASCII characters, those characters will be
UTF-8 encoded. If you want to upload an exact copy of the data in your buffer, make sure the
FileType property is set to ftpFileTypeBinary and use a Byte array instead of a String variable.

 



See Also
CodePage Property, FileType Property, GetData Method, GetFile Method, GetText Method, PutFile
Method, PutText Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutFile Method  

 

Copy a file from the local system to the server.

Syntax
object.PutFile( LocalFile, RemoteFile, [Options], [Offset] )

Parameters
LocalFile

A string that specifies the file on the local system that will be transferred to the server. The file
pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies the file on the server that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the server.

Options

A numeric bitmask which specifies one or more options. This argument may be any one of the
following values:

Value Constant Description

0 ftpTransferDefault This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with the
contents of the local file. If the Options argument is
omitted, this is the transfer mode which will be used.

1 ftpTransferAppend This option specifies that if the remote file exists, the
contents of file on the local system is appended to the
remote file. If the remote file does not exist, it is created.

Offset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PutFile method copies an existing file from the local system to the server. This method will
cause the current thread to block until the file transfer completes, a timeout occurs or the transfer
is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

See Also
BufferSize Property, Priority Property, GetData Method, GetFile Method, PutData Method,
PutMultipleFiles Method, VerifyFile Method, OnProgress Event, OnPutFile Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 PutMultipleFiles Method  

 

Transfer multiple files from the local system to the server.

Syntax
object.PutMultipleFiles( LocalPath, RemotePath, [FileMask], [Reserved] )

Parameters
LocalPath

A string argument which specifies the name of the directory on the local system where the files
will be copied from. You must have permission to read the contents of the directory.

RemotePath

A string argument which specifies the name of the directory on the server where the files will be
stored. You must have permission to modify the contents of the directory and create files.

FileMask

An optional string argument which specifies the wildcard mask to be used when selecting what
files should be transferred. If this argument is omitted, the value of the FileMask property will
be used. The default value of an empty string indicates that all files in the specified directory
should be uploaded. Typically, this argument is a wildcard mask that limits the files uploaded to
the server to those which match a specific extension. For example, to upload only those files
that end in a ".dat" extension, the argument could be specified as "*.dat"

Reserved

An argument reserved for future expansion. This argument should always be omitted or
specified as a numeric value of zero.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PutMultipleFiles method copies multiple files from the local system to the server. If the
remote file already exists, it is overwritten. This method will cause the current thread to block until
all of the files have been transferred, a timeout occurs or the transfer is canceled. During the
transfer, the OnProgress event will fire periodically, enabling the application to update any user
interface objects such as a progress bar.

See Also
BufferSize Property, GetData Method, GetFile Method, GetMultipleFiles Method, PutData Method,
PutFile Method, OnProgress Event, OnPutFile Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutText Method  

 

Upload the contents of a string buffer and store it in a text file on the server.

Syntax
object.PutText( RemoteFile, Buffer )

Parameters
RemoteFile

A string that specifies the name of a file on the server that will be downloaded. The file pathing
and name conventions must be that of the server.

Buffer

A string which contains the text to be stored on the server. This method will not accept a Byte
array as an argument.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PutText method is used to upload the contents of a string and store it as a text file on the
server. Although a String variable may contain binary data, this method should only be used with
strings which contain printable text. Always use the PutData method if you wish to upload binary
data, using a Byte array instead of a String variable.

The text uploaded to the server is automatically converted from Unicode using the code page
specified by the CodePage property. By default, text will be automatically converted to use UTF-8
encoding, however you can change this if you prefer to store the file using a different localized
encoding. In most cases it is recommended you use UTF-8 to ensure the broadest compatibility
with other applications.

This method will always attempt to normalize the end-of-line character sequence to match what is
used on the server. This can potentially result in a discrepancy between the size of a text file on
the server and the actual length of the string buffer. For example, Windows uses a carriage return
and linefeed pair (CRLF) to indicate the end of a line of text. If you are storing the text in a file on a
UNIX system, it will be changed to use only a linefeed (LF) to indicate the end of a line.

This method will always use an ASCII file transfer mode, regardless of the value of the FileType
property. If the string buffer contains binary data, the resulting file may be empty or contain
unprintable characters as the result of the Unicode text conversion.

See Also
CodePage Property, FileType Property, GetData Method, GetText Method, PutData Method,
OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Read Method  

 

Return data read from the server.

Syntax
object.Read( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, it is recommended
that a Byte array be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the server is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will wait until data is returned by the server
or the connection is closed.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Read method.
When you provide a String variable as the buffer, the control will process the data as
text. Binary characters may be interpreted as UTF-8 encoding and embedded null
characters will corrupt the data. Reading the data into a byte array ensures that you
receive the data exactly as it was sent by the server.

See Also
IsConnected Property, IsReadable Property, Write Method, OnRead Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadDirectory Method  

Read a directory entry from the server.

Syntax
object.ReadDirectory( FileName, [FileLength], [FileDate], [FileOwner], [FileGroup], [FilePerms],
[IsDirectory] )

Parameters
FileName

A string which will specify the name of the file that status information will be returned for.

FileLength

An optional numeric argument which will specify the size of the file on the server. Note that if
this is a text file, the file size may be different on the server than it is on the local system. This is
because different operating systems use different conventions that indicate the end of a line
and/or the end of the file. On MS-DOS and Windows platforms, directories have a file size of
zero bytes. This parameter must be passed by reference.

FileDate

An optional string argument which will specify the date and time the file was created or last
modified on the server. The date format that is returned is expressed in local time (in other
words, the timezone of the server is not taken into account) and depends on both the local host
settings via the Control Panel and the format of the date and time information returned by the
server. This parameter must be passed by reference.

FileOwner

An optional string argument which will specify the owner of the file on the server. On some
platforms, this information may not be available for security reasons if an anonymous login
session was specified. This parameter must be passed by reference.

FileGroup

An optional string argument which will specify the group that the file owner belongs to. On
some platforms, this information may not be available for security reasons if an anonymous
login session was specified. This parameter must be passed by reference.

FilePerms

An optional numeric argument which will specify the permissions assigned to the file. This value
is actually a combination of one or more bit flags that specify the individual permissions for the
file owner, group and world (all other users). This parameter must be passed by reference. The
permissions are as follows:

Value Constant Description

1 ftpPermWorldExecute All users have permission to execute the contents of
the file. If this permission is set for a directory, this may
also grant all users the right to open that directory and
search for files in that directory.

2 ftpPermWorldWrite All users have permission to open the file for writing.
This permission grants any user the right to replace the
file. If this permission is set for a directory, this grants
any user the right to create and delete files.



 

4 ftpPermWorldRead All users have permission to open the file for reading.
This permission grants any user the right to download
the file to the local system.

8 ftpPermGroupExecute Users in the specified group have permission to
execute the contents of the file. If this permission is set
for a directory, this may also grant the user the right to
open that directory and search for files in that
directory.

16 ftpPermGroupWrite Users in the specified group have permission to open
the file for writing. On some platforms, this may also
imply permission to delete the file. If the current user is
in the same group as the file owner, this grants the
user the right to replace the file. If this permission is set
for a directory, this grants the user the right to create
and delete files.

32 ftpPermGroupRead Users in the specified group have permission to open
the file for reading. If the current user is in the same
group as the file owner, this grants the user the right
to download the file.

64 ftpPermOwnerExecute The owner has permission to execute the contents of
the file. The file is typically either a binary executable,
script or batch file. If this permission is set for a
directory, this may also grant the user the right to
open that directory and search for files in that
directory.

128 ftpPermOwnerWrite The owner has permission to open the file for writing.
If the current user is the owner of the file, this grants
the user the right to replace the file. If this permission
is set for a directory, this grants the user the right to
create and delete files.

256 ftpPermOwnerRead The owner has permission to open the file for reading.
If the current user is the owner of the file, this grants
the user the right to download the file to the local
system.

4096 ftpPermSymbolicLink The file is a symbolic link to another file. Symbolic links
are special types of files found on UNIX based systems
which are similar to Windows shortcuts.

For the proprietary Sterling directory formats, the status code is returned in the FilePerms
argument. This value is a combination of bits. Bits 0-25 correspond to letters of the
alphabet, most of which have distinct meanings in the Sterling formats.

Letter code Bit position Hexadecimal value

A 0 1h

B 1 2h

C 2 4h

 



n-th letter of alphabet n-1 2 to the (n-1) power

Z 25 2000000h

For the proprietary Sterling directory formats, bits 26-31 represent the transfer protocol
associated with the file:

Protocol Bit position Hexadecimal value Constant

TCP 26 4000000h ftpSterlingStatusTcp

FTP 27 8000000h ftpSterlingStatusFtp

BSC 28 10000000h ftpSterlingStatusBsc

ASC 29 20000000h ftpSterlingStatusAsc

FTS 30 40000000h ftpSterlingStatusFts

other 31 80000000h ftpSterlingStatusOther

IsDirectory

An optional boolean value which will specify if the file is a directory or a regular file. This
parameter must be passed by reference.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ReadDirectory method reads the next entry from the directory listing. This method can only
be used after the OpenDirectory method has been called to begin the transfer of file information
to the client.

See Also
CloseDirectory Method, OpenDirectory Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemoveDirectory Method  

 

Remove a directory on the server.

Syntax
object.RemoveDirectory( RemotePath )

Parameters
RemotePath

A string that specifies the name of the directory to remove from the server. The naming and
pathing conventions used for the directory must be compatible with what is used on the
operating system that hosts the server.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The RemoveDirectory method removes an existing directory on the server. You must have the
appropriate permission to remove the directory, or an error will occur. Note that most operating
systems will not permit you to remove a directory that contains files or other subdirectories.

See Also
ChangeDirectory Method, MakeDirectory Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RenameFile Method  

 

Change the name of a file on the server.

Syntax
object.RenameFile( OldName, NewName )

Parameters
OldName

A string that specifies the name of the file to be renamed on the server. The file must exist on
the server, otherwise an error will be returned.

NewName

A string that specifies the new name for the file on the server. The naming conventions used for
the file must be compatible with what is used on the operating system that hosts the server.
Note that some servers may not permit you to rename the file if a file with the new name
already exists.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The RenameFile method renames an file on the server to the new name. Note that you must
have permission to change the file name or an error will occur.

See Also
DeleteFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

The Reset and Uninitialize methods will abort all active background transfers and wait for those
tasks to complete before returning to the caller. It is recommended that your application explicitly
wait for background transfers to complete or abort them using this method before allowing the
program to terminate. This will ensure that your program can perform any necessary cleanup
operations. If there are active background tasks running at the time that the control instance is
destroyed, it can force the control to stop those worker threads immediately without waiting for
them to terminate gracefully.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SetFilePermissions Method  

Change the access permissions for a file on the server.

Syntax
object.SetFilePermissions( RemoteFile, FilePerms )

Parameters
RemoteFile

A string that specifies the name of the file that the access permissions are to be returned for.
The filename cannot contain any wildcard characters.

FilePerms

A numeric value which specifies the new permissions for the file. The file permissions are
represented as bit flags, and may be one or more of the following values:

Value Constant Description

1 ftpPermWorldExecute All users have permission to execute the contents of
the file. If this permission is set for a directory, this may
also grant all users the right to open that directory and
search for files in that directory.

2 ftpPermWorldWrite All users have permission to open the file for writing.
This permission grants any user the right to replace the
file. If this permission is set for a directory, this grants
any user the right to create and delete files.

4 ftpPermWorldRead All users have permission to open the file for reading.
This permission grants any user the right to download
the file to the local system.

8 ftpPermGroupExecute Users in the specified group have permission to
execute the contents of the file. If this permission is set
for a directory, this may also grant the user the right to
open that directory and search for files in that
directory.

16 ftpPermGroupWrite Users in the specified group have permission to open
the file for writing. On some platforms, this may also
imply permission to delete the file. If the current user is
in the same group as the file owner, this grants the
user the right to replace the file. If this permission is set
for a directory, this grants the user the right to create
and delete files.

32 ftpPermGroupRead Users in the specified group have permission to open
the file for reading. If the current user is in the same
group as the file owner, this grants the user the right
to download the file.

64 ftpPermOwnerExecute The owner has permission to execute the contents of
the file. The file is typically either a binary executable,
script or batch file. If this permission is set for a



 
directory, this may also grant the user the right to
open that directory and search for files in that
directory.

128 ftpPermOwnerWrite The owner has permission to open the file for writing.
If the current user is the owner of the file, this grants
the user the right to replace the file. If this permission
is set for a directory, this grants the user the right to
create and delete files.

256 ftpPermOwnerRead The owner has permission to open the file for reading.
If the current user is the owner of the file, this grants
the user the right to download the file to the local
system.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The SetFilePermissions method uses the SITE CHMOD command to set the permissions for the
file. This command is typically only supported on servers that are hosted on UNIX based systems.
If the command is not supported, an error will be returned. You can use the Features property to
determine what features are available and/or enabled on the server.

Users who are familiar with the UNIX operating system will recognize the chmod command used
to change the file permissions. However, it should be noted that the numeric value used as an
argument to the command is in octal, not decimal. For example, issuing the command chmod
644 filename.txt on a UNIX based system will make the file readable and writable by the owner,
and readable by other users in the owner's group as well as all other users. The value 644 is an
octal value, which is equivalent to the decimal value 420. If you were to mistakenly specify 644 as
the value for the Permissions argument, rather than the decimal value of 420, the permissions on
the file would be incorrect. It is strongly recommended that you use the pre-defined constants to
prevent this sort of error.

Visual Basic allows you to specify an integer value in octal by prefixing it with &O. For example,
&O644 could be used as the file permissions value. C and C++ consider any integer with a
preceding 0 to be an octal number, so 0644 would be a valid permissions value. Consult the
technical reference for your programming language if you are unsure if it supports expressing
integer constants in octal.

Example
The following example demonstrates how to change the permissions so that only the owner can
read and write to the file:

nFilePerms = ftpPermOwnerRead Or ftpPermOwnerWrite
nError = FtpClient1.SetFilePermissions(strFileName, nFilePerms)
If nError > 0 Then
    MsgBox FtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
Features Property, GetFilePermissions Method

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SetFileTime Method  

 

Changes the modification date and time for a file on the server.

Syntax
object.SetFileTime( RemoteFile, FileTime )

Parameters
RemoteFile

A string that specifies the name of the file on the server. The filename cannot contain any
wildcard characters and must follow the naming conventions of the operating system the server
is hosted on.

FileTime

A string that specifies the new date and time for the file. The date must be in a format
recognized by the local system, otherwise an error will occur. The date and time value must also
be specified in UTC (Coordinated Universal Time), not local time.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The SetFileTime method changes the modification date and time for the specified file on the
server. When connected to an FTP server, this method uses the MTDM command to change the
modification time for the file. If the server does not support this command, the method will return
an error. Note that some servers only support the MDTM command to return, but not change, the
file modification time.

See Also
Localize Property, GetFileStatus Method, GetFileSize Method, GetFileTime Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskAbort Method  

 

Abort the specified asynchronous task.

Syntax
object.TaskAbort ( [TaskId], [Milliseconds] )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Milliseconds

An optional integer value that specifies the number of milliseconds to wait for the background
task to abort.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The TaskAbort method signals the background worker thread associated with the task ID to abort
the current operation and terminate as soon as possible. If the TaskId parameter is omitted, this
method will abort all active background file transfers, otherwise it will only abort the specified task.
If the Milliseconds parameter is omitted or has a value of zero, the method returns immediately
after the background thread has been signaled. If the Milliseconds parameter is non-zero, the
method will wait that amount of time for the background thread to terminate.

The Reset and Uninitialize methods will abort all active background transfers and wait for those
tasks to complete before returning to the caller. It is recommended that your application explicitly
wait for background transfers to complete or abort them using this method before allowing the
program to terminate. This will ensure that your program can perform any necessary cleanup
operations. If there are active background tasks running at the time that the control instance is
destroyed, it can force the control to stop those worker threads immediately without waiting for
them to terminate gracefully.

See Also
TaskCount Property, TaskList Property, TaskDone Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskDone Method  

 

Determine if an asynchronous task has completed.

Syntax
object.TaskDone ( [TaskId] )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
A Boolean value that specifies if the task has completed. A return value of True specifies that the
background task has completed. A return value of False specifies that the background task is
active.

Remarks
The TaskDone method is used to determine if the specified asynchronous task has completed. If
the TaskId parameter is omitted, the method will check the status of the last background task that
was started.

If you use this method to poll the status of a background task from within the main UI thread, you
must ensure that Windows messages are processed so that the application remains responsive to
the end-user. To check if a background transfer has completed, it is recommended that you use a
timer to periodically call this method rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the TaskWait method will provide the last error
code associated with the task. Note that if this method returns True, it is guaranteed that calling
TaskWait using the same task ID will return the error code to the caller immediately without
causing the application to block.

See Also
TaskCount Property, TaskId Property, TaskList Property, TaskAbort Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskResume Method  

 

Resume execution of an asynchronous task.

Syntax
object.TaskResume ( TaskId )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The TaskResume method resumes execution of the background worker thread that was
previously suspended using the TaskSuspend method. If the TaskId parameter is omitted, the
method will resume execution of the last background task that was started.

See Also
TaskId Property, TaskSuspend Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskSuspend Method  

 

Suspend execution of an asynchronous task.

Syntax
object.TaskSuspend ( TaskId )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The TaskSuspend method will suspend execution of the background worker thread associated
with the task. If the TaskId parameter is omitted, the method will suspend the last background task
that was started.

Once the task has been suspended, it will no longer be scheduled for execution, however the
client session will remain active and the task may be resumed using the TaskResume method.
Note that if a task is suspended for a long period of time, the background operation may fail
because it has exceeded the timeout period imposed by the server.

See Also
TaskId Property, TaskResume Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskWait Method  

 

Wait for an asynchronous task to complete.

Syntax
object.TaskWait ( [ TaskId ], [ Milliseconds ], [ TimeElapsed ], [ TaskError ] )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Milliseconds

An optional integer value that specifies the number of milliseconds to wait for the background
task to complete.

TimeElapsed

An optional integer value passed by reference that will contain the elapsed time for the task in
milliseconds when the method returns. If this information is not required, this parameter may be
omitted. This parameter is ignored if the TaskId parameter is omitted.

TaskError

An optional integer value passed by reference that will contain the last error code for the task
when the method returns. If this information is not required, this parameter may be omitted.
This parameter is ignored if the TaskId parameter is omitted.

Return Value
A Boolean value that specifies if the task has completed. A return value of True specifies that the
background task has completed. A return value of False specifies that the background task is
active.

Remarks
The TaskWait method waits for the specified task to complete. If the TaskId parameter is omitted,
this method will wait for all active tasks to complete. If a task ID is specified and the Milliseconds
parameter is non-zero, this method will cause the current working thread to block until the task
completes or the amount of time exceeds the number of milliseconds specified by the caller. If the
Milliseconds parameter is zero, then this function will poll the status of the task and return
immediately to the caller. If the Milliseconds parameter is omitted, then the method will wait an
infinite period of time for the task to complete.

If the specified task has already completed at the time this method is called, the method will return
immediately without causing the current thread to block. If the TimeElapsed parameter has been
specified, it will contain the number of milliseconds that it took for the task to complete. If the
TaskError parameter has been specified, it will contain the last error code value that was set by the
worker thread before it terminated. If the TaskError value is zero, that means that the background
task was successful and no error occurred. A non-zero value will indicate that the background task
has failed.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is
blocked waiting for the background task to complete, and this can cause your application to
appear non-responsive to the end-user. If you have a GUI application and you need to determine
if a background task has finished, create a timer to periodically call the TaskDone method. When
it returns True (indicating that the task has completed), you can safely call TaskWait to obtain the

 



elapsed time and last error code without blocking the current thread.

See Also
TaskCount Property, TaskList Property, TaskAbort Method, TaskDone Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

The Reset and Uninitialize methods will abort all active background transfers and wait for those
tasks to complete before returning to the caller. It is recommended that your application explicitly
wait for background transfers to complete or abort them using this method before allowing the
program to terminate. This will ensure that your program can perform any necessary cleanup
operations. If there are active background tasks running at the time that the control instance is
destroyed, it can force the control to stop those worker threads immediately without waiting for
them to terminate gracefully.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 VerifyFile Method  

 

Verify that the contents of a file on the local system are the same as the specified file on the
server..

Syntax
object.VerifyFile( LocalFile, RemoteFile, [Options] )

Parameters
LocalFile

A string that specifies the name of the file on the local system.

RemoteFile

A string that specifies the name of the file on the server.

Options

A numeric bitmask which specifies the options that may be used when comparing the files. This
argument may be any one of the following values:

Value Constant Description

0 ftpVerifyDefault File verification should use the best option available based on
the available server features. If the server supports the XMD5
command, the control will calculate an MD5 hash of the local
file contents and compare the value with the file on the
server. If the server does not support the XMD5 command,
but it does support the XCRC command, the control will
calculate a CRC32 checksum of the local file contents and
compare the value with the file on the server. If the server
does not support either the XMD5 or XCRC commands, the
control will compare the size of the local and remote files.

1 ftpVerifySize Files are verified by comparing the number of bytes of data in
the local and remote files. This is the least reliable method,
and should only be used if the server does not support either
the XMD5 or XCRC commands.

2 ftpVerifyCRC32 Files are verified by calculating a CRC-32 checksum of the
local file contents and comparing it with the value returned by
the server in response to the XCRC command. This method
should only be used if the server does not support the XMD5
command.

4 ftpVerifyMD5 Files are verified by calculating an MD5 hash of the local file
contents and comparing it with the value returned by the
server in response to the XMD5 command. This is the
preferred method for performing file verification.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks

 



The VerifyFile method will attempt to verify that the contents of the local and remote files are
identical using one of several methods, based on the features that the server supports. Preference
will be given to the most reliable method available, using either an MD5 hash, a CRC-32 checksum
or comparing the size of the file, in that order.

It is not recommended that you use this method with text files because of the different end-of-line
conventions used by different operating systems. For example, a text file on a Windows system
uses a carriage-return and linefeed pair to indicate the end of a line of text. However, on a UNIX
system, a single linefeed is used to indicate the end of a line. This can cause the VerifyFile method
to indicate the files are not identical, even though the only difference is in the end-of-line
characters that are used.

See Also
BufferSize Property, Priority Property, GetData Method, GetFile Method, GetMultipleFiles Method,
PutData Method, PutFile Method, OnGetFile Event, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the server.

Syntax
object.Write( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the server is
expecting binary data, it is recommended that a Byte array be used instead.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the server, or -1 if an error was
encountered.

Remarks
The Write method sends the data in buffer to the server. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is blocking, the application will wait until the data can be sent. If the control
is non-blocking and the write fails because it could not send all of the data to the server, the
OnWrite event will be fired when the server can accept data again.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Write method.
When you provide a String variable as the buffer, the control will process the data as
text. If the string contains Unicode characters, it will automatically be converted to
UTF-8 (8-bit) encoded text prior to being written. Using a byte array ensures that
binary data will be sent as-is without being encoded.

See Also
IsConnected Property, IsWritable Property, Timeout Property, Read Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Protocol Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnCommand This event is generated when the server processes a command issued by the client

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnGetFile This event is generated when a file transfer is initiated

OnProgress This event is generated during data transfer

OnPutFile This event is generated when a file transfer is initiated

OnRead This event is generated when data is available to be read

OnTaskBegin This event is generated when a background task begins

OnTaskEnd This event is generated when a background task completes

OnTaskRun This event is generated while a background task is active

OnTimeout This event is generated when a blocking operation times out

OnWrite This event is generated when data can be written to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCommand Event  

 

The OnCommand event is generated when the client sends a command to the server and
receives a reply indicating the results of that command.

Syntax
Sub object_OnCommand( [Index As Integer], ByVal ResultCode As Variant, ByVal ResultString
As Variant )

Remarks
The OnCommand event is generated when the client receives a reply from the server after some
action has been taken. The ResultCode argument contains the numeric result code returned by
the server. The result codes returned from the server fall into one of the following categories:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being
initiated, and the client should expect another reply from the server before
proceeding.

200-
299

Positive completion result. This indicates that the server has successfully
completed the requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot
complete until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action
did not take place, but the error condition is temporary and may be attempted
again.

500-
599

Permanent negative completion result. This indicates that the requested action
did not take place.

The ResultString argument contains the descriptive string returned by the server which describes
the result. The string contents may vary depending on the type of server.

See Also
ResultCode Property, ResultString Property, Command Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a server as a result of a
Connect method call. This event is only triggered when the Blocking property is set to False.

See Also
Blocking Property, Connect Method, OnDisconnect Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server. This
event is only triggered when the Blocking property is set to False.

When the OnDisconnect event fires, it is possible that there may still be buffered data available to
read from the server. Before disconnecting from the server, the application should attempt to read
any remaining data until the Read method returns a value of zero, or returns an error indicating
that the operation would block.

See Also
Blocking Property, IsConnected Property, IsReadable Property, Connect Method, Disconnect
Method, Read Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnFileList Event  

The OnFileList event is generated when a remote file list is parsed by the control. This event has
been deprecated and should no longer be used in new applications.

Syntax
Sub object_OnFileList( [Index As Integer], ByVal FileName As Variant, ByVal FileLength As
Variant, ByVal FileDate As Variant, ByVal FileOwner As Variant, ByVal FileGroup As Variant,
ByVal FilePerms As Variant, ByVal IsDirectory As Variant )

Remarks
The OnFileList event is generated as the control parses the list of files returned by the server as
the result of the application calling the FileList method. The following arguments are passed to
the event handler:

FileName

A string which specifies the name of the file that status information is being returned for.

FileLength

A numeric value which specifies the size of the file on the server. Note that if this is a text file,
the file size may be different on the server than it is on the local system. This is because different
operating systems use different conventions that indicate the end of a line and/or the end of
the file. On MS-DOS and Windows platforms, directories have a file size of zero bytes.

FileDate

A string argument which specifies the date and time the file was created or last modified on the
server. The date format that is returned is expressed in local time (in other words, the timezone
of the server is not taken into account) and depends on both the local host settings via the
Control Panel and the format of the date and time information returned by the server.

FileOwner

A string argument which specifies the owner of the file on the server. On some platforms, this
information may not be available for security reasons if an anonymous login session was
specified.

FileGroup

A string argument which specifies the group that the file owner belongs to. On some platforms,
this information may not be available for security reasons if an anonymous login session was
specified.

FilePerms

A numeric value which specifies the permissions assigned to the file. This value is actually a
combination of one or more bit flags that specify the individual permissions for the file owner,
group and world (all other users). The permissions are as follows:

Value Constant Description

4096 ftpPermSymbolicLink The file is a symbolic link to another file. Symbolic links
are special types of files found on UNIX based systems
which are similar to Windows shortcuts.

1024 ftpPermOwnerRead The owner has permission to open the file for reading.
If the current user is the owner of the file, this grants
the user the right to download the file to the local



 

system.

512 ftpPermOwnerWrite The owner has permission to open the file for writing.
If the current user is the owner of the file, this grants
the user the right to replace the file. If this permission
is set for a directory, this grants the user the right to
create and delete files.

256 ftpPermOwnerExecute The owner has permission to execute the contents of
the file. The file is typically either a binary executable,
script or batch file. If this permission is set for a
directory, this may also grant the user the right to
open that directory and search for files in that
directory.

64 ftpPermGroupRead Users in the specified group have permission to open
the file for reading. If the current user is in the same
group as the file owner, this grants the user the right
to download the file.

32 ftpPermGroupWrite Users in the specified group have permission to open
the file for writing. On some platforms, this may also
imply permission to delete the file. If the current user is
in the same group as the file owner, this grants the
user the right to replace the file. If this permission is set
for a directory, this grants the user the right to create
and delete files.

16 ftpPermGroupExecute Users in the specified group have permission to
execute the contents of the file. If this permission is set
for a directory, this may also grant the user the right to
open that directory and search for files in that
directory.

4 ftpPermWorldRead All users have permission to open the file for reading.
This permission grants any user the right to download
the file to the local system.

2 ftpPermWorldWrite All users have permission to open the file for writing.
This permission grants any user the right to replace the
file. If this permission is set for a directory, this grants
any user the right to create and delete files.

1 ftpPermWorldExecute All users have permission to execute the contents of
the file. If this permission is set for a directory, this may
also grant all users the right to open that directory and
search for files in that directory.

For the proprietary Sterling directory formats, the status code is returned in the FilePerms
argument. This value is a combination of bits. Bits 0-25 correspond to letters of the
alphabet, most of which have distinct meanings in the Sterling formats.

Letter code Bit position Hexadecimal value

A 0 1h

 



B 1 2h

C 2 4h

n-th letter of alphabet n-1 2 to the (n-1) power

Z 25 2000000h

For the proprietary Sterling directory formats, bits 26-31 represent the transfer protocol
associated with the file:

Protocol Bit position Hexadecimal value Constant

TCP 26 4000000h ftpSterlingStatusTcp

FTP 27 8000000h ftpSterlingStatusFtp

BSC 28 10000000h ftpSterlingStatusBsc

ASC 29 20000000h ftpSterlingStatusAsc

FTS 30 40000000h ftpSterlingStatusFts

other 31 80000000h ftpSterlingStatusOther

IsDirectory

A boolean argument which specifies if the file is a directory or a regular file.

See Also
ParseList Property, FileList Method, GetFileStatus Method, OnLastFile Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/ftp/control/method/filelist.html


 OnGetFile Event  

 

The OnGetFile event is generated when a file transfer is initiated

Syntax
Sub object_OnGetFile( [Index As Integer], ByVal LocalFile As Variant, ByVal RemoteFile As
Variant )

Remarks
The OnGetFile event is generated when a file transfer is initiated by calling the GetFile or
GetMultipleFiles methods. This will be followed by one or more OnProgress events which will
indicate the progress of the transfer. If multiple files are being downloaded, this event will fire for
each file as it is transferred.

See Also
GetFile Method, GetMultipleFiles Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnLastFile Event  

 

The OnLastFile event is generated when the last file in a remote file list has been processed. This
event has been deprecated and should no longer be used in new applications.

Syntax
Sub object_OnLastFile ( [Index As Integer] )

Remarks
The OnLastFile event is generated when the list file in the remote file list has been processed by
the control. This event is only generated when the ParseList property is set to True.

See Also
ParseList Property, FileList Method, GetFileStatus Method, OnFileList Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/ftp/control/method/filelist.html


 OnProgress Event  

 

The OnProgress event is generated during data transfer.

Syntax
Sub object_OnProgress ( [Index As Integer], ByVal FileName As Variant, ByVal FileSize As
Variant, ByVal BytesCopied As Variant, ByVal Percent As Variant )

Remarks
The OnProgress event is generated during the transfer of data between the client and server,
indicating the amount of data exchanged. For transfers of large amounts of data, this event can be
used to update a progress bar or other user-interface control to provide the user with some visual
feedback. The arguments to this event are:

FileName

A string which specifies the name of the file currently being transferred. This always corresponds
to the name of the file on the server.

FileSize

The size of the file being transferred in bytes. This value may be zero if the control cannot
obtain the size of the file from the server. If the total number of bytes is less than 2 GiB, the
value will be a Long (32-bit) integer. For very large transfers, it will be a Double floating-point
value.

BytesCopied

The number of bytes that have been transferred between the client and server. If the number of
bytes copied is less than 2 GiB, the value will be a Long (32-bit) integer. For very large transfers,
it will be a Double floating-point value.

Percent

The percentage of data that's been transferred, expressed as an integer value between 0 and
100, inclusive. If the size of the file on the server cannot be determined, this value will always be
100.

This event is only generated when a file is transferred using the GetFile or PutFile methods, or
equivalent actions. If the client is reading or writing the file data directly to the server using the
Read or Write methods then the application is responsible for calculating the completion
percentage and updating any user interface controls.

See Also
TransferBytes Property, TransferRate Property, TransferTime Property, GetData Method, GetFile
Method, PutData Method, PutFile Method, OnGetFile Event, OnPutFile Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnPutFile Event  

 

The OnPutFile event is generated when a file transfer is initiated.

Syntax
Sub object_OnPutFile( [Index As Integer], ByVal LocalFile As Variant, ByVal RemoteFile As
Variant )

Remarks
The OnPutFile event is generated when a file transfer is initiated by calling the PutFile or
PutMultipleFiles methods. This will be followed by one or more OnProgress events which will
indicate the progress of the transfer. If multiple files are being uploaded, this event will fire for
each file as it is transferred.

See Also
PutFile Method, PutMultipleFiles Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ([Index As Integer] )

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only triggered when the Blocking
property is set to False.

See Also
IsReadable Property, Read Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTaskBegin Event  

 

The OnTaskBegin event occurs when a background task starts.

Syntax
Sub object_OnTaskBegin ( [Index As Integer], ByVal TaskId As Variant )

Remarks
The OnTaskBegin event is generated when a background task associated with an asynchronous
file transfer begins running. The arguments to this event are:

TaskId

An integer value that uniquely identifies the background task.

This event can be used in conjunction with the OnTaskEnd event to monitor one or more
background tasks that are created to perform asynchronous file transfers. The task ID passed to
this event can be used to uniquely identify the task and corresponds to the worker thread that has
been created to manage the client session. The application should consider the ID to be an
opaque value and never make assumptions about how an ID is assigned to a background task.

See Also
AsyncGetFile Method, AsyncPutFile Method, OnTaskEnd Event, OnTaskRun Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTaskEnd Event  

 

The OnTaskEnd event occurs when a background task completes.

Syntax
Sub object_OnTaskEnd ( [Index As Integer], ByVal TaskId As Variant, ByVal TimeElapsed As
Variant, ByVal ErrorCode As Variant )

Remarks
The OnTaskEnd event is generated when a file transfer completes and the background task has
terminated. The arguments to this event are:

TaskId

An integer value that uniquely identifies the background task.

TimeElapsed

An integer value that specifies the amount of elapsed time in milliseconds.

ErrorCode

An integer value that specifies the last error code for the task.

This event can be used in conjunction with the OnTaskBegin event to monitor one or more
background tasks that are created to perform asynchronous file transfers. The TimeElapsed
parameter will specify the number of milliseconds that the background task was active. The
ErrorCode parameter specifies the last error code associated with the background task. If this
value is zero, that indicates that the task completed successfully. A non-zero value indicates that
the task failed and the error code value identifies why the task failed.

See Also
AsyncGetFile Method, AsyncPutFile Method, OnTaskBegin Event, OnTaskRun Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTaskRun Event  

 

The OnTaskRun event occurs while a background task is active.

Syntax
Sub object_OnTaskRun ( [Index As Integer], ByVal TaskId As Variant, ByVal TimeElapsed As
Variant, ByVal Completed As Variant )

Remarks
The OnTaskRun event is generated periodically during a file transfer while the background task is
active. The arguments to this event are:

TaskId

An integer value that uniquely identifies the background task.

TimeElapsed

An integer value that specifies the amount of elapsed time in milliseconds.

Completed

An integer value that specifies an estimated percentage of completion.

The rate and number of times that this event will be generated depends on the task being
performed. This event is generally analogous to the OnProgress event for file transfers that are
performed in the current working thread, however the OnTaskRun event will occur for each
individual background task that is active. The TimeElapsed parameter specifies the amount of time
that the task has been active, and the Completed parameter specifies an estimated percentage of
completion. This can be used to update the user interface if needed, however it is the application's
responsibility to determine which UI component (such as a ProgressBar control) is associated with
a particular task.

See Also
AsyncGetFile Method, AsyncPutFile Method, OnTaskBegin Event, OnTaskEnd Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property. This event is only triggered when the Blocking property is
set to True.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ( [Index As Integer] )

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
triggered when the Blocking property is set to False.

See Also
IsWritable Property, Read Method, Write Method, OnConnect Event, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



File Transfer Server Control

Implements a server that enables the application to send and receive files using the File Transfer
Protocol.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name FtpServerCtl.FtpServer

File Name CSFTSX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.FtpServer.11

ClassID 9E92E344-1F8A-4CCD-B448-BFD9834185E1

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 959, RFC 1579, RFC 2228

Overview
This ActiveX control provides an interface for implementing an embedded, lightweight server that
can be used to exchange files with a client using the standard File Transfer Protocol. The server
can accept connections from any third-party application or a program developed using the
SocketTools FTP ActiveX control.

The application specifies an initial server configuration by setting the relevant properties and can
implement event handlers to monitor the activities of the clients that have connected to the server.
The control automatically handles the standard FTP commands and requires minimal coding on
the part of the application that is hosting the control. However, the application may also use event
mechanism to filter specific commands or to extend the protocol by providing custom
implementations of existing commands or add entirely new commands.

The server supports active and passive mode file transfers, has compatibility options for NAT
router and firewall support, and provides support for secure file transfers using explicit SSL/TLS
sessions. Secure connections require that a valid SSL certificate be installed on the system.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the



desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Server Control Properties  

 

Property Description

AdapterAddress Returns the IP address associated with the specified network adapter

AdapterCount Returns the number of available local and remote network adapters

AuthFail Gets and sets the maximum number of authentication attempts permitted

AuthTime Gets and sets the amount of time a client has to authenticate the session

CertificateName Gets and sets the common name for the server certificate

CertificatePassword Gets and sets the password associated with the server certificate

CertificateStore Gets and sets the name of the server certificate store or file

CertificateUser Gets and sets the user that owns the server certificate

ClientAccess Gets and sets the access rights that have been granted to the client session

ClientAddress Return the Internet address of the current client connection

ClientCount Return the number of active client sessions connected to the server

ClientDirectory Return the current working directory for the active client session

ClientHome Return the home directory for the active client session

ClientHost Return the host name that the client used to establish the connection

ClientId Return the unique identifier for the active client session

ClientIdle Get and set the idle timeout period for the active client session

ClientPort Return the port number allocated by the active client connection

ClientUser Return the user name associated with the specified client session

CommandLine Return the complete command line issued by the client

Directory Get and set the full path to the root directory assigned to the server

ExecTime Get and set maximum number of seconds that the server will permit an external command to execute

ExternalAddress Get and set the external IP address used for passive mode data transfers

HiddenFiles Determine if the server should permit access to hidden files

Identity Gets and sets a string that identifies the server to the client

IdleTime Gets and sets the maximum number of seconds a client can be idle before the server terminates the session

IsActive Determine if the server has been started

IsAnonymous Determine if the active client session has authenticated as an anonymous user

IsAuthenticated Determine if the active client session has been authenticated

IsInitialized Determine if the server has been initialized

IsListening Determine if the server is listening for client connections

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error that occurred

LocalPath Return the full path to the local file or directory that is the target of the current command

LocalTime Determines if the server should return file and directory times adjusted for the local timezone

LocalUser Determines if the server should perform user authentication using the Windows local account database

LockFiles Determines if files should be exclusively locked when a client attempts to upload or download a file

LogFile Gets and sets the name of the server log file

LogFormat Gets and sets the format used when updating the server log file

LogLevel Gets and sets the level of detail included in the server log file

 



MaxClients Gets and sets the maximum number of clients that are permitted to connect to the server

MaxGuests Gets and sets the maximum number of anonymous users that are permitted to connect to the server

MaxPort Gets and sets the maximum port number used by the server for passive data connections

MinPort Gets and sets the minimum port number used by the server for passive data connections

MemoryUsage Gets the amount of memory allocated for the server and all client sessions

MultiUser Determine if the server should be started in multi-user mode

Options Gets and sets the options used when starting the server

Priority Gets and sets the priority assigned to the server

ReadOnly Determine if the server should prevent clients from uploading files

Restricted Determine if the server should be started in restricted mode, limiting client access to the server

Secure Determine if the server should accept secure client connections

ServerAddress Gets and sets the address that will be used by the server to listen for connections

ServerName Gets and sets the fully qualified domain name for the server

ServerPort Gets and sets the port number that will be used by the server to listen for connections

ServerUuid Gets and sets the Universally Unique Identifier (UUID) associated with the server

StackSize Gets and sets the size of the stack allocated for threads created by the server

ThrowError Enable or disable error handling by the container of the control

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

UnixMode Determine if the server should impersonate a UNIX-based operating system

Version Return the current version of the object

VirtualPath Return the virtual path to the local file or directory that is the target of the current command

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AdapterAddress Property  

 

Returns the IP address associated with the specified network adapter.

Syntax
object.AdapterAddress(Index)

Remarks
The AdapterAddress property array returns the IP addresses that are associated with the local
network or remote dial-up network adapters configured on the system. The AdapterCount
property can be used to determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and
dial-up adapters will not be listed in a specific order. An application should not make the
assumption that the address returned by AdapterAddress(0) always refers to a local network
adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will return the IP address allocated for that
connection.

When using Visual Studio .NET, you must use the accessor method get_AdapterAddress instead
of the property name, otherwise an error will be returned indicating that it not a member of the
control class.

Data Type
String

See Also
AdapterCount Property, ServerAddress Property, ServerName Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AdapterCount Property  

 

Returns the number of available local and remote network adapters.

Syntax
object.AdapterCount

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress
property array to enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will returned IP address allocated for that
connection.

Data Type
Integer (Int32)

See Also
AdapterAddress Property, ServerAddress Property, ServerName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AuthFail Property  

 

Gets and sets the maximum number of authentication attempts permitted.

Syntax
object.AuthFail [= attempts ]

Remarks
The AuthFail property value specifies the maximum number of user authentication attempts that
are permitted until the server terminates the client connection. A value of zero specifies that the
default configuration limit of 3 authentication attempts per login should be allowed. The maximum
number of authentication attempts is 10.

Data Type
Integer (Int32)

See Also
AuthTime Property, AddUser Method, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AuthTime Property  

 

Gets and sets the amount of time a client has to authenticate the session.

Syntax
object.AuthTime [= seconds ]

Remarks
The AuthTime property value specifies the maximum number of user authentication attempts that
are permitted until the server terminates the client connection. A value of zero specifies the default
value of 60 seconds. If the value is non-zero, the minimum value is 20 seconds and the maximum
value is 300 seconds (5 minutes). This value is used to ensure that a client has successfully
authenticated itself within a limited period of time. This prevents a potential denial-of-service
attack against the server where clients establish connections and hold them open without
authentication. In conjunction with the AuthFail property, this also limits the ability of a client to
attempt to probe the server for valid username and password combinations.

Data Type
Integer (Int32)

See Also
AuthFail Property, AddUser Method, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the server certificate.

Syntax
object.CertificateName [= name ]

Remarks
The CertificateName property sets the common name or friendly name of the server certificate
that should be used with secure SSL/TLS connections. The certificate must be designated as a
server certificate and have a private key associated with it, otherwise the server will be unable to
create the security context for the client session. This property value is only used if security has
been enabled by setting the Secure property to True.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property, ServerName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the server certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the server certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the server certificate that should
be used when accepting secure client connections. The certificate may either be stored in the
registry or in a file. If the certificate is stored in the registry, then this property should be set to one
of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the certificate will be installed in the user's personal certificate store, and therefore it
is not necessary to set this property value because that is the default location that will be used to
search for the certificate. This property is only used if the CertificateName property is also set to
a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the server certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the server certificate. If this property is not set,
the certificate store for the current user will be used when searching for the certificate. If this
property is used to specify another user, the process must have the appropriate permission to
access the registry location that contains the client certificate. On Windows Vista and later versions
of the operating system, this requires that the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientAccess Property  

 

Gets and sets the access rights that have been granted to the client session.

Syntax
object.ClientAccess [ = accessflags ]

Remarks
The ClientAccess property is used to determine all of the access permissions that are currently
granted to an authenticated client session and optionally change those permissions. For a list of
user access rights that can be granted to the client, see User Access Constants.

When modifying the value of this property, it is recommended that you use bitwise OR and AND
operands to set and clear specific bitflags. The exception is when using the ftpAccessDefault
permission. If you wish to reset the client session to use the default permissions based on the
server configuration and client authentication, then you should assign this value directly to the
ClientAccess property.

This property should only be accessed within an event handler such as OnCommand because its
value is specific to the client session that raised the event. This property will always return a value
of zero outside of an event handler, and an exception will be raised if you attempt to modify this
property outside of an event handler.

Data Type
Integer (Int32)

Example
' Allow the client to execute registered programs
FtpServer1.ClientAccess = FtpServer1.ClientAccess Or ftpAccessExecute

' Prevent the client from changing its idle timeout period
FtpServer1.ClientAccess = FtpServer1.ClientAccess And Not ftpAccessIdle

See Also
AddUser Method, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/ftpsrv/control/useraccess.html


 ClientAddress Property  

 

Return the Internet address of the current client connection.

Syntax
object.ClientAddress

Remarks
The ClientAddress property returns the address of the current client session which has connected
to the server. This property should only be accessed within an event handler such as OnConnect
because its value is specific to the client session that raised the event. This property will always
return an empty string when accessed outside of an event handler.

Data Type
String

See Also
ClientHost Property, ClientPort Property, ServerAddress Property, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientCount Property  

 

Return the number of active client sessions connected to the server.

Syntax
object.ClientCount

Remarks
The ClientCount read-only property returns the number of active client sessions that have been
established with the server. The value includes both authenticated and unauthenticated client
sessions.

Data Type
Integer (Int32)

See Also
MaxClients Property, MaxGuests Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientDirectory Property  

 

Return the current working directory for the active client session.

Syntax
object.ClientDirectory

Remarks
The ClientDirectory property returns the current working directory for the active client session.
Initially this value will be the absolute path on the local system that maps to an authenticated
client's home directory. The client can change its current working directory using the CWD
command. The ClientHome property will return the home directory that has been assigned to the
client.

It is important to note that the current working directory for client sessions is virtual, and does not
reflect the current working directory for the server process. This property should only be accessed
within an event handler after the client session has been authenticated. Unauthenticated clients
are not assigned a current working directory. This property will always return an empty string
when accessed outside of an event handler.

Data Type
String

See Also
ClientAddress Property, ClientHome Property, ClientId Property, IsAuthenticated Property,

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientHome Property  

 

Return the home directory for the active client session.

Syntax
object.ClientHome

Remarks
The ClientHome property returns the home directory for the active client session. This will be the
same path to the home directory specified when the Authenticate method was used to
authenticate the client session. If a home directory was not explicitly assigned when the client was
authenticated, then this property returns the default home directory that was created for the client,
or the server root directory if the MultiUser property was set to False when the server was
started. The ClientDirectory property will return the current working directory for the client.

This property should only be accessed within an event handler after the client session has been
authenticated. Unauthenticated clients are not assigned a home directory. This property will always
return an empty string when accessed outside of an event handler.

Data Type
String

See Also
ClientDirectory Property, IsAuthenticated Property, MultiUser Property, Authenticate Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientHost Property  

 

Return the host name that the client used to establish the connection.

Syntax
object.ClientHost

Remarks
The ClientHost property returns the host name that the client used to establish the connection. If
the client sends the HOST command, this property will return the value specified by the client. If
the client does not explicitly specify the host name, then this property will return the same host
name that was assigned to the server when it started.

Data Type
String

See Also
ClientAddress Property, ClientPort Property, ServerName Property, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientId Property  

 

Return the unique identifier for the active client session.

Syntax
object.ClientId

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This
value is by the application to identify that client session, and is different than the socket handle
allocated for the client. Client IDs are unique throughout the life of the server session and are
never duplicated.

This property only returns a meaningful value when accessed from within an event handler, or a
function that has been called from within an event handler. This property will always return a value
of zero when accessed outside of an event handler.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientHost Property, ServerAddress Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientIdle Property  

 

Gets and sets the maximum number of seconds a client can be idle before the server terminates
the session.

Syntax
object.ClientIdle [ = seconds ]

Remarks
The ClientIdle property returns the maximum number of seconds that the active client session
may be idle before the server closes the control connection. The idle timeout period for each
client session is based on the value of the IdleTime property when the server was started, with the
default value of 900 seconds (15 minutes). Changing this value inside an event handler will change
the timeout period for the active client session. Clients may also use the SITE IDLE command to
request that the server change the idle timeout period.

This property should only be accessed within an event handler such as OnConnect or OnLogin
because its value is specific to the client session that raised the event. This property will always
return a value of zero outside of an event handler, and an exception will be raised if you attempt
to modify this property outside of an event handler.

When the timeout period for the client has elapsed, the OnTimeout event will fire prior to the
client being disconnected from the server.

Data Type
Integer (Int32)

See Also
IdleTime Property, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientPort Property  

 

Return the port number allocated by the active client connection.

Syntax
object.ClientPort

Remarks
The ClientPort property returns the port number that the current client has used when
establishing a connection with the server. This property value is only meaningful when accessed
within an event handler such as the OnConnect event.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientHost Property, ServerAddress Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientThread Property  

 

Return the thread ID for the active client session.

Syntax
object.ClientThread

Remarks
The ClientThread property returns the thread ID for the current client session. Until the thread
terminates, the thread identifier uniquely identifies the thread throughout the system. This
property only returns a meaningful value when accessed from within an event handler, or a
function that has been called from within an event handler.

The thread ID can be used with Windows API functions such as OpenThread. Exercise caution
when using thread-related functions, interfering with the normal operation of the thread can have
unexpected results. You should never use this property value to obtain a thread handle and then
call the TerminateThread function to terminate a client session. This will prevent the thread from
releasing the resources that were allocated for the session and can leave the server in an unstable
state. To terminate a client session, use the Disconnect method.

Data Type
Integer (Int32)

See Also
ClientId Property, ServerThread Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientUser Property  

 

Return the user name associated with the specified client session.

Syntax
object.ClientUser

Remarks
The ClientUser property returns the user name that the client used to authenticate the client
session. This property should only be accessed within an event handler after the client session has
been authenticated. Unauthenticated clients are not assigned a user name. This property will
always return an empty string when accessed outside of an event handler.

Data Type
String

See Also
ClientAddress Property, ClientHome Property, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CommandLine Property  

 

Return the complete command line issued by the client.

Syntax
object.CommandLine

Remarks
The CommandLine property is used to obtain the command that was issued by the client, and is
commonly used inside OnCommand and OnResult event handlers to pre-process and post-
process client commands, respectively. If the command sent by the client is used to perform an
action on a file or directory, use the LocalPath property to get the full path to the local file that is
the target of the command.

This property should only be accessed within an event handler because its value is specific to the
client session that raised the event. This property will always return an empty string when accessed
outside of an event handler.

Data Type
String

See Also
LocalPath Property, VirtualPath Property, OnCommand Event, OnResult Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Directory Property  

 

Get and set the full path to the root directory assigned to the server.

Syntax
object.Directory [ = pathname ]

Remarks
The Directory property returns the path to the root directory for the server. If this property is set
to the name of a valid directory before the server is started, that directory will be considered the
root directory for the server. If this property is not set, or is set to an empty string, then the server
will use the current working directory as its root directory, however this is not recommended. It is
recommended that you specify an absolute path to the directory, otherwise the path will be
relative to the current working directory. You may include environment variables in the path
surrounded by percent (%) symbols and they will be expanded.

If you have configured the server to permit clients to upload files, you must ensure that your
application has permission to create files in the directory that you specify. A recommended
location for the server root directory would be a subdirectory of the %ALLUSERSPROFILE%
directory. Using the environment variable ensures that your server will work correctly on different
versions of Windows. If the root directory does not exist at the time that the server is started, it will
be created.

If the MultiUser property is False, all authenticated clients will have their current working directory
initialized to the server root directory. If the MultiUser property is True, then the Public and User
subdirectories will be created in the root directory, and each authenticated client will have their
current working directory initialized to their individual home directory.

This property can be read after the server has started and it will return the full path to the root
directory. However, attempting to change the value of this property after the server has started
will cause an exception to be raised. To change the root directory for the server, you must first call
the Stop method which will terminate all active client connections.

Data Type
String

Example
' Set the server root directory
FtpServer1.Directory = "%ALLUSERSPROFILE%\MyProgram\FileServer"

See Also
ClientDirectory Property, ClientHome Property, MultiUser Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExecTime Property  

 

Get and set maximum number of seconds that the server will permit an external command to
execute.

Syntax
object.ExecTime [ = seconds ]

Remarks
The ExecTime property specifies the maximum number of seconds that an external program is
permitted to run on the server. External programs are registered using the RegisterProgram
method, and are executed by the client sending the SITE EXEC command to the server. If this
value is zero, the default timeout period of 5 seconds will be used. The minimum execution time is
1 second and the maximum time limit is 30 seconds.

Data Type
Integer (Int32)

See Also
AuthTime Property, IdleTime Property, RegisterProgram Method, OnExecute Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExternalAddress Property  

 

Get and set the external IP address used for passive mode data transfers.

Syntax
object.ExternalAddress[ = ipaddress ]

Remarks
When using passive mode file transfers, the server creates a second listening (passive) socket that
is used to exchange data between the client and server. The client sends the PASV command, and
the server responds with its IP address and the ephemeral port number that was selected for the
transfer. If the server is located behind a router that performs Network Address Translation (NAT),
the address that the server will return will typically be a non-routable IP address assigned to the
local system on the LAN side of the network. Setting the ExternalAddress property will instruct
the server to return a different IP address in response to the PASV command sent by the client.
Typically you would use the address assigned to the router on the Internet side of the connection.

If the ExternalAddresss property is not assigned a specific address, reading this property value
will cause the control to automatically determine its external IP address. This requires that you
have an active connection to the Internet; checking the value of this property on a system that
uses dial-up networking may cause the operating system to automatically connect to the Internet
service provider. The control may be unable to determine the external IP address for the local host
for a number of reasons, particularly if the system is behind a firewall or uses a proxy server that
restricts access to external sites on the Internet. If the external address for the local host cannot be
determined, the property will return an empty string.

This property will not change the IP address the server is using to listen for client connections. The
only way to change the listening IP address is to stop and restart the server using the new address.
This property only changes the IP address that is reported to clients when a passive data
connection is used. Incorrect use of this property can prevent the client from establishing a data
connection to the server. The address must be in the same address family as the local address that
the server was started with. For example, if the server was started using an IPv4 address, the IP
address assigned to this property cannot be an IPv6 address.

Data Type
String

See Also
ClientAddress Property, ServerAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HiddenFiles Property  

 

Determine if the server should permit access to hidden files.

Syntax
object.HiddenFiles [= { True | False } ]

Remarks
The HiddenFiles property determines if the server should allow clients to access files with the
hidden and/or system attribute. If this property is True, then hidden files are included in directory
listings and clients may download or replace hidden files. If the property is False, hidden files are
not included in directory listings and any attempt to access, delete or modify a hidden file will
result in an error.

The default value for this property is False.

Data Type
Boolean

See Also
ReadOnly Property, Restricted Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Identity Property  

 

Gets and sets a string that identifies the server to the client.

Syntax
object.Identity [ = description ]

Remarks
The Identity property returns a string that is used to identify the server. It is used for informational
purposes only and does not affect the operation of the server. Typically the string specifies the
name of the application and a version number, and is displayed whenever a client establishes its
initial connection to the server. This property can be set to assign an identity to the server,
however after the server has started this property becomes read-only.

Data Type
String

See Also
ClientAddress Property, ClientPort Property, ServerName Property, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IdleTime Property  

 

Gets and sets the maximum number of seconds a client can be idle before the server terminates
the session.

Syntax
object.IdleTime [ = seconds ]

Remarks
The IdleTime property specifies the maximum number of seconds that a client session may be
idle before the server closes the control connection to the client. A value of zero specifies the
default value of 900 seconds (15 minutes). If the value is non-zero, the minimum value is 60
seconds and the maximum value is 7200 seconds (2 hours). This value is used to initialize the
default idle timeout period for each client session. A client may request that the server change the
idle timeout period for its session by sending the SITE IDLE command. The server determines if a
client is idle based on the time the last command was issued and whether or not a file transfer is in
progress.

The ClientIdle property can be used to determine the idle timeout period for a specific client.
When the timeout period for the client has elapsed, the OnTimeout event will fire prior to the
client being disconnected from the server.

Data Type
Integer (Int32)

See Also
ClientIdle Property, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsActive Property  

 

Determine if the server has been started.

Syntax
object.IsActive

Remarks
The IsActive property returns True if the server has been started using the Start method. If the
server has not been started, the property will return False.

To determine if the server is accepting client connections, use the IsListening property. This
property will only indicate if the server has been started. For example, if the server has been
suspended using the Suspend method, this property will return a value of True, while the
IsListening property will return a value of False.

An application should not depend on this property returning False immediately after the Stop
method has been called to shutdown the server. This property will continue to return True until all
clients have disconnected from the server and the server thread has terminated. To determine
when the server has stopped, implement a handler for the OnStop event.

Data Type
Boolean

See Also
IsListening Property, Start Method, Stop Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsAnonymous Property  

 

Determine if the active client session has authenticated as an anonymous user.

Syntax
object.IsAnonymous

Remarks
The IsAnonymous property returns True if the active client session has authenticated as an
anonymous (guest) user. This property should only be accessed within an event handler such as
OnCommand because its value is specific to the client session that raised the event. This property
will always return a value of False outside of an event handler.

Data Type
Boolean

See Also
IsAuthenticated Property, IsListening Property, Authenticate Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsAuthenticated Property  

 

Determine if the active client session has been authenticated.

Syntax
object.IsAuthenticated

Remarks
The IsAuthenticated property returns True if the active client session has successfully
authenticated with a valid username and password. This property should only be accessed within
an event handler such as OnCommand because its value is specific to the client session that
raised the event. This property will always return a value of False outside of an event handler.

Data Type
Boolean

See Also
IsAnonymous Property, IsListening Property, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the server has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the server control has
been initialized properly. Normally this is done automatically when the control is loaded, however
there are circumstances where the control may not be able to initialize itself. If this property
returns False, the application must call the Initialize method to initialize the control before
performing any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method, Start Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsListening Property  

 

Determine if the server is listening for client connections.

Syntax
object.IsListening

Remarks
The IsListening property returns True if the server is listening for connections after the Start
method has been called.

Data Type
Boolean

See Also
IsActive Property, Start Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= errorcode ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero (to clear the error) or a valid error code
for the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error that occurred.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a string that contains a description of the last error that
occurred.

Data Type
String

See Also
LastError Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalPath Property  

 

Return the full path to the local file or directory that is the target of the current command.

Syntax
object.LocalPath [ = filename ]

Remarks
The LocalPath property returns the full path to a local file name or directory specified by the client
as an argument to a standard FTP command. For example, if the client sends the RETR command
to the server, this property will return the complete path to the local file that the client wants to
download. This property will only return a value for those standard commands that perform some
action on a file or directory, otherwise it will return an empty string.

Setting this property allows you to effectively redirect the client to use a different file than the one
that was actually requested. If the path is absolute, then it will be used as-is. If the path is relative, it
will be relative to the current working directory for the active client session. The full path to this file
is not limited to the server root directory or its subdirectory, it can specify a file anywhere on the
local system. If this property is set to an empty string, then the server will revert to using the actual
file or directory name specified by the command.

This property should only be set within an OnCommand event handler, and only for those
commands that perform an action on a file or directory. If the current command does not target a
file or directory, setting this property will cause an exception to be raised by the control. Exercise
caution when using this property to redirect the server to use a different file than the one
requested by the client; changing the target file may cause the client to behave in unexpected
ways.

Data Type
String

See Also
VirtualPath Property, ResolvePath Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalTime Property  

 

Determines if the server should return file and directory times adjusted for the local timezone.

Syntax
object.LocalTime [= { True | False } ]

Remarks
The LocalTime property determines if the server should return file and directory times adjusted
for the local timezone. By default, the server will return all file times as UTC values. This option
affects the time information sent to a client when a list of files is requested, as well as when status
information is requested for a specific file. This property value will not affect the MDTM and MFMT
commands which always use file times as UTC values.

The default value for this property is False.

Data Type
Boolean

See Also
HiddenFiles Property, LockFiles Property, ReadOnly Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalUser Property  

 

Determines if the server should perform user authentication using the Windows local account
database.

Syntax
object.LocalUser [= { True | False } ]

Remarks
The LocalUser property determines if the server should perform user authentication using the
Windows local account database. If this option is not specified, the application is responsible for
creating virtual users using the AddUser method or implementing an OnAuthenticate event
handler and authenticating client sessions individually.

If this property is set to True, a client can authenticate as a local user, however the session will not
inherit that user's access rights. All files that are accessed or created by the server will continue to
use the permissions of the process that started the server. For example, consider a server
application that was started by local user A. Next, a client connects to the server and authenticates
itself as local user B. When that client uploads a file to the server, the file that is created will be
owned by user A, not user B. This ensures that the server application retains ownership and
control of the files that have been created or modified.

The default value for this property is False.

Data Type
Boolean

See Also
IsAuthenticated Property, AddUser Method, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LockFiles Property  

 

Determines if files should be exclusively locked when a client attempts to upload or download a
file.

Syntax
object.LockFiles [= { True | False } ]

Remarks
The LocalTime property determines if files should be exclusively locked when a client attempts to
upload or download a file. If another client attempts to access the same file, the operation will fail.
By default, the server will permit multiple clients to access the same file, although it will still write-
lock files that are in the process of being uploaded..

The default value for this property is False.

Data Type
Boolean

See Also
LocalTime Property, HiddenFiles Property, ReadOnly Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LogFile Property  

 

Gets and sets the name of the server log file.

Syntax
object.LogFile [ = filename ]

Remarks
The LogFile property is used to specify the name of a file that will contain a log of all client
activity. The LogFormat and LogLevel properties affect the specific format for the file and the
level of detail included in the log. It is recommended that you specify an absolute path to the log
file, otherwise the path will be relative to the current working directory. You may include
environment variables in the path surrounded by percent (%) symbols and they will be expanded.

If the log file does not exist it will be created when the server is started. If file already exists, the
server will append the new logging data to the file. The server must have permission to create
and/or modify the specified file.

Setting this property to an empty string after the server has been started will have the effect of
disabling logging, setting the logging level to 0 and the logging format to ftpLogNone.

Data Type
String

Example
' Enable server logging
FtpServer1.LogFile = "%ALLUSERSPROFILE%\MyProgram\Server.log"
FtpServer1.LogFormat = ftpLogExtended
FtpServer1.LogLevel = 5

See Also
LogFormat Property, LogLevel Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LogFormat Property  

 

Gets and sets the format used when updating the server log file.

Syntax
object.LogFormat [ = format ]

Remarks
The LogFormat property is used to specify the format of the server log file. It may be one of the
following values:

Value Constant Description

0 ftpLogNone This value specifies that the server should not create or
update a log file. This is the default property value.

1 ftpLogCommon This value specifies that the log file should use the common
log format that records a subset of information in a fixed
format. This log format usually only provides information
about file transfers.

2 ftpLogExtended This value specifies that the log file should use the standard
W3C extended log file format. This is an extensible format
that can provide additional information about the client
session.

Data Type
Integer (Int32)

Example
' Enable server logging
FtpServer1.LogFile = "%ALLUSERSPROFILE%\MyProgram\Server.log"
FtpServer1.LogFormat = ftpLogExtended
FtpServer1.LogLevel = 5

See Also
LogFile Property, LogLevel Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LogLevel Property  

 

Gets and sets the level of detail included in the server log file.

Syntax
object.LogLevel [ = level ]

Remarks
The LogLevel property is used to specify the level of detail that should generated in the log file.
The minimum value is 1 and the maximum value is 10. If this parameter is zero, it is the same as
specifying a log file format of ftpLogNone and will disable logging by the server

Data Type
Integer (Int32)

Example
' Enable server logging
FtpServer1.LogFile = "%ALLUSERSPROFILE%\MyProgram\Server.log"
FtpServer1.LogFormat = ftpLogExtended
FtpServer1.LogLevel = 5

See Also
LogFile Property, LogFormat Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MaxClients Property  

 

Gets and sets the maximum number of clients that can connect to the server.

Syntax
object.MaxClients [= clients ]

Remarks
The MaxClients property specifies the maximum number of client connections that will be
accepted by the server. Once the maximum number of connections has been established, the
server will reject any subsequent connections until the number of active client connections drops
below the specified value.

Changing the value of this property while a server is actively listening for connections will modify
the maximum number of client connections permitted, but it will not affect connections that have
already been established. You can also use the Throttle method to change the maximum number
of guest users, the maximum number of clients per IP address and the rate at which clients can
connect to the server.

It is important to note that regardless of the maximum number of clients specified by this
property, the actual number of client connections that can be managed by the server depends on
the number of sockets that can be allocated from the operating system. The amount of physical
memory installed on the system affects the number of connections that can be maintained
because each connection allocates memory for the socket context from the non-paged memory
pool.

The default value for this property is 100 client connections.

Data Type
Integer (Int32)

See Also
MaxGuests Property, Start Method, Throttle Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MaxGuests Property  

 

Gets and sets the maximum number of anonymous users that are permitted to connect to the
server.

Syntax
object.MaxGuests [= guests ]

Remarks
The MaxGuests property specifies the maximum number of guest users that will be accepted by
the server. Once the maximum number of connections has been established, the server will reject
any subsequent connections until the number of active guest users drops below the specified
value. A guest user is one that authenticates with the username "anonymous" and their email
address as the password.

Changing the value of this property while a server is actively listening for connections will modify
the maximum number of guest logins permitted, but it will not affect connections that have
already been established. You can also use the Throttle method to change the maximum number
of clients, the maximum number of clients per IP address and the rate at which clients can connect
to the server.

The default value for this property is zero, disabling guest logins. If your server is accessible to the
public and you decide to allow guest users, it is recommended that you set the Restricted
property to True, and you should not grant permission for guests to upload files or execute
registered programs using the SITE EXEC command.

Data Type
Integer (Int32)

See Also
MaxClients Property, Restricted Property, Start Method, Throttle Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MaxPort Property  

 

Gets and sets the maximum port number used by the server for passive data connections.

Syntax
object.MaxPort [= port ]

Remarks
The MaxPort property specifies the maximum range of port numbers that will be used with
passive data connections. A value of zero specifies the default value of 65535 should be used. The
minimum value of this member is 10000 and the maximum value is 65535. If the value is non-
zero, it must be greater than the value of the MinPort property.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change the maximum port number for the server, you must first call the
Stop method which will terminate all active client connections.

Data Type
Integer (Int32)

See Also
ExternalAddress Property, MinPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MemoryUsage Property  

 

Gets the amount of memory allocated for the server and all client sessions.

Syntax
object.MemoryUsage

Remarks
This read-only property returns the amount of memory allocated by the server and all active client
sessions. It enumerates all memory allocations made by the server process and client session
threads, returning the total number of bytes allocated for the server process. This value reflects the
amount of memory explicitly allocated by this control and does not reflect the total working set
size of the process, or memory allocated by any other components or libraries.

Getting the value of this property forces the server into a locked state, and all client sessions will
block while the memory usage is being calculated. Because this enumerates all heaps allocated for
the server process, it can be an expensive operation, particularly when there are a large number of
active clients connected to the server. Frequently checking the value of this property can
significantly degrade the performance of the server. It is primarily intended for use as a debugging
tool to determine if memory usage is the result of an increase in active client sessions. If the value
returned by this property remains reasonably constant, but the amount of memory allocated for
the process continues to grow, it could indicate a memory leak in some other area of the
application.

Data Type
Double

See Also
StackSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MinPort Property  

 

Gets and sets the maximum port number used by the server for passive data connections.

Syntax
object.MinPort [= port ]

Remarks
The MinPort property specifies the minimum range of port numbers that will be used with passive
data connections. A value of zero specifies that the default value of 30000 should be used. The
minimum value of this member is 10000 and the maximum value is 65535. If the value is non-
zero, it must be less than the value of the MaxPort property.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change the minimum port number for the server, you must first call the
Stop method which will terminate all active client connections.

Data Type
Integer (Int32)

See Also
ExternalAddress Property, MaxPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MultiUser Property  

 

Determine if the server should be started in multi-user mode.

Syntax
object.MultiUser [= { True | False } ]

Remarks
The MultiUser property determines if the server should be started in multi-user mode. If this
property is set to True, each user will be assigned their own home directory which will be based
on their user name. When a client authenticates as that user, its current working directory is set to
the user's home directory. If this property is set to False, then all users will share the server root
directory by default. This property does not affect the maximum number of simultaneous client
connections to the server. To isolate users to their own individual home directory, set the
Restricted property to True.

Setting this property to True will cause the server to create two subdirectories under the server
root directory named Public and Users. The Public subdirectory is where public files should be
stored, and also serves as the home directory for anonymous (guest) users. The Users subdirectory
is where the home directories for each user will be created.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

The default value for this property is False.

Data Type
Boolean

See Also
Directory Property, ReadOnly Property, Restricted Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Options Property  

Gets and sets the options used when creating an instance of the server.

Syntax
object.Options [= value ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when starting the server. The property value is
created by using a bitwise operator with one or more of the following values:

Value Constant Description

1 ftpServerMultiUser This option specifies the server should be started
in multi-user mode, where users are provided
with their own home directories based on their
username. If this option is not specified, then all
users will share the server root directory by
default. This option does not affect the maximum
number of simultaneous client connections to the
server. To isolate users to their own individual
home directory, combine this option with the
ftpServerRestricted option.

2 ftpServerRestricted This option specifies the server should be
initialized in a restricted mode that isolates the
server and limits the ability for clients to access
files on the host system. All file transfers are
limited to the user's home directory. This option
also disables certain site-specific commands. This
is a recommended option for general purpose
applications designed to accept connections from
clients over the Internet. This option is only
meaningful if the ftpServerMultiUser option has
also been specified. All clients are restricted to the
server root directory and its subdirectories,
regardless of whether this option is specified or
not.

4 ftpServerLocalUser This option specifies the server should perform
user authentication using the Windows local
account database. This option is useful if the
server should accept local usernames, or if the
application does not wish to implement an event
handler for user authentication. If this option is
not specified, the application is responsible for
authenticating all users.

8 ftpServerAnonymous This option specifies the server should accept
anonymous client connections. This is typically
used to provide public access to files without



 

requiring the client to have valid credentials on
the server. Anonymous clients are automatically
authenticated by the server, but are restricted to
a public directory and subdirectories. If this
option is enabled, it is recommended that you
also specify the ftpServerReadOnly option to
prevent anonymous clients from uploading files
to the server.

16
(&H10)

ftpServerReadOnly This option specifies the server should only allow
read-only access to files by default. If this option
is enabled, it will change the default permissions
granted to authenticated users. Anonymous
clients will not be able to upload, rename or
delete files and cannot create subdirectories. It is
recommended that this option be enabled if the
server is publicly accessible over the Internet and
the ftpServerAnonymous option has been
specified.

32
(&H20)

ftpServerLocalTime This option specifies the server should return file
and directory times adjusted for the local
timezone. By default, the server will return all file
times as UTC values. This option affects the time
information sent to a client when a list of files is
requested, as well as when status information is
requested for a specific file. This option will not
affect the MDTM and MFMT commands which
always use file times as UTC values.

64
(&H40)

ftpServerLockFiles This option specifies that files should be
exclusively locked when a client attempts to
upload or download a file. If another client
attempts to access the same file, the operation
will fail. By default, the server will permit multiple
clients to access the same file, although it will still
write-lock files that are in the process of being
uploaded.

128
(&H80)

ftpServerHiddenFiles This option specifies that when a client requests a
list of files in a directory, the server should include
any hidden and system files files or subdirectories.
By default, the server will not include hidden or
system files, although they are still accessible to
the client if it knows the name of the file. File
names that begin with a period are also
considered to be hidden files and will not
normally be included in file listings.

256
(&H100)

ftpServerUnixMode This option specifies the server should
impersonate a UNIX-based operating system. The
server will identify itself as running on a UNIX
system and directory listings will be in a format

 



commonly used by UNIX. If this option is not
specified, the server will identify itself as running
on Windows NT and directory listings will be in
the same format used by the Microsoft IIS FTP
server. Note that this option does not affect the
path delimiter used with file and directory names.

512
(&H200)

ftpServerExternal This option specifies the server is listening for
client connections from behind a router that uses
Network Address Translation (NAT). If enabled,
the server will report its external IP address rather
than the address assigned to it on the local
network. For the server to accept connections
from behind a NAT router, the router must be
configured to direct inbound traffic to the
specified port number on the host system.

4096
(&H1000)

ftpServerSecure This option specifies that secure connections
using TLS should be enabled. If neither the
ftpServerExplicitTLS or ftpServerImplicitTLS
options are specified, the server automatically
determines the appropriate type based on the
port number. If the local port number is 990, then
implicit TLS will be used, otherwise explicit TLS will
be used. This option requires that a valid TLS
certificate be installed on the local host.

8192 ftpServerExplicitTLS This option specifies the server will accept the
AUTH TLS command and negotiate a secure
connection with the client after that command is
issued. This option implies the ftpServerSecure
option and requires that a valid TLS certificate be
installed on the local host.

16384
(&H4000)

ftpServerImplicitTLS This option specifies the server should negotiate a
secure connection with the client immediately
after it connects to the server. It is recommended
that you only use this option if the server is
listening for connections on port 990, which is the
standard port for FTP servers using implicit TLS.
This option implies the ftpServerSecure option
and requires that a valid TLS certificate be
installed on the local host.

32768
(&H8000)

ftpServerSecureFallback This option specifies the server should permit the
use of less secure cipher suites for compatibility
with legacy clients. If this option is specified, the
server will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

Most of these options have a corresponding Boolean property. For example, the
ftpServerRestricted option corresponds to the Restricted property, where setting the property
to True enables the option and setting it to False disables the option.



In most cases, it is recommended that you use the property value related to the option, rather
than setting the Options property. It will make your code more readable and prevent potential
compatibility issues with subsequent versions of the control. If you do decide to specify option
bitflags, it is recommended that you use the constant name rather than the numeric value.

Data Type
Integer (Int32)

See Also
HiddenFiles Property, LocalTime Property, LocalUser Property, LockFiles Property, MaxGuests
Property, MultiUser Property, ReadOnly Property, Restricted Property, Secure Property, UnixMode
Property, Start Method

file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/hiddenfiles.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/localtime.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/localuser.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/lockfiles.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/maxguests.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/maxguests.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/multiuser.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/readonly.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/restricted.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/secure.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/unixmode.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/property/unixmode.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/property/method/start.html


 Priority Property  

 

Gets and sets the priority assigned to the server.

Syntax
object.Priority [= priority ]

Remarks
The Priority property can be used to control the processor usage, memory and network
bandwidth allocated by the server for client sessions. One of the following values may be
specified:

Value Constant Description

0 ftpPriorityBackground This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. Each client thread will be assigned a
lower scheduling priority and will be frequently forced
to yield execution to other threads.

1 ftpPriorityLow This priority lowers the overall resource utilization for
the client session and meters the processor utilization
for the client session. Each client thread will be assigned
a lower scheduling priority and will occasionally be
forced to yield execution to other threads.

2 ftpPriorityNormal The default priority which balances resource and
processor utilization. It is recommended that most
applications use this priority.

3 ftpPriorityHigh This priority increases the overall resource utilization for
each client session and their threads will be given
higher scheduling priority. It is not recommended that
this priority be used on a system with a single
processor.

4 ftpPriorityCritical This priority can significantly increase processor,
memory and network utilization. Each client thread will
be given higher scheduling priority and will be more
responsive to network events. It is not recommended
that this priority be used on a system with a single
processor.

The ftpPriorityNormal priority balances resource and network bandwidth utilization while
ensuring that a single-threaded server application remains responsive to the user. Lower priorities
reduce the overall resource utilization of the server at the expense of throughput.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

 



Data Type
Integer (Int32)

See Also
Start Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadOnly Property  

 

Determine if the server should prevent clients from uploading files.

Syntax
object.ReadOnly [= { True | False } ]

Remarks
The ReadOnly property determines if the server should only allow read-only access to files by
default, changing the default permissions granted to authenticated users. If this property is set to
True, anonymous users will not be able to upload, rename or delete files and cannot create
subdirectories. This is recommended if the server is publicly accessible over the Internet and guest
logins are permitted.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

The default value for this property is False.

Data Type
Boolean

See Also
Directory Property, ReadOnly Property, Restricted Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Restricted Property  

 

Determine if the server should be started in restricted mode, limiting client access to the server.

Syntax
object.Restricted [= { True | False } ]

Remarks
The Restricted property determines if the server should be initialized in a restricted mode that
isolates the server and limits the ability for clients to access files on the host system. If this property
is set to True, all file transfers are limited to the user's home directory and certain site-specific
commands are disabled. This is recommended for general purpose applications designed to
accept connections from clients over the Internet. This property value is only meaningful if the
MultiUser property has also been set to True.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

The default value for this property is False.

Data Type
Boolean

See Also
Directory Property, MultiUser Property, Restricted Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if client connections are encrypted using the TLS protocol.

Syntax
object.Secure [={ True | False } ]

Remarks
The Secure property determines if client connections are encrypted using the Transport Layer
Security (TLS) protocol. The default value for this property is False, which specifies that clients will
use a standard, unencrypted connection to the server. To enable secure connections, the
application should set this property value to True prior to calling the Start method.

When secure connections are enabled, the server will accept the client connection and then wait
for the client to initiate the handshake where both the client and server negotiate the various
encryption options available. This process is handled automatically by the server, and all that is
required is that the application specify the server certificate which should be used. This is done by
setting the CertificateName property, and optionally the CertificateStore property if required.

Data Type
Boolean

See Also
CertificateName Property, CertificateStore Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerAddress Property  

 

Gets and sets the address that will be used by the server to listen for connections.

Syntax
object.ServerAddress [= address ]

Remarks
The ServerAddress property is used to specify the default address that the server will use when
listening for connections. By default the server will accept connections on any appropriately
configured network adapter. If an address is specified, it must be a valid Internet address that is
bound to a network adapter configured on the local system. Clients will only be able to connect to
the server using that specific address.

If an IPv6 address is specified as the server address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

It is common to set this property to the value 127.0.0.1 for testing purposes. It is a non-routable
address that specifies the local system, and most software firewalls are configured so they do not
block applications using this address.

Data Type
String

See Also
ExternalAddress Property, ServerName Property, ServerPort Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerName Property  

 

Gets and sets the fully qualified domain name for the server.

Syntax
object.ServerName [ = hostname ]

Remarks
The ServerName property returns the fully qualified domain name assigned to the server. This
consists of the local computer name and its domain name. The actual value returned depends on
the system configuration. If no domain has been specified for the system, then only the machine
name will be returned.

Setting this property assigns the default hostname for the server which is reported to the client
when it first establishes the connection. If the server is publicly accessible over the Internet, this
property should be set to the same hostname that is associated with the server IP address.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

Data Type
String

See Also
ExternalAddress Property, ServerAddress Property, ServerPort Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerPort Property  

 

Gets and sets the port number that will be used by the server to listen for connections.

Syntax
object.ServerPort [= port ]

Remarks
The ServerPort property is used to set the port number that server will use to listen for incoming
client connections. Valid port numbers are in the range of 1 to 65535. It is recommended that
most custom servers specify a port number larger than 5000 to avoid potential conflicts with
standard Internet services and ephemeral ports used by client applications. The default port
number for standard connections is 21.

If a port number is specified that is already in use by another application, the OnError event will
fire and the background server thread will terminate. Attempting to change the value of this
property after the server has started will cause an exception to be raised. To change this property
value, you must first call the Stop method which will terminate all active client connections.

Data Type
Integer (Int32)

See Also
ServerAddress Property, ServerName Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerThread Property  

 

Return the thread ID for the server.

Syntax
object.ServerThread

Remarks
The ServerThread property returns the thread ID for the active server. Until the thread terminates,
the thread identifier uniquely identifies the thread throughout the system. If there is no active
server, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientThread Property, ServerAddress Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerUuid Property  

 

Gets and sets the Universally Unique Identifier (UUID) associated with the server.

Syntax
object.ServerUuid [ = uuid ]

Remarks
The ServerUuid property returns the UUID that uniquely identifies this instance of the server. If the
application does not set this property, a temporary UUID will be assigned to the server. If a value is
assigned to this property, it must be a valid UUID string. A permanent UUID can be generated
using a utility such as uuidgen which is included with Visual Studio.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

Data Type
String

See Also
ServerAddress Property, ServerName Property, ServerPort Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StackSize Property  

 

Gets and sets the size of the stack allocated for threads created by the server.

Syntax
object.StackSize [= bytes ]

Remarks
The StackSize property returns the initial amount of memory that is committed to the stack for
each thread created by the server. By default, the stack size for each thread is set to 256K.
Increasing or decreasing the stack size will only affect new threads that are created by the server, it
will not affect those threads that have already been created to manage active client sessions. It is
recommended that most applications use the default stack size.

You should not change this value unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Data Type
Integer (Int32)

See Also
MemoryUsage Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown
to the container of the control. In addition, the OnError event will fire. For example, in Visual Basic,
it is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the tracing of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP client and server controls, and you set the Trace property
to True on the FTP client control, function calls made by both controls will be logged. Additionally,
enabling a trace is cumulative, and tracing is not stopped until it is disabled for all controls used by
the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Only those function calls made by the SocketTools networking controls will be logged. Calls made
directly to the Windows Sockets API, or calls made by other controls, will not be logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named CSTRACE.LOG is created in the system's temporary directory. If no temporary directory
exists, then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column identifies if the trace record is reporting information, a warning, or
an error. What follows is the name of the function being called, the arguments passed to the
function and the function's return value. If a warning or error is reported, the error code is
appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= flags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 stTraceInfo All function calls are written to the trace file. This is the default value.

1 stTraceError Only those function calls which fail are recorded in the trace file.

2 stTraceWarning Only those function calls which fail, or return values which indicate a
warning, are recorded in the trace file.

4 stTraceHexDump All functions calls are written to the trace file, plus all the data that is
sent or received is displayed, in both ASCII and hexadecimal format.

Since socket function tracing is enabled per-process, the trace flags are shared by all instances of
the controls being used. If multiple controls have tracing enabled, the TraceFlags property should
be set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and the error WSAEWOULDBLOCK is
returned, a warning is generated since the application simply needs to attempt to write the data at
a later time.

Data Type
String

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UnixMode Property  

 

Determine if the server should impersonate a UNIX-based operating system.

Syntax
object.UnixMode [= { True | False } ]

Remarks
The UnixMode property determines if the server should impersonate a UNIX-based operating
system. If this property is set to a value of True, the server will identify itself as running on a UNIX
system and directory listings will be in a format commonly used by UNIX. If this property value is
False, the server will identify itself as running on Windows NT and directory listings will be in the
same format used by the Microsoft IIS FTP server. Note that this option does not affect the path
delimiter used with file and directory names.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

The default value for this property is False.

Data Type
Boolean

See Also
LocalTime Property, MultiUser Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 VirtualPath Property  

 

Return the virtual path to the local file or directory that is the target of the current command.

Syntax
object.VirtualPath [ = filename ]

Remarks
The VirtualPath property returns the virtual path to a local file name or directory specified by the
client as an argument to a standard FTP command. For example, if the client sends the RETR
command to the server, this property will return the complete virtual path to the file that the client
wants to download. This property will only return a value for those standard commands that
perform some action on a file or directory, otherwise it will return an empty string.

Setting this property allows you to effectively redirect the client to use a different file than the one
that was actually requested. If the path is absolute, then it will be used as-is. If the path is relative, it
will be relative to the current working directory for the active client session. If this property is set to
an empty string, then the server will revert to using the actual file or directory name specified by
the command.

This property should only be set within an OnCommand event handler, and only for those
commands that perform an action on a file or directory. If the current command does not target a
file or directory, setting this property will cause an exception to be raised by the control. Exercise
caution when using this property to redirect the server to use a different file than the one
requested by the client; changing the target file may cause the client to behave in unexpected
ways.

Data Type
String

See Also
LocalPath Property, ResolvePath Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Server Control Methods  

 

Method Description

AddUser Add a new virtual user to the server

Authenticate Authenticate the client and assign access rights for the session

DeleteUser Remove a virtual user from the server

Disconnect Disconnect the specified client session from the server

Initialize Initialize the control and validate the runtime license key

RegisterProgram Register a program for use with the SITE EXEC command

Reset Reset the internal state of the control to its default values

ResolvePath Resolve a path to its full virtual or local file name

Restart Restart the server, terminating all active client connections

Resume Resume accepting new client connections

SendResponse Send a result code and message to the client in response to a command

Start Start listening for client connections on the specified IP address and port number

Stop Stop listening for new client connections and terminate all client sessions

Suspend Suspend accepting new client connections

Throttle Limit the maximum number of client connections, connections per IP address and connection rate

Uninitialize Uninitialize the control and release any system resources that were allocated

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AddUser Method  

 

Add a new virtual user to the server.

Syntax
object.AddUser( UserName, Password, [AccessFlags], [Directory] )

Parameters
UserName

A string which specifies the user name. The maximum length of a username is 63 characters and
it is recommended that names be limited to alphanumeric characters. Whitespace, control
characters and certain symbols such as path delimiters and wildcard characters are not
permitted. If an invalid character is included in the name, the method will fail with an error
indicating the username is invalid. The username must be at least three characters in length.
Usernames are not case sensitive.

Password

A string which specifies the user password. The maximum length of a password is 63 characters
and is limited to printable characters. Whitespace and control characters are not permitted. If an
invalid character is included in the password, the method will fail with an error indicating the
password is invalid. The password must be at least one character in length. Passwords are case
sensitive.

AccessFlags

An optional integer value which specifies the access clients will be given when authenticated as
this user. This value created from one or more bitflags. For a list of user access permissions, see
User Access Constants. If this parameter is omitted, the user is assigned default access
permissions based on the server configuration.

Directory

An optional string which specifies the directory that will be the virtual user's home directory. If
the server was started in multi-user mode, this directory will be relative to the user directory
created by the server, otherwise it will be relative to the server root directory. If the directory
does not exist, it will be created the first time that the virtual user successfully logs in to the
server. If this parameter is omitted or is an empty string, a default home directory will be
created for the virtual user.

Return Value
A value of zero is returned if the virtual user was created. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client
connects with the server and provides authentication credentials, the server will check if the
username has been created using this method. If a match is found, the client access rights will be
updated.

If you wish to modify the information for an existing user, it is not necessary to delete the
username first. If this method is called with a username that already exists, that record is replaced
with the values passed to this method. You cannot use this method to create a virtual user named
"anonymous".

The virtual users created by this method exist only as long as the server is active. If you wish to

 

file:///C|/Projects/cstools11/pdf/ftpsrv/control/useraccess.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/useraccess.html


maintain a persistent database of users and passwords, you are responsible for its implementation
based on the requirements of your specific application. For example, a simple implementation
would be to store the user information in a local XML or INI file and then read that configuration
file after the server has started, calling this method for each user that is listed.

See Also
Authenticate Method, DeleteUser Method, OnAuthenticate Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Authenticate Method  

 

Authenticate the client and assign access rights for the session.

Syntax
object.Authenticate( ClientId, [AccessFlags], [Directory] )

Parameters
ClientId

An integer that identifies the client session.

AccessFlags

An optional integer value which specifies the access clients will be given when authenticated as
this user. This value created from one or more bitflags. For a list of user access permissions, see
User Access Constants. If this parameter is omitted, the client is authenticated using the default
access permissions based on the server configuration.

Directory

An optional string which specifies the directory that will be the client's home directory. If the
server was started in multi-user mode, this directory will be relative to the user directory created
by the server, otherwise it will be relative to the server root directory. If the directory does not
exist, it will be created. If this parameter is omitted or is an empty string, a default home
directory will be created for the client.

Return Value
A value of zero is returned if the client session was authenticated. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The Authenticate method authenticates a client session, typically in response to an
OnAuthenticate event that indicates a client has requested authentication. It is recommended
that most applications specify ftpAccessDefault as the AccessFlags parameter for a client session,
since this allows the server automatically grant the appropriate access based on the server
configuration options for normal and anonymous users. If the server is going to be publicly
accessible or third-party FTP clients will be used to access the server, you should always grant the
ftpAccessList permission to clients. Many client applications will not function correctly if they are
unable to obtain a list of files in the user's home directory.

If the server was started with the MultiUser and Restricted properties set to a value of True, the
client session will be effectively locked to its home directory and cannot navigate to the server root
directory. By default, restricted client sessions are also limited to only downloading files and
requesting directory listings. If a client session is not restricted, the client can access files outside of
its home directory. Regardless of this option, a client cannot access files outside of the server root
directory.

If the Restricted property is True or the ftpAccessAnonymous permission is specified, the client
session will be authenticated in a restricted mode and the access rights for the session will persist
until the client disconnects from the server. Unlike regular users, the access rights for a restricted
client cannot be changed by the server at a later point. This restriction is designed to prevent the
inadvertent granting of rights to an untrusted client that could compromise the security of the
server.

If the Directory parameter is omitted or is an empty string and the server has been started in

 

file:///C|/Projects/cstools11/pdf/ftpsrv/control/useraccess.html
file:///C|/Projects/cstools11/pdf/ftpsrv/control/useraccess.html


multi-user mode, each user is assigned their own home directory based on their username. If the
server has not been started in multi-user mode, then the default home directory will be the server
root directory and is shared by all users. The ClientHome property will return the full path to the
home directory for an authenticated client.

If the ftpAccessExecute permission is granted to the client session, it can execute external
programs using the SITE EXEC command. Because the program is executed in the context of the
server process, it is recommended that you limit access to this functionality and ensure that the
programs being executed do not introduce any security risks to the operating system. This
permission is never granted by default, and the SITE EXEC command will return an error if the
client session is anonymous, regardless of whether this permission is granted or not.

This method is should only be used for custom authentication schemes and is not necessary if you
have used the AddUser method to create virtual users.

See Also
MultiUser Property, Restricted Property, AddUser Method, DeleteUser Method, OnAuthenticate
Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteUser Method  

 

Remove a virtual user from the server.

Syntax
object.DeleteUser( UserName )

Parameters
UserName

A string which specifies the user name to be deleted. Usernames are not case sensitive.

Return Value
A value of zero is returned if the virtual user was deleted. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The DeleteUser method removes a virtual user that was created by a previous call to the
AddUser method. This method will not match partial usernames and wildcard characters cannot
be used to delete multiple users. Usernames are not case sensitive. You cannot use this method to
delete the "anonymous" user.

See Also
AddUser Method, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Disconnect the specified client session from the server.

Syntax
object.Disconnect( ClientId )

Parameters
ClientId

An integer that identifies the client session.

Return Value
A value of zero is returned if the client was signaled to terminate its connection to the server.
Otherwise, a non-zero error code is returned which indicates the cause of the failure.

Remarks
This method terminates the specified client connection, releasing the socket handle other
resources that were allocated for the session. It is only necessary to use this method if you want
the server to explicitly terminate a client connection. Normally the client will close its connection to
the server, the OnDisconnect event will fire and the server will automatically disconnect the client.

The thread that is managing the client will be signaled that it should disconnect from the server,
and it will begin the process of terminating the session. This is an asynchronous process and it is
not guaranteed that the client will have actually disconnected from the server at the time that this
method returns to the caller.

See Also
Start Method, Stop Method, OnConnect Event, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the server and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Dim objServer As Object
Set objServer = CreateObject("SocketTools.FtpServer.11")

nError = objServer.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize the SocketTools object"
    End
End If

See Also
IsInitialized Property, Start Method, Stop Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RegisterProgram Method  

 

Register a program for use with the SITE EXEC command.

Syntax
object.RegisterProgram( CommandName, ProgramFile, [Parameters], [Directory] )

Parameters
CommandName

A string which identifies the external program. This is the name that is passed to the SITE EXEC
command and does not need to match the actual name of the executable file on the local
system. The maximum length of the command name is 31 characters and this parameter cannot
be an empty string.

ProgramFiles

A string which specifies the full path to the executable program on the local system.

Parameters

An optional string that specifies additional parameters for the program. This value will be
passed to the program as command line arguments. If the program does not require any
command line parameters, this parameter may be omitted.

Directory

An optional string that specifies the current working directory for the program. If this parameter
is omitted, the server will use the root document directory for the virtual host.

Return Value
A value of zero is returned if the program was registered successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The RegisterProgram method registers an executable program for use with the SITE EXEC
command. Because this can present a significant security risk to the server, clients are not given
permission to use this command by default. A client must be explicitly granted permission to use
SITE EXEC by including ftpAccessExecute as one of the permissions when authenticating the
client session with the Authenticate method or creating a virtual user using the AddUser
method.

To give the server complete control over what programs can be executed using SITE EXEC, the
program must be registered with the server and referenced by an alias specified by the
CommandName parameter. The maximum length of a program name is 31 characters and it
must be at least 3 characters in length. The name must only consist of alphanumeric characters
and the first character of the program name cannot be numeric. The program name is not case-
sensitive, however convention is to use upper-case characters. If a program name is specified that
already has been registered, it will be updated with the new information provided by this method.

The ProgramFile string specifies file name of the program that will be executed. You should not
install any executable programs in the server root directory or its subdirectories. A client should
never have the ability to directly access the executable file itself. It is permitted to have multiple
command names that reference the same executable file. The only requirement is that the
command names be unique. The program name may contain environment variables surrounded
by % symbols. For example, %ProgramFiles% would be expanded to the C:\Program Files
folder.

 



It is important to note that the program specified by ProgramFile must be an executable file, not a
script or batch file. If the program name does not contain a directory path, then the standard
Windows pathing rules will be used when searching for an executable file that matches the given
name. It is recommended that you always provide a full path to the executable file.

The Parameters string is used to define optional command line parameters that will be included
with the command. This string can contain placeholders that are replaced by additional
parameters specified by the client when it sends the SITE EXEC command. First replacement
parameter is %1, the second is %2 and so on.

The executable program that is registered using this method must be a console application that
writes to standard output. Programs that write directly to a console, or programs written to use a
Windows user interface are not supported and will yield unpredictable results. In most cases, those
programs that do not use standard input and output will be forcibly terminated by the server. If
the program attempts to read from standard input, it will immediately encounter an end-of-file
condition. Programs executed by the SITE EXEC command have no input; it is similar to a program
that has its input redirected from the NUL: device. If the program must process a file on the server,
the local file name should be passed as a command line parameter.

The output from the program will be redirected back to the client control channel. The output
should be textual, with each line of text terminated by a carriage return and linefeed (CRLF).
Programs that write binary data to standard output, particular data with embedded nulls, will yield
unpredictable results and are not supported. To ensure that the program output conforms to the
protocol standard, any non-printable characters will be replaced with a space and each line of
output will be prefixed by a single space.

If the server is running on a system with User Account Control (UAC) enabled and does not have
elevated privileges, do not register a program that requires elevated privileges or has a manifest
that specifies the requestedExecutionLevel as requiring administrative privileges.

See Also
OnCommand Event, OnExecute Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control to its default values.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released. Is the server is active when this method is called, the method will return
immediately and the server shutdown process will proceed asynchronously in the background.

If this method is used to forcibly stop an active server, no further events will be generated by the
control. The OnDisconnect event will not fire for each client session that is terminated and the
OnStop event will not fire when the shutdown process has completed. If your application depends
on these events, you should not use the Reset method to stop an active server.

See Also
Disconnect Method, Initialize Method, Stop Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResolvePath Method  

 

Resolve a path to its full virtual or local file name.

Syntax
object.ResolvePath( ClientId, SourcePath, ResolvedPath, [IsVirtual] )

Parameters
ClientId

An integer that identifies the client session.

SourcePath

A string that specifies the name of the path to resolve. This may either be a virtual path, or a
path to a local file name or directory.

ResolvedPath

A string that will contain the resolved path when the method returns.

IsVirtual

An optional Boolean parameter that specifies if the source path is a virtual path or local path.

Return Value
A value of zero is returned if the path could be resolved. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ResolvePath method is used to resolve a local file name or directory to obtain its virtual path
name, or obtain the full path name of a file or directory that is mapped to a virtual path.  If the
IsVirtual parameter is omitted or is False, the SourcePath parameter is considered to be a path to
a local file or directory and the ResolvedPath parameter will contain the virtual path. If the
IsVirtual parameter is True, then the SourcePath parameter is considered to be a virtual path and
the ResolvedPath parameter will contain the full path to the local file or directory that the virtual
path is mapped to

A virtual path for the client is either relative to the server root directory, or the client home
directory if the client was authenticated as a restricted user. These virtual paths are what the client
will see as an absolute path on the server. For example, if the server was configured to use
"C:\ProgramData\MyServer" as the root directory, and the SourcePath parameter was specified as
"C:\ProgramData\MyServer\Documents\Research", this method would return the virtual path to
that directory as "/Documents/Research".

If the client session was authenticated as a restricted user, then the virtual path is always relative to
the client home directory instead of the server root directory. This is because restricted users are
isolated to their own home directory and any subdirectories. For example, if restricted user "John"
has a home directory of "C:\ProgramData\MyServer\Users\John" and the SourcePath parameter
was specified as "C:\ProgramData\MyServer\Users\John\Accounting\Projections.pdf" this method
would return the virtual path as "/Accounting/Projections.pdf".

If the SourcePath parameter specifies a file or directory outside of the server root directory, this
method will fail and the last error code will be set to stErrorInvalidFileName. This method can
only be used with authenticated clients. If the ClientId parameter specifies a client session that has
not been authenticated, this method will fail and the last error code will be
stErrorAuthenticationRequired.

 



See Also
LocalPath Property, VirtualPath Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Restart Method  

 

Restart the server, terminating all active client connections

Syntax
object.Restart

Parameters
None.

Return Value
A value of zero is returned if the server was restarted, otherwise a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Restart method terminates all active client connections, recreates a new listening socket
bound to the same address and port number, and then resumes accepting new client
connections. The OnDisconnect event will not fire for those client sessions that are terminated
when the server is restarted.

See Also
Resume Method, Start Method, Stop Method, Suspend Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Resume Method  

 

Resume accepting new client connections.

Syntax
object.Restart

Parameters
None.

Return Value
A value of zero is returned if the server has resumed accepting new connections, otherwise a non-
zero error code is returned which indicates the cause of the failure.

Remarks
The Resume method instructs the server to resume accepting new client connections after the
Suspend method was called.

See Also
Restart Method, Start Method, Stop Method, Suspend Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendResponse Method  

 

Send a result code and message to the client in response to a command.

Syntax
object.SendResponse( ClientId, ResultCode, [Message] )

Parameters
ClientId

An integer that identifies the client session.

ResultCode

An integer value that specifies the command result code to be returned to the client.

Message

An optional string value that specifies a message to be sent to the client. If this parameter is
omitted is an empty string, a default message associated with the result code will be used.

Return Value
A value of zero is returned if the response was sent to the client. Otherwise, a non-zero error code
is returned which indicates the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a
normal part of processing a command and this method is only used if the application has
implemented custom commands or wishes to modify the standard responses sent by the server.
The message may be a maximum of 2048 characters and may include embedded carriage-return
and linefeed characters. If no message is specified, then a default message will be sent based on
the result code.

Result codes must be three digits (in the range of 100 through 999) and although this method will
support the use of non-standard result codes, it is recommended that the client application use
the standard codes defined in RFC 959 whenever possible. The use of non-standard result codes
may cause problems with FTP clients that expect specific result codes in response to a particular
command.

This method should only be called once in response to a command sent by the client. If a result
code has already been sent in response to a command and this method is called, it will fail and
return a value of zero. This is necessary because sending multiple result codes in response to a
single command may cause unpredictable behavior by the client.

See Also
OnCommand Event, OnResult Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Start Method  

 

Start listening for client connections on the specified IP address and port number.

Syntax
object.Start( [ServerAddress], [ServerPort], [Directory] [MaxClients], [IdleTime], [Options] )

Parameters
ServerAddress

An optional string which specifies the local hostname or IP address address that the server
should be bound to. If this parameter is an empty string, then an appropriate address will
automatically be used. If a specific address is used, the server will only accept client connections
on the network interface that is bound to that address. If this parameter is omitted, the control
will accept connections on the address specified by the value of the ServerAddress property.

ServerPort

An optional integer that specifies the port number the server should use to listen for client
connections. If a value of zero is specified, the server will use the standard port number 21 to
listen for connections, or port 990 if the server is configured to use implicit SSL. The port
number used by the application must be unique and multiple instances of a server cannot use
the same port number. It is recommended that a port number greater than 5000 be used for
private, application-specific implementations. If this parameter is omitted, it defaults to the value
specified by the ServerPort property.

Directory

An optional string that specifies the path to the root directory for the server. If this parameter is
omitted, it defaults to the value specified by the Directory property. If this property is not set
and no directory is specified, the server will use the current working directory as the root
directory.

MaxClients

An optional integer value that specifies the maximum number of clients that may connect to the
server. If this parameter is omitted, the value specified by the MaxClients property will be used.
This value can be adjusted after the server has been created by calling the Throttle method.

IdleTime

An optional integer value that specifies the number of seconds a client can be idle before the
server terminates the session. If this argument is not specified, the value of the IdleTime
property will be used. The default idle timeout period is 300 seconds (5 minutes).

Options

An optional integer value that specifies specifies one or more server options. This value is
created by combining the options using a bitwise Or operator. Note that if this argument is
specified, it will override any property values that are related to that option. For a list of options,
see Server Option Constants.

Return Value
A value of zero is returned if the server was started, otherwise a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port

 

file:///C|/Projects/cstools11/pdf/ftpsrv/control/options.html


number. The server is started in its own thread and manages the client sessions independently of
the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by
passing the full pathname as an argument to this method or by setting the Directory property. If
the path includes environment variables surrounded by percent (%) symbols, they will be
automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your
application has permission to create files in the directory that you specify. A recommended
location for the server root directory would be a subdirectory of the %ALLUSERSPROFILE%
directory. Using the environment variable ensures that your server will work correctly on different
versions of Windows. If the root directory does not exist at the time that the server is started, it will
be created.

See Also
Restart Method, Resume Method, Stop Method, Suspend Method, Throttle Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Stop Method  

 

Stop listening for new client connections and terminate all client sessions.

Syntax
object.Stop

Parameters
None.

Return Value
A value of zero is returned if the server was stopped, otherwise a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active
client connections and terminates the thread that is managing the server session.

See Also
Restart Method, Resume Method, Start Method, Suspend Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Suspend Method  

 

Suspend accepting new client connections.

Syntax
object.Suspend

Parameters
None.

Return Value
A value of zero is returned if the server has suspended accepting new connections, otherwise a
non-zero error code is returned which indicates the cause of the failure.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. All new
clients that attempt to connect to the server will be sent a 421 "service unavailable" error code and
the connection will be immediately closed. To resume accepting new client connections, call the
Resume method. This method will not affect those clients that have already established a
connection with the server before the Suspend method was called.

See Also
Restart Method, Resume Method, Start Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Throttle Method  

 

Limit the maximum number of client connections, connections per IP address and connection rate.

Syntax
object.Throttle( [MaxClients], [MaxClientsPerAddress], [MaxGuests], [ConnectionRate] )

Parameters
MaxClients

An optional integer value that specifies the maximum number of clients that may connect to the
server. If this parameter is omitted, the maximum number of clients allowed will be unchanged.
The default value is 100 active client connections.

MaxClientsPerAddress

An optional integer value that specifies the maximum number of clients that may connect to the
server from the same IP address. If this parameter is omitted, the maximum number of clients
per address will be unchanged. The default value is 4 client connections per address.

MaxGuests

An optional integer value that specifies the maximum number of anonymous (guest) users that
may be logged in at any one time. If this parameter is omitted, the maximum number of guest
users will be unchanged.

ConnectionRate

An optional integer value that specifies a restriction on the rate of client connections, limiting
the number of connections that will be accepted within that period of time. A value of zero
specifies that there is no restriction on the rate of client connections. The higher this value, the
fewer the number of connections that will be accepted within a specific period of time. By
default, there is no limit on the client connection rate.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Throttle method limits the number of connections and the connection rate to minimize the
potential impact of a large number of client connections over a short period of time. This can be
used to protect the server from a client application that is malfunctioning or a deliberate denial-
of-service attack in which the attacker attempts to flood the server with connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the Start method is called with the maximum number of clients set to 100, and then
the Throttle method is called lowering that value to 75, no existing client connections will be
affected by the change. However, the server will not accept any new connections until the number
of active clients drops below 75.

If the value of the MaxGuests parameter is greater than zero, then anonymous logins will be
enabled and clients can authenticate with the username "anonymous" and their email address as
the password. If the parameter is set to zero, then anonymous logins will be disabled. Note that
this will not affect any clients that are currently logged in, it only affects those clients that connect

 



after the Throttle method has been called.

Increasing the ConnectionRate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000
would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

See Also
MaxClients Property, MaxGuests Property, Resume Method, Start Method, Suspend Method, Stop
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 File Transfer Server Control Events  

 

Event Description

OnAuthenticate The client has requested authentication with the specified username and password

OnCommand The client has issued a command to the server

OnConnect The client established a connection to the server

OnDisconnect The client has disconnected from the server

OnDownload The client has downloaded a file from the server

OnError The client encountered an error when handling a client request

OnExecute The client has executed an external program on the server

OnIdle The last client has disconnected from the server

OnLogin The client has successfully authenticated the session

OnLogout The client has logged out or reinitialized the session

OnResult The command issued by the client has been processed by the server

OnStart The server has started listening for connections

OnStop The server has stopped accepting connections and all client sessions are terminated

OnTimeout The client has exceeded the maximum allowed idle time

OnUpload The client has uploaded a file to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnAuthenticate Event  

 

The client has requested authentication with the specified username and password.

Syntax
Sub object_OnAuthenticate ( [Index As Integer,] ByVal ClientId As Variant, ByVal HostName
As Variant, ByVal UserName As Variant, ByVal Password As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

HostName

A string that specifies the host name that the client used to establish the connection.

UserName

A string that specifies the user name provided by the client.

Password

A string that specifies the password provided by the client.

Remarks
The OnAuthenticate event occurs when the client has requested authentication by sending the
USER and PASS command to the server. The event handler can call the Authenticate method to
authenticate the client session. If the client is not authenticated, the server will send an error
message to the client and terminate the session.

If the application has created one or more virtual users using the AddUser method and/or the
LocalUser property has been set to True, it is not necessary to implement an OnAuthenticate
handler unless you also wish to perform custom authentication for specific users.

See Also
Authenticate Method, OnCommand Event, OnDownload Event, OnUpload Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCommand Event  

 

The client has issued a command to the server.

Syntax
Sub object_OnCommand ( [Index As Integer,] ByVal ClientId As Variant, ByVal Command As
Variant, ByVal Parameters As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

Command

A string that specifies the command that was sent to the server.

Parameters

A string that contains any optional parameters that were sent to the server with the command.
Any extraneous whitespace is removed, however quoted parameter values are unchanged.

Remarks
The OnCommand event occurs after the client has sent a command to the server, but before the
command has been processed. This event occurs for all commands issued by the client, including
invalid or disabled commands. If the application wishes to handle the command itself, it must
perform any processing and then call the SendResponse method to send the success or error
code to the client. If the SendResponse method is not called, then the server will perform its
default processing for the command.

After the command has been processed, the OnResult event handler will be invoked.

See Also
CommandLine Property, SendResponse Method, OnResult Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The client has established a connection to the server.

Syntax
Sub object_OnConnect ( [Index As Integer,] ByVal ClientId As Variant, ByVal ClientAddress As
Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

ClientAddress

A string that specifies the IP address of the client. This address may either be in IPv4 or IPv6
format, depending on how the server was configured and the address the client used to
establish the connection.

Remarks
The OnConnect event occurs after the client has established its initial connection to the server,
after the server has checked the active client limits and the TLS handshake has been performed if
required. If the server has been suspended, or the limit on the maximum number of client sessions
has been exceeded, the server will terminate the client session prior to this event handler being
invoked.

If no event handler is implemented, the server will perform the default action of accepting the
connection and sending a standard greeting to the client. If you want your application to send a
custom greeting to the client when it connects, call the SendResponse method, specifying a result
code of 220 and a message of your choice.

To reject a connection, call the SendResponse method to send an error response to the client.
Typically the result code value would be 421 to indicate that the server will not accept the
connection. Next, call the DisconnectClient method to terminate the client session.

See Also
OnCommand Event, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The client has disconnected from the server.

Syntax
Sub object_OnDisconnect ( [Index As Integer,] ByVal ClientId As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

Remarks
The OnDisconnect event occurs when the client disconnects from the server or when the server
terminates the connection to the client by calling the Disconnect method. It is not required for
the application to explicitly disconnect the client within the event handler, and the application
cannot prevent the client from disconnecting from the server.

This event may not occur for a each client session when the server is reset or the control instance
is disposed without the application first calling the Stop method to shutdown the server.

See Also
OnCommand Event, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDownload Event  

 

The client has successfully downloaded a file from the server.

Syntax
Sub object_OnDownload ( [Index As Integer,] ByVal ClientId As Variant, ByVal FileName As
Variant, ByVal FileSize As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

FileName

A string that specifies the full path name of the file on the server that was downloaded.

FileSize

An integer value that specifies the number of bytes of data that was downloaded by the client.

Remarks
The OnDownload event occurs after the client has successfully downloaded a file from the server
using the RETR command. If the file transfer fails or is aborted, this event will not occur.

See Also
OnCommand Event, OnUpload Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The client encountered an error when handling a client request.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ClientId As Variant, ByVal ErrorCode As
Variant, ByVal Description As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

ErrorCode

An integer value which specifies the error that has occurred.

Description

A string that describes the error.

Remarks
The OnError event occurs whenever the server encounters an error while accepting a client
connection or processing a request. It is important to note that this event is not raised for every
error that occurs. The following are some common situations in which this event handler may be
invoked:

A network error occurs when the client connection is being accepted by the server. This
could be the result of an aborted connection or some other lower-level failure reported by
the networking subsystem on the server.

The server is configured to use implicit SSL but cannot obtain the security credentials
required to create the security context for the session. Usually this indicates that the server
certificate cannot be found, or the certificate does not have a private key associated with it.
It could also indicate a general problem with the cryptographic subsystem where the client
and server could not successfully negotiate a cipher suite.

A network error occurs when attempting to process a command issued by the client. This
usually indicates that the connection to the client has been aborted, either because the
client is not acknowledging the data that has been exchanged with the server, or the client
has terminated abnormally. This event will not occur if the client terminates the connection
normally.

In most situations where this event handler is invoked, the error is not recoverable and the only
action that can be taken is to terminate the client session.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnExecute Event  

 

The client has executed an external program on the server.

Syntax
Sub object_OnExecute ( [Index As Integer,] ByVal ClientId As Variant, ByVal Program As
Variant, ByVal Output As Variant, ByVal ExitCode As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

Program

A string that specifies the name of the program that was executed. This is the registered
program name, and not a full path to the executable and its command arguments.

Output

A string that contains the standard output of the program that was executed. The format of this
output depends on the application that was executed. If the program outputs control characters
or other binary data, it will be replaced by spaces to ensure that only printable text is returned.

ExitCode

An integer value that specifies the exit code that was returned by the program.

Remarks
The OnExecute event occurs after the client has successfully executed an external program using
the SITE EXEC command.

This event will only be generated if the client has the ftpAccessExecute permission. Clients are
not granted this permission by default, and must be explicitly permitted to execute external
programs. If the client does have this permission, it can only execute specific programs that have
been registered by the server application using the RegisterProgram method.

See Also
RegisterProgram Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnIdle Event  

 

The OnIdle event is generated after the last client has disconnected from the server.

Syntax
Sub object_OnIdle ( [Index As Integer ] )

Remarks
This event will only occur after at least one client has connected to the server and then closes its
connection or is disconnected. This event will not occur immediately after the server has started
using the Start method, and will not occur when the server is stopped using the Stop method.
Your application should implement an OnStart event handler for when the server first starts, and
an OnStop event handler for when the server is stopped.

If one or more new client connections are accepted after this event occurs, the event will be
generated again when those clients disconnect and the active client count drops to zero.
Therefore it is to be expected that this event will occur multiple times over the lifetime of the
server as it continues to listen for connections.

See Also
IsActive Property, Restart Method, Start Method, Stop Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnLogin Event  

 

The client has successfully authenticated the session.

Syntax
Sub object_OnLogin ( [Index As Integer,] ByVal ClientId As Variant, ByVal UserName As
Variant, ByVal Directory As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

UserName

A string that specifies the username.

Directory

A string that specifies the full path to the home directory for the client.

Remarks
The OnLogin event occurs after the client has successfully authenticated itself using the USER and
PASS commands.

See Also
AddUser Method, Authenticate Method, OnAuthenticate Event, OnLogout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnLogout Event  

 

The client has logged out or reinitialized the session.

Syntax
Sub object_OnLogout ( [Index As Integer,] ByVal ClientId As Variant, ByVal UserName As
Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

UserName

A string that specifies the username.

Remarks
The OnLogout event occurs after the client has successfully logged out using the QUIT command
or reinitialized the session using the REIN command.

The application should not depend on this event handler always being invoked when a client is
disconnected from the server. This event only occurs when the client sends the QUIT or REIN
commands and will not be invoked if the client connection is aborted or disconnected for some
other reason, such as exceeding the idle timeout period. If the application needs to update data
structures or perform some cleanup when a client disconnects, that should be done in the
OnDisconnect event handler.

The application should not call the Disconnect method in the handler for this event because the
client is either in the process of disconnecting or expects that it can submit new credentials to the
server.

See Also
OnDisconnect Event, OnLogin Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnResult Event  

 

The command issued by the client has been processed by the server.

Syntax
Sub object_OnResult ( [Index As Integer,] ByVal ClientId As Variant, ByVal Command As
Variant, ByVal ResultCode As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

Command

A string that specifies the command that was issued by the client.

ResultCode

An integer value that specifies the result code that was sent to the client.

Remarks
The OnResult event occurs after the server has processed a command issued by the client. This
event will inform the application whether the command that was issued by the client was
successful or not. If the command was successful, then other related events such as OnDownload
may also fire after this event.

The Command parameter that is passed to the event handler specifies only the command itself
and not any additional arguments that were included. Use the CommandLine property to obtain
the complete command line that was issued by the client.

The ResultCode parameter is a three-digit numeric code that is used to indicate success or failure.
These codes are defined as part of the File Transfer Protocol standard, with values in the range of
200-299 indicating success. Values in the range of 400-499 and 500-599 indicate failure due to
various error conditions. Examples of such failures would be attempting to access a file that does
not exist, issuing an unrecognized command or attempting to perform a privileged operation.

See Also
ClientDirectory Property, OnCommand Event,

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnStart Event  

 

The OnStart event is generated when the server starts listening for connections.

Syntax
Sub object_OnStart ( [Index As Integer ] )

Remarks
This event is generated after the Start method has been called and the server and begins listening
for connections from clients. An application can use this event to update the user interface and
perform any additional initialization functions that are required by the application.

See Also
IsActive Property, Start Method, Stop Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnStop Event  

 

The OnStop event is generated when the server has stopped.

Syntax
Sub object_OnStop ( [Index As Integer ] )

Remarks
This event is generated after the Stop method has been called and all active client sessions have
terminated. An application can use this event to update the user interface and perform any
additional cleanup functions that are required by the application. If the server has a large number
of active clients, this event may not occur immediately. The OnDisconnect event will fire for each
client as the server is in the process of shutting down. During the shutdown process, the server is
still considered to be active, however it will not accept any further connections. When the OnStop
event is fired, the server thread has terminated and the listening socket has been closed.

This event will not occur if the server is forcibly stopped using the Reset method, or when the
Uninitialize method is called prior to disposing an instance of the control. Applications that
depend on this event should ensure that the server is shutdown gracefully using the Stop method
prior to terminating the application.

See Also
IsActive Property, Start Method, Stop Method, OnDisconnect Event, OnStart Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The client has exceeded the maximum allowed idle time.

Syntax
Sub object_OnTimeout ( [Index As Integer,] ByVal ClientId As Variant, ByVal Elapsed As
Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

Elapsed

An integer value that specifies the number of seconds that have elapsed.

Remarks
The OnTimeout event occurs after the client has has exceeded the maximum allowed idle time,
and immediately before the client is disconnected from the server. This event will never occur
during a file transfer or directory listing.

To change the default idle timeout period for all clients, set the IdleTime property prior to starting
the server. To set the idle timeout period for a specific client, set the ClientIdle property in an
OnConnect or OnLogin event handler.

See Also
ClientIdle Property, IdleTime Property, OnConnect Event, OnLogin Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnUpload Event  

 

The client has successfully uploaded a file to the server.

Syntax
Sub object_OnUpload ( [Index As Integer,] ByVal ClientId As Variant, ByVal FileName As
Variant, ByVal FileSize As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

FileName

A string that specifies the full path name of the file on the server that was created or replaced.

FileSize

An integer value that specifies the number of bytes of data that was uploaded by the client.

Remarks
The OnUpload event occurs after the client has successfully uploaded a file to the server using the
APPE, STOR or STOU command. If the file transfer fails or is aborted, this event will not occur.

See Also
OnCommand Event, OnUpload Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Hypertext Transfer Protocol Control

Transfer files between the local system and a web server, execute scripts and perform remote file
management functions.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name HttpClientCtl.HttpClient

File Name CSHTPX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.HttpClient.11

ClassID 7ED83D99-5878-444D-80E6-01BB0939705B

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 1945, RFC 2616, RFC 7230, RFC 7540

Overview
The Hypertext Transfer Protocol (HTTP) is a lightweight, stateless application protocol that is used
to access resources on web servers, as well as send data to those servers for processing. The
control provides direct, low-level access to the server and the commands that are used to retrieve
resources (i.e.: documents, images, etc.). The control also provides a simple interface for
downloading resources to the local host, similar to how the SocketTools FTP control can be used
to download files.

In a typical session, the control is used to establish a connection, send a request (to download a
resource, post data for processing, etc.), read the data returned by the server and then disconnect.
It is the responsibility of the client to process the data returned by the server, depending on the
type of resource that was requested.

This library supports secure connections using the standard SSL and TLS protocols.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack



and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Hypertext Transfer Protocol Control Properties  

Property Description

AuthType Gets and sets the method used to authenticate the client session

AutoRedirect Determines if redirected resources are handled automatically

AutoResolve Determines if host names and IP addresses are automatically resolved

BearerToken Gets and sets the OAuth 2.0 bearer token used for authentication

Blocking Gets and sets the blocking state of the control

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the client certificate

CertificatePassword Gets and sets the password associated with the client certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the client certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was issued

CertificateUser Gets and sets the user that owns the client certificate

CipherStrength Return the length of the key used by the encryption algorithm

CodePage Set or return the code page used with Unicode text conversion

Compression Set or return if data compression should be enabled

ContentType Set or return the content type for the current resource

CookieCount Return the number of cookies set by the server in response to a request for a resource

CookieName Return the name of the specified cookie

CookieValue Return the name of the specified cookie

Encoding Gets and sets the content encoding type

FormAction Gets and sets the path to the script that will accept the form data on the server

FormMethod Gets and sets the method used to submit the form data

FormType Gets and sets the type of form data encoding used to submit the form data

HashStrength Return the length of the message digest that was selected

HeaderField Gets and sets the name of the current header field

HeaderValue Sets the value of a request header field or returns the value of a response header field

HostAddress Gets and sets the IP address of the server

HostName Gets and sets the name of the server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsReadable Return if data can be read from the server without blocking



 

IsWritable Return if data can be sent to the server without blocking

KeepAlive Set or return if the connection to the server is persistent

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

Localize Determines if remote file dates are localized to the current timezone

Options Gets and sets the options that are used in establishing a connection

Password Gets and sets the password for the current user

Priority Gets and sets the priority assigned to file transfers

ProtocolVersion Gets and sets the current protocol version

ProxyHost Gets and sets the host name of the proxy server

ProxyPassword Gets and sets the proxy server password for the current user

ProxyPort Gets and sets the port number for the proxy server

ProxyType Gets and sets the current proxy server type

ProxyUser Gets and sets the current proxy user name

RemotePort Gets and sets the port number for a remote connection

Resource Gets and sets the name of a resource on the HTTP server

ResultCode Return the result code of the previous action

ResultString Return a string describing the results of the previous action

Secure Set or return if a connection to the server is secure

SecureCipher Return the encryption algorithm used to establish the secure connection with the server

SecureHash Return the message digest selected when establishing the secure connection with the server

SecureKeyExchange Return the key exchange algorithm used to establish the secure connection with the server

SecureProtocol Gets and sets the security protocol used to establish the secure connection with the server

TaskCount Return the number of active background file transfers

TaskId Return the task ID for an active background file transfer

TaskList Return the task ID for an active background file transfer

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

TransferBytes Return the number of bytes transferred from the server

TransferBytesXL Return the number of bytes transferred from the server

TransferRate Return the current data transfer rate in bytes per second

TransferTime Return the number of seconds elapsed during a data transfer

URL Gets and sets the current URL used to access a resource on the server

UserAgent Gets and sets a value which identifies the current application

 



UserName Gets and sets the current user name

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AuthType Property  

 

Gets and sets the method used to authenticate the user.

Syntax
object.AuthType [= type ]

Remarks
The AuthType property specifies the type of authentication that should be used when the client
connects to the mail server. The following authentication methods are supported:

Value Constant Description

0 httpAuthNone No client authentication should be performed.

1 httpAuthBasic The Basic authentication scheme should be used. This option
is supported by all servers that support at least version 1.0 of
the protocol. The user credentials are not encrypted and Basic
authentication should not be used over standard (non-secure)
connections. Most web services which use Basic
authentication require the connection to be secure.

4 httpAuthBearer The Bearer authentication scheme should be used. This
authentication method does not require a user name and the
BearerToken property must specify the OAuth 2.0 bearer
token issued by the service provider. If the access token has
expired, the request will fail with an authorization error. This
function will not automatically refresh an expired token.

Data Type
Integer (Int32)

Remarks
Setting the authentication type to httpAuthNone will remove any values set for the UserName,
Password and BearerToken properties.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an access token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the access token using the appropriate scope for the service.
Obtaining the initial token will typically involve interactive confirmation on the part of the user,
requiring they grant permission to your application to access their mail account.

Changing the value of the BearerToken property will automatically set the current authentication
method to use OAuth 2.0.

See Also
BearerToken Property, Password Property, UserName Property, Authenticate Method, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoRedirect Property  

 

Determines if redirected resources are handled automatically by the control

Syntax
object.AutoRedirect [= { True | False } ]

Remarks
Setting the AutoRedirect property determines how the control handles requests for a resource
that has been moved to another location. If the property is set to True, then the control will
automatically access the resource at the new location. If the property is set to False, the application
is responsible for accessing the resource at its new location.

When the server indicates that a resource has been redirected, the OnRedirect event will fire and
will provide the new location for the resource as an argument to the event handler. It is
permissible for the application to change the value of the AutoRedirect property inside the event
handler to determine whether or not the control will automatically access the resource from the
new location.

Data Type
Boolean

See Also
OnRedirect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 BearerToken Property  

 

Gets and sets the OAuth 2.0 bearer token for the current user.

Syntax
object.BearerToken [= token ]

Remarks
The BearerToken property specifies the OAuth 2.0 bearer token used to authenticate the user.
Assigning a value to this property will change the current authentication method to use OAuth 2.0
if necessary.

Your application should not store a bearer token for later use. They have a relatively short lifespan,
typically about an hour, and are designed to be used with that session. You should specify offline
access as part of the OAuth 2.0 scope if necessary and store the refresh token provided by the
service. The refresh token has a much longer validity period and can be used to obtain a new
bearer token when needed.

If the current authentication method does not use OAuth 2.0, this property will return an empty
string and you should check the value of the Password property to obtain the current user's
password. Refer to the AuthType property for more information on the available authentication
methods.

Data Type
String

See Also
AuthType Property, Password Property, UserName Property, Authenticate Method, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnConnect, OnDisconnect,
OnRead and OnWrite are only fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, IsReadable Property, IsWritable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateExpires Property  

 

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssued Property  

 

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssuer Property  

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function
     End If



      nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the name of the company who issued the server
certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = HttpClient1.CertificateIssuer
If Len(strIssuer) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strCompanyName = GetCertNameValue(strIssuer, "O")
     MsgBox "This certificate was issued by " & strCompanyName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the client certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the certificate that should be used to
establish the connection with the server. It is only required that you set this property value if the
server requires a client certificate for authentication. If this property is not set, a client certificate
will not be provided to the server. If a certificate name is specified, the certificate must have a
private key associated with it, otherwise the connection attempt will fail because the control will be
unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the client certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStatus Property  

 

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property returns an integer value which identifies the status of the server
certificate. This property may return one of the following values:

Constant Value Description

stCertificateNone 0 No certificate information is available. A secure
connection was not established with the server.

stCertificateValid 1 The certificate is valid.

stCertificateNoMatch 2 The certificate is valid, however the domain name
specified in the certificate does not match the domain
name of the site that the client has connected to. This is
typically the case if the HostAddress property is used
rather than the HostName property. It is
recommended that the client examine the
CertificateSubject property to determine the domain
name of the site that the certificate was issued for.

stCertificateExpired 3 The certificate has expired and is no longer valid. The
client can examine the CertificateExpires property to
determine when the certificate expired.

stCertificateRevoked 4 The certificate has been revoked and is no longer valid.
It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateUntrusted 5 The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the local
host. It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateInvalid 6 The certificate is invalid. This typically indicates that the
internal structure of the certificate is damaged. It is
recommended that the client application immediately
terminate the connection if this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
Integer (Int32)

Example

 



The following example establishes a secure connection to a server:

HttpClient1.HostName = strHostName
HttpClient1.Secure = True

nError = HttpClient1.Connect()
If nError > 0 Then
     MsgBox "Unable to connect to server " & strHostName, vbExclamation
     Exit Sub
End If

If HttpClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          HttpClient1.Disconnect
          Exit Sub
     End If
End If

HttpClient1.Disconnect

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the client certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the client certificate that should
be used when establishing a secure connection with the server. The certificate may either be
stored in the registry or in a file. If the certificate is stored in the registry, then this property should
be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateSubject Property  

Returns information about the organization that the server certificate was issued to.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the subject's company or country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function



 

     End If

     nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the domain name that the server certificate was issued
for:

Dim strSubject As String
Dim strDomainName As String

strSubject = HttpClient1.CertificateSubject
If Len(strSubject) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strDomainName = GetCertNameValue(strSubject, "CN")
     MsgBox "This certificate was issued for " & strDomainName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus

 



Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the client certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the client certificate that will be used to establish
a secure connection with the server. If this property is not set, the certificate store for the current
user will be used when searching for the certificate. If this property is used to specify another user,
the process must have the appropriate permission to access the registry location that contains the
client certificate. On Windows Vista and later versions of the operating system, this requires that
the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CodePage Property  

 

Gets and sets the code page used when converting text to and from Unicode.

Syntax
object.CodePage [= value ]

Remarks
The CodePage property is an integer value which specifies how text is encoded. Any valid code
page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. You should not use this code page unless you know the
server is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available  code page identifiers can be found in Microsoft's documentation for
the Win32 API.

All data exchanged with a web server is sent and received as 8-bit bytes, typically referred to as
"octets" in networking terminology. However, the internal string type used by ActiveX controls are
Unicode, with each character represented using 16 bits. When you send and receive data using
the String data type, they will automatically be converted to a stream of bytes.

By default, strings are converted to an array of bytes using UTF-8 encoding, mapping the 16-bit
Unicode characters to 8-bit bytes. Similarly, when reading data into a string buffer, the stream of

 

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers


bytes received from the remote host are converted to Unicode before they are returned to your
application.

If the text you receive appears to corrupted or characters are being replaced with question marks
or other symbols, it is likely the server is using a different character encoding. Most modern web
services use UTF-8 encoding to represent non-ASCII characters; however, some legacy web
applications may return data for its own locale rather than using Unicode. Changing this property
will affect how that text is converted to Unicode.

Strings are only guaranteed to be safe when sending and receiving text. Using a
string data type is not recommended when sending or receiving binary data. If
possible, you should always use a byte array as the buffer parameter for the GetData
and PutData methods.

This property value directly corresponds to Windows code page identifiers, and will accept any
valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Although strings in Visual Basic are internally managed as Unicode, the default common controls
used in Visual Basic 6.0 do not support Unicode. Those controls, such as buttons, text boxes and
labels, will automatically convert the Unicode text to ANSI using the current code page. This
means that text in the end-user’s native language (depending on system settings) may display
correctly, although text in other languages using different character sets may not. Also note that
the VB6 IDE is not Unicode aware and may display corrupted string values or invalid characters,
such as with tooltip values when debugging.

For Unicode support in Visual Basic 6.0, it’s recommended that you use third-party controls. An
alternative that some developers have used is the Microsoft Forms 2.0 Object Library (FM20.DLL)
that is part of Microsoft Office. It includes a collection of controls that support Unicode, however
they are not redistributable and Microsoft has stated that their use with VB6 is unsupported.

Data Type
Integer (Int32)

See Also
GetData Method, GetText Method, PostData Method, PostJson Method, PostXml Method



 Compression Property  

 

Set or return if data compression should be enabled.

Syntax
object.Compression [= { True | False } ]

Remarks
The Compression property is used to indicate to the server whether or not it is acceptable to
compress the data that is returned to the client. If compression is enabled, the client will advertise
that it will accept compressed data by setting the Accept-Encoding request header. The server
will decide whether a resource being requested can be compressed. If the data is compressed, the
control will automatically expand the data before returning it to the caller.

Enabling compression does not guarantee that the data returned by the server will actually be
compressed, it only informs the server that the client is willing to accept compressed data.
Whether or not a particular resource is compressed depends on the server configuration, and the
server may decide to only compress certain types of resources, such as text files. Disabling
compression informs the server that the client is not willing to accept compressed data; this is the
default.

If the SetHeader method is used to explicitly set the Accept-Encoding header to request
compressed data and compression is not enabled, the control will not attempt to automatically
expand the data returned by the server. In this case, the raw compressed data will be returned and
the application is responsible for processing it. This behavior is by design to maintain backwards
compatibility with previous versions of the control that did not have internal support for
compression.

To determine if the server compressed the data returned to the client, use the GetHeader
method to get the value of the Content-Encoding header. If the header is defined, the value
specifies the compression method used, otherwise the data was not compressed.

This property value is only meaningful when downloading files from a server that supports file
compression. It has no effect on file uploads.

Data Type
Boolean

See Also
GetData Method, GetFile Method, GetHeader Method SetHeader Method

 



 ContentType Property  

 

Set or return the content type for the current resource.

Syntax
object.ContentType [= value]

Remarks
The ContentType property returns content type for the current resource. Changing this value sets
the content type for the next request submitted to the server.

This property returns a value based on the Content-Type response header and does not examine
the contents of the payload returned by the server. If the web server does not recognize the data
format of the resource it is returning, this property should return a value of application/octet-
stream. However, some servers incorrectly return unrecognized formats as text/plain, causing
the payload to be identified as human-readable text rather than binary data.

Some servers will return a content type of text/plain for JSON responses and others will use the
IANA standard type of application/json. If the server returns an XML payload, it may indicate the
content type either as text/xml or application/xml.

Data Type
String

See Also
HeaderField Property, HeaderValue Property, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CookieCount Property  

 

Return the number of cookies set by the server in response to a request for a resource.

Syntax
object.CookieCount

Remarks
The CookieCount property returns the number of cookies that were set by the server. This value
can be used in conjunction with the CookieName and CookieValue properties to enumerate all
of the available cookies and their values.

Data Type
String

Example
' Save the cookies set by a previous request to this server for
' a resource so that they can be sent back with the next request
nCookies = HttpClient1.CookieCount
ReDim strCookieName(nCookies)
ReDim strCookieValue(nCookies)

' Enumerate the available cookies and store them in the array;
' a more complex implementation could use the GetCookie method
' to check for additional information about the cookie, such
' as whether the cookie should be stored locally on the system
For nIndex = 0 To nCookies - 1
  strCookieName(nIndex) = HttpClient1.CookieName(nIndex)
  strCookieValue(nIndex) = HttpClient1.CookieValue(nIndex)
Next

' Clear any previously set headers
HttpClient1.ClearHeaders

' Set each of the cookies that were stored in the array
For nIndex = 0 To nCookies - 1
  HttpClient1.SetCookie strCookieName(nIndex), strCookieValue(nIndex)
Next

' Request the next resource from the server and store
' the data in the strResult string buffer
nError = HttpClient1.GetData(strResource, strResult)

See Also
CookieName Property, CookieValue Property, GetCookie Method, SetCookie Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CookieName Property  

 

Return the name of the specified cookie.

Syntax
object.CookieName( Index )

Remarks
The CookieName property array returns a string which identifies the cookie specified by the Index
argument. The array is zero based, which means the name of the first available cookie is read by
using an index value of zero. The CookieCount property indicates the total number of cookies
that have been returned by the server.

Data Type
String

Example
' Save the cookies set by a previous request to this server for
' a resource so that they can be sent back with the next request
nCookies = HttpClient1.CookieCount
ReDim strCookieName(nCookies)
ReDim strCookieValue(nCookies)

' Enumerate the available cookies and store them in the array;
' a more complex implementation could use the GetCookie method
' to check for additional information about the cookie, such
' as whether the cookie should be stored locally on the system
For nIndex = 0 To nCookies - 1
  strCookieName(nIndex) = HttpClient1.CookieName(nIndex)
  strCookieValue(nIndex) = HttpClient1.CookieValue(nIndex)
Next

' Clear any previously set headers
HttpClient1.ClearHeaders

' Set each of the cookies that were stored in the array
For nIndex = 0 To nCookies - 1
  HttpClient1.SetCookie strCookieName(nIndex), strCookieValue(nIndex)
Next

' Request the next resource from the server and store
' the data in the strResult string buffer
nError = HttpClient1.GetData(strResource, strResult)

See Also
CookieCount Property, CookieValue Property, GetCookie Method, SetCookie Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CookieValue Property  

 

Return the name of the specified cookie.

Syntax
object.CookieValue( Index )

Remarks
The CookieValue property array returns a string which contains the value for the cookie specified
by the Index argument. The array is zero based, which means the value of the first available cookie
is read by using an index value of zero. The CookieCount property indicates the total number of
cookies that have been returned by the server.

Data Type
String

Example
' Save the cookies set by a previous request to this server for
' a resource so that they can be sent back with the next request
nCookies = HttpClient1.CookieCount
ReDim strCookieName(nCookies)
ReDim strCookieValue(nCookies)

' Enumerate the available cookies and store them in the array;
' a more complex implementation could use the GetCookie method
' to check for additional information about the cookie, such
' as whether the cookie should be stored locally on the system
For nIndex = 0 To nCookies - 1
  strCookieName(nIndex) = HttpClient1.CookieName(nIndex)
  strCookieValue(nIndex) = HttpClient1.CookieValue(nIndex)
Next

' Clear any previously set headers
HttpClient1.ClearHeaders

' Set each of the cookies that were stored in the array
For nIndex = 0 To nCookies - 1
  HttpClient1.SetCookie strCookieName(nIndex), strCookieValue(nIndex)
Next

' Request the next resource from the server and store
' the data in the strResult string buffer
nError = HttpClient1.GetData(strResource, strResult)

See Also
CookieCount Property, CookieName Property, GetCookie Method, SetCookie Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Encoding Property  

 

Gets and sets the content encoding type.

Syntax
object.Encoding = [type ]

Remarks
The Encoding property explicitly sets the type of encoding used when optional parameter data is
submitted with a request for a resource. By default, data is URL encoded and the content type will
be designated as application/x-www-form-urlencoded. The following encoding types are
supported:

Value Constant Description

0 httpEncodingNone No encoding will be applied to the content of a request
and no default content type will be specified. This
encoding type should be used with REST APIs and other
services which expect XML or JSON request payloads.

1 httpEncodingURL Non-printable and extended ASCII characters will be
encoded so they can be safely used with URLs and form
data. Encoded characters will be represented by a percent
symbol prefix, followed by a two digit hexadecimal value
which represents the ASCII character code. This encoding
is typically used with web services which process HTML
form data.

2 httpEncodingXML This encoding is identical to URL encoding, except spaces
are not encoded. It is used with legacy web services which
expect form data in an XML format and cannot process
encoded whitespace. This encoding should not be
specified for services which use REST APIs.

The Encoding property explicitly sets the type of encoding used when optional parameter data is
submitted with a request for a resource. If an encoding type is specified, and the content type for
the request payload has not been defined, it will default to application/x-www-form-
urlencoded.

When submitting a JSON or XML request to a service using a REST API, your application should
use httpEncodingNone and set the appropriate content type for the request payload. The
httpEncodingXml encoding type should only be used if the server expects URL encoded form
data. The PostJson and PostXml methods will automatically set the correct encoding and content
type for those requests.

If an application specifies httpEncodingNone, parameter data is not encoded and no content
type header will created by default. The client application can specify the content type by calling
the SetHeader method.

Data Type
Integer (Int32)

See Also
HeaderField Property, HeaderValue Property, PostData Method, PostJson Method, PostXml

 



Method, SetHeader Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FormAction Property  

 

Gets and sets the path to the script that will accept the form data on the server.

Syntax
object.FormAction [= value ]

Remarks
The FormAction property is used to specify the name of the script that will process the form data
submitted by the control. This property is only used by the SubmitForm method and changing
the property value does not change the current resource.

Data Type
String

See Also
FormMethod Property, FormType Property, CreateForm Method, SubmitForm Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FormMethod Property  

 

Gets and sets the method used to submit the form data.

Syntax
object.FormMethod [= value ]

Remarks
The FormMethod property is used to specify how form data will be submitted to the server using
the SubmitForm method. It may be one of the following values:

Value Constant Description

1 httpMethodGet The form data should be submitted using the GET command.
This method should be used when the amount of form data
is relatively small. If the total amount of form data exceeds
2048 bytes, it is recommended that the POST method be
used instead.

2 httpMethodPost The form data should be submitted using the POST
command. This is the preferred method of submitting larger
amounts of form data. If the total amount of form data
exceeds 2048 bytes, it is recommended that the POST
method be used.

Data Type
Integer (Int32)

See Also
FormAction Property, FormType Property, CreateForm Method, SubmitForm Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FormType Property  

 

Gets and sets the type of form data encoding used to submit the form data.

Syntax
object.FormType [= value ]

Remarks
The FormType property is used to specify how form data will be encoded when it is submitted to
the server using the SubmitForm method. It may be one of the following values:

Value Constant Description

1 httpFormEncoded The form data should be submitted as URL encoded
values. This is typically used when the GET method is used
to submit the data to the server.

2 httpFormMultipart The form data should be submitted as multipart form data.
This is typically used when the POST method is used to
submit a file to the server. Note that the script must
understand how to process multipart form data if this form
type is specified.

Data Type
Integer (Int32)

See Also
FormAction Property, FormMethod Property, CreateForm Method, SubmitForm Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HeaderField Property  

 

Gets and sets the name of the current header field.

Syntax
object.HeaderField [= value ]

Remarks
The HeaderField property is used in conjunction with the HeaderValue property to set and/or
get the values of specific fields in the HTTP request header. For example, setting this property to
the value "Content-Length" and then reading the value of the HeaderValue property would cause
the control to return length (in bytes) of the specified resource.

Note that the control automatically generates a default request header, and it is not required that
the client use the HeaderField and HeaderValue properties unless it has a specific need to do so.

Data Type
String

See Also
CookieCount Property, CookieName Property, CookieValue Property, HeaderValue Property,
GetCookie Method, GetHeader Method, SetCookie Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HeaderValue Property  

 

Sets the value of a request header field or returns the value of a response header field.

Syntax
object.HeaderValue [= value ]

Remarks
The HeaderValue property is used in conjunction with the HeaderField property to set or get the
values of specific fields in the HTTP request and response headers. When the property is set to a
value, then the specified request header field is set to this value. When the property is read, then
the value associated with the specified response header field is returned.

Note that the control automatically generates a default request header, and it is not required that
the client use the HeaderField and HeaderValue properties unless it has a specific need to do so.

Data Type
String

See Also
CookieCount Property, CookieName Property, CookieValue Property, HeaderField Property,
GetCookie Method, GetHeader Method, SetCookie Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property, URL Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property, URL Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of true if the control is connected with a
server, otherwise the property has a value of false.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsReadable Property  

 

Return if data can be read from the server without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the server without blocking. For
non-blocking connections, this property can be checked before the application attempts to read
the data, preventing an error.

Data Type
Boolean

See Also
IsConnected Property, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Return if data can be sent to the server without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written without blocking. For non-blocking
connections, this property can be checked before the application attempts to send data to the
server, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
send data without an error. The next operation may result in an stErrorOperationWouldBlock or
stErrorOperationInProgress error. The application must treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
IsReadable Property, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeepAlive Property  

 

Set or return if the connection to the server is persistent

Syntax
object.KeepAlive [= { True | False } ]

Remarks
Setting the KeepAlive property to a value of true indicates that the client wishes to maintain a
persistent connection with the server. For those clients who wish to retrieve a number of
documents, this is more efficient because the client does not need to connect, retrieve the
document and disconnect each time. Instead, the client can connect, retrieve each document and
then disconnect when it is finished. If the property value is False, a persistent connection is not
maintained, and the client must establish a connection for each document that it wishes to
retrieve. This property should be set to the desired value before establishing a connection with the
server.

Note that this option is only available for those servers which support version 1.0 or later of the
HTTP protocol. For version 1.0 servers, the connection header field is set to the value 'keep-alive',
which instructs compliant servers to maintain a persistent connection. For version 1.1 and later,
persistent connections are the default. In this case, if the property value is set to False, the
connection header field will be set to the value 'close', telling the server that you wish to close the
connection after the document has been retrieved. It is possible that the server may choose to
close the connection itself, even if it supports persistent connections. If the server does not support
persistent connections and the KeepAlive property is set to True, the control will attempt to
simulate them by automatically reconnecting for each request.

Data Type
Boolean

See Also
ProtocolVersion Property, Connect Method, GetFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Localize Property  

 

Determines if remote file dates are localized to the current timezone.

Syntax
object.Localize [= { True | False } ]

Remarks
Setting the Localize property controls how remote file date and time values are localized when
the GetFileTime method is called. If the property is set to True, then the file date and time will be
adjusted to the current timezone. If the property is set to False, which is the default value, then the
file date and time are returned as UTC (Coordinated Universal Time) values.

Data Type
Boolean

See Also
GetFileTime Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Options Property  

Gets and sets the options that are used in establishing a connection.

Syntax
object.Options [= value ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when connecting to the server. The property
value is created by using a bitwise operator with one or more of the following values

Value Constant Description

1 httpOptionNoCache This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may
be ignored.

2 httpOptionKeepAlive This instructs the server to maintain a
persistent connection between requests. This
can improve performance because it
eliminates the need to establish a separate
connection for each resource that is
requested.

4 httpOptionRedirect This option specifies the client should
automatically handle resource redirection. If
the server indicates that the requested
resource has moved to a new location, the
client will close the current connection and
request the resource from the new location.
Note that it is possible that the redirected
resource will be located on a different server.

8 httpOptionProxy This option specifies the client should use the
default proxy configuration for the local
system. If the system is configured to use a
proxy server, then the connection will be
automatically established through that proxy;
otherwise, a direct connection to the server is
established. The local proxy configuration can
be changed in the system settings or control
panel.

16 httpOptionErrorData This option specifies the client should return
the content of an error response from the
server, rather than returning an error code.
Note that this option will disable automatic
resource redirection, and should not be used
with httpOptionRedirect.

32 httpOptionNoUserAgent This option specifies the client should not



 

include a User-Agent header with any
requests made during the session. The user
agent is a string which is used to identify the
client application to the server. An application
can provide its own custom user agent value
using the SetHeader method.

64 httpOptionHttp2 This option specifies the client should attempt
a HTTP/2 connection with the server. If a
connection cannot be established using
HTTP/2 the client will attempt to connect
using an earlier version of the protocol. The
value of the ProtocolVersion property will be
ignored when this option is used.

&H400 httpOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 httpOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This
option only affects connections using either
the SSL or TLS protocols.

&H1000 httpOptionSecure This option specifies the client should attempt
to establish a secure connection with the
server. Note that the server must support
secure connections using either the SSL or TLS
protocol. The client will default to using TLS
1.2 or later for secure connections.

&H8000 httpOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option
is specified, the client will allow connections
using TLS 1.0 and cipher suites that use RC4,
MD5 and SHA1.

&H40000 httpOptionPreferIPv6 This option specifies the client should prefer
the use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address.
This option is ignored if the local system does
not have IPv6 enabled, or when the hostname
can only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to
establish a connection using IPv6 regardless if

 



this option has been specified.

&H100000 httpOptionHiResTimer This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more
accurate transfer times for smaller amounts of
data over fast network connections.

Remarks
If the httpOptionKeepAlive option is specified and the server does not support persistent
connections, the client will automatically reconnect when each resource is requested. Although it
will not provide any performance benefits, this allows the option to be used with all servers. This
option is automatically enabled when using HTTP/2.

If your application specifies the httpOptionHttp2 option, a secure connection using TLS 1.2 or
later will always be used. The miniumum required platform for HTTP/2 support is Windows 10
(Version 1903) or Windows Server 2019. Earlier versions of Windows do not support the features
required for a secure HTTP/2 connection. If the server only accepts earlier versions of the protocol,
the client will attempt to automatically downgrade the request to HTTP/1.1.

Data Type
Integer (Int32)

See Also
AutoRedirect Property, KeepAlive Property, Secure Property, Connect Method



 Priority Property  

 

Gets and sets a value which specifies the priority of file transfers.

Syntax
object.Priority [= priority ]

Remarks
The Priority property can be used to control the processor usage, memory and network
bandwidth allocated for file transfers. One of the following values may be specified:

Value Constant Description

0 httpPriorityBackground This priority significantly reduces the memory,
processor and network resource utilization for the
transfer. It is typically used with worker threads
running in the background when the amount of time
required perform the transfer is not critical.

1 httpPriorityLow This priority lowers the overall resource utilization for
the transfer and meters the bandwidth allocated for
the transfer. This priority will increase the average
amount of time required to complete a file transfer.

2 httpPriorityNormal The default priority which balances resource utilization
and transfer speed. It is recommended that most
applications use this priority.

3 httpPriorityHigh This priority increases the overall resource utilization
for the transfer, allocating more memory for internal
buffering. It can be used when it is important to
transfer the file quickly, and there are no other
threads currently performing file transfers at the time.

4 httpPriorityCritical This priority can significantly increase processor,
memory and network utilization while attempting to
transfer the file as quickly as possible. If the file
transfer is being performed in the main UI thread, this
priority can cause the application to appear to
become non-responsive. No events will be generated
during the transfer.

The httpPriorityNormal priority balances resource utilization and transfer speed while ensuring
that a single-threaded application remains responsive to the user. Lower priorities reduce the
overall resource utilization at the expense of transfer speed. For example, if you create a worker
thread to download a file in the background and want to ensure that it has a minimal impact on
the process, the httpPriorityBackground value can be used.

Higher priority values increase the memory allocated for the transfers and increases processor
utilization for the transfer. The httpPriorityCritical priority maximizes transfer speed at the
expense of system resources. It is not recommended that you increase the file transfer priority
unless you understand the implications of doing so and have thoroughly tested your application. If
the file transfer is being performed in the main UI thread, increasing the priority may interfere with
the normal processing of Windows messages and cause the application to appear to become

 



non-responsive. It is also important to note that when the priority is set to httpPriorityCritical,
normal progress events will not be generated during the transfer.

Data Type
Integer (Int32)

See Also
GetData Method GetFile Method PutData Method PutFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password used to authenticate the user on the current
server. This property must be set to access resources that are restricted on the server. Note that it
is required to set both the UserName and Password properties to enable client authentication.

If your application needs to use OAuth 2.0 for authentication, it is recommended you set the
BearerToken property, which will automatically set the correct authentication type.

Data Type
String

See Also
AuthType Property, BearerToken Property, UserName Property, Authenticate Method, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProtocolVersion Property  

 

Gets and sets the current protocol version.

Syntax
object.ProtocolVersion [= value ]

Remarks
The ProtocolVersion property sets or returns the current HTTP version number. It is used to
determine how requests are submitted to the server, as well as what header fields are required.
The default value for this property is "1.1", and should be changed before any connection attempt
is made by the client. It is recommended you use this default value to ensure the broadest
compatibility with most servers and Windows platforms.

Setting this property to a value of "2.0" specifies the client should use the HTTP/2 protocol
standard defined in RFC 7540. This protocol version is a significant change from previous versions
and can provide improved performance with header compression and optimizing how requests
are serviced. However, this version should only be used if the server supports HTTP/2 and the
client is running on Windows 10 or Windows Server 2019 or later platform. Earlier versions of the
Schannel SSP do not support the features required for a secure HTTP/2 connection.

Data Type
String

See Also
KeepAlive Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyHost Property  

 

Gets and sets the host name of the proxy server.

Syntax
object.ProxyHost [= hostname ]

Remarks
The ProxyHost property should be set to the name of the proxy server that you want to connect
to. This property may be set to either a fully qualified domain name, or an IP address. This
property is only used if the ProxyType property is set to a non-zero value.

Data Type
String

See Also
ProxyPassword Property, ProxyPort Property, ProxyType Property, ProxyUser Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyPassword Property  

 

Gets and sets the proxy server password for the current user.

Syntax
object.ProxyPassword [= password ]

Remarks
The ProxyPassword property specifies the password used to authenticate the user to the proxy
server. If a password is not required by the server, this property is ignored.

Data Type
String

See Also
ProxyHost Property, ProxyPort Property, ProxyType Property, ProxyUser Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyPort Property  

 

Gets and sets the port number for the proxy server.

Syntax
object.ProxyPort [= portnumber ]

Remarks
The ProxyPort property is used to set the port number that the control will use to establish a
connection with the proxy server. A value of zero specifies that the client will connect to the proxy
server using the standard HTTP service port.

Data Type
Integer (Int32)

See Also
ProxyHost Property, ProxyPassword Property, ProxyType Property, ProxyUser Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyType Property  

 

Gets and sets the current proxy server type.

Syntax
object.ProxyType = [proxytype ]

Remarks
The ProxyType property specifies the type of proxy server that the client is connecting to. The
supported proxy server types are as follows:

Value Constant Description

0 httpProxyNone A direct connection will be established with the server.
When this value is specified the proxy-related properties
are ignored.

1 httpProxyStandard A standard connection is established through the specified
proxy server, and all resource requests will be specified
using a complete URL. This proxy type should be used
with standard connections.

2 httpProxySecure A secure connection is established through the specified
proxy server. This proxy type should only be used with
secure connections and the Secure property should also
be set to a value of true.

3 httpProxyWindows The configuration options for the current system should
be used. If the system is configured to use a proxy server,
then the connection will be automatically established
through that proxy; otherwise, a direct connection to the
server is established. These settings are the same proxy
server settings configured in Windows.

If the httpProxyWindows proxy type is specified, then the proxy configuration for the local
system is used. If no proxy server has been defined, then the proxy-related properties will be
ignored and the Connect method will establish a connection directly to the server.

Data Type
Integer (Int32)

See Also
ProxyHost Property, ProxyPassword Property, ProxyPort Property, ProxyUser Property, Secure
Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyUser Property  

 

Gets and sets the current proxy user name.

Syntax
object.ProxyUser [= username ]

Remarks
The ProxyUser property specifies the user that is logging in to the proxy server. If the proxy server
does not require user authentication, then this property is ignored.

Data Type
String

See Also
ProxyHost Property, ProxyPassword Property, ProxyPort Property, ProxyType Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property, URL Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Resource Property  

 

Gets and sets the name of a resource on the HTTP server.

Syntax
object.Resource [= value ]

Remarks
The Resource property is used to specify the name of a resource on the server. The resource may
be a file, such as an HTML document or an image, or it may be a script used to process data
submitted by the client. Note that this property specifies the name of the resource only, not a
complete URL. To specify a complete URL, set the URL property and the control will automatically
set the Resource property to the correct value.

Data Type
String

See Also
URL Property, Connect Method, GetData Method, GetFile Method, PostData Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultCode Property  

 

Return the result code of the previous action.

Syntax
object.ResultCode

Remarks
The ResultCode read-only property returns the result code of the last action performed by the
client. This property should be checked after the Command method is used to execute a
command on the server to determine if the operation was successful. Result codes are three-digit
numeric values returned by the server and may be broken down into the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being
initiated, and the client should expect another reply from the server before
proceeding.

200-
299

Positive completion result. This indicates that the server has successfully
completed the requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot
complete until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action
did not take place, but the error condition is temporary and may be attempted
again.

500-
599

Permanent negative completion result. This indicates that the requested action
did not take place.

It is important to note that while some result codes have become standardized, not all servers
respond to commands using the same result codes. For example, one server may respond with a
result code of 221 to indicate success, while another may respond with a value of 235. It is
recommended that applications check for ranges of values to determine if a command was
successful, not a specific value.

Data Type
Integer (Int32)

See Also
ResultString Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultString Property  

 

Return a string describing the results of the previous action.

Syntax
object.ResultString

Remarks
The ResultString read-only property returns the result string from the last action taken by the
client. This string is generated by the server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition
that caused the error.

Data Type
String

See Also
ResultCode Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if a connection to the server is secure.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application must set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may request files or
submit queries to the server as with standard connections.

It is strongly recommended that any application that sets this property True use error handling to
trap an errors that may occur. If the control is unable to initialize the security libraries, or otherwise
cannot create a secure session for the client, an error will be generated when this property value is
set.

Data Type
Boolean

Example
The following example establishes a secure connection to a server and retrieves a file:

HttpClient1.HostName = strHostName
HttpClient1.RemotePort = 443
HttpClient1.Secure = True

nError = HttpClient1.Connect()
If nError > 0 Then
    MsgBox "Unable to connect to server " & strHostName, vbExclamation
    Exit Sub
End If

If HttpClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          HttpClient1.Disconnect
          Exit Sub
     End If
End If

nError = HttpClient1.GetFile(strLocalFile, strRemoteFile)
HttpClient1.Disconnect

If nError > 0 Then
    MsgBox "Unable to download " & strRemoteFile, vbExclamation
    Exit Sub
End If

See Also
CertificateStatus Property, Connect Method

 





 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 stCipherNone No cipher has been selected. This is not a secure connection
with the server.

1 stCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

2 stCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

4 stCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 stCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 stCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 stCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 stCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 stCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 stCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Value Constant Description

1 stHashMD5 The MD5 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

2 stHashSHA1 The SHA-1 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

4 stHashSHA256 The SHA-256 algorithm has been selected.

8 stHashSHA384 The SHA-384 algorithm has been selected.

16 stHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 stKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 stKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 stKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 stKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 stKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange algorithm
was selected. This is a variant of the Diffie-Hellman
algorithm which uses elliptic curve cryptography. This
key exchange algorithm is only supported on Windows
XP SP3 and later versions of the operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

 



established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskCount Property  

 

Return the number of active background file transfers.

Syntax
object.TaskCount

Remarks
The TaskCount property returns the number of background file transfers that are currently in
progress. One common use for this property is to create a timer that periodically checks this value
when a series of background transfers are started. When the property returns a value of zero, that
indicates all of the background transfers have completed. This property can also be used to
enumerate the active background tasks in conjunction with the TaskList property.

Data Type
Integer (Int32)

See Also
TaskList Property, AsyncGetFile Method, AsyncPutFile Method, TaskAbort Method, TaskWait
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskId Property  

 

Return the task ID for the last background file transfer.

Syntax
object.TaskId

Remarks
The TaskId property returns the task ID associated with the last background task that started. The
value of this property is only meaningful after the AsyncGetFile or AsyncPutFile method is called
to initiate a background file transfer, and the value will change with each subsequent background
transfer that is performed. If this property returns a value of zero, that indicates that no
background tasks have been started for this instance of the control.

To enumerate the active background tasks, use the TaskCount property and the TaskList
property array.

Data Type
Integer (Int32)

See Also
TaskCount Property, TaskList Property, AsyncGetFile Method, AsyncPutFile Method, TaskAbort
Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskList Property  

 

Return the task ID for an active background file transfer.

Syntax
object.TaskList(Index)

Remarks
The TaskList property is a zero-based array that returns an ID associated with an active
background task. The current number of active tasks can be determined using the TaskCount
property. If the index value specified for this property array exceeds the number of active tasks, an
exception will be thrown.

As background tasks complete and additional tasks are started, the values returned by this
property array will change. The application should never make an assumption about the actual
task ID values returned or the order they are returned. While task IDs are assigned sequentially,
they should be considered opaque values that are unique to the process. When a background
task completes, its corresponding task ID is removed from the list of active tasks and this can
potentially change the task ID values associated with each index into the property array.

Data Type
Integer (Int32)

See Also
TaskCount Property, TaskId Property, AsyncGetFile Method, AsyncPutFile Method, TaskAbort
Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

HttpClient1.ThrowError = False
nError = HttpClient1.Connect(strHostName)

If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

HttpClient1.ThrowError = True
HttpClient1.Connect strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

When debug logging is enabled for HTTP/2 client sessions, it is normal to see HTTP/1.1 in the
request and server response. HTTP/2 is a binary protocol and the request and response header
blocks emulate a standard HTTP/1.1 text response for backwards compatibility. Applications
running on the server should work in the same way regardless of which protocol version is
selected, however it is possible to check the server environment to determine which version of
HTTP was used with the request.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 httpTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 httpTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 httpTraceWarning Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 httpTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferBytes Property  

 

Return the number of bytes transferred from the server.

Syntax
object.TransferBytes

Remarks
The TransferBytes property returns the number of bytes that have been copied to or from the
HTTP server. If this property is read while a transfer is ongoing, the property returns the number of
bytes that have been copied up to that point. If read after a transfer has completed, the total
number of bytes copied is returned.

If the value would exceed 2,147,483,647 bytes (the maximum value for a 32-bit integer) this
property will return -1 to indicate an overflow condition. If you are potentially transferring files
larger than 2 GiB in size, you should use the TransferBytesXL property instead, which returns the
number of bytes as a Double floating-point value.

This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytesXL Property, TransferRate Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferBytesXL Property  

 

Return the number of bytes transferred from the server.

Syntax
object.TransferBytesXL

Remarks
The TransferBytesXL property returns the number of bytes that have been copied to or from the
HTTP server. This property returns the number of bytes as a Double floating-point value instead
of a Long integer, making it suitable for very large files that exceed 2 GiB in size.

If this property is read while a transfer is ongoing, the property returns the number of bytes that
have been copied up to that point. If read after a transfer has completed, the total number of
bytes copied is returned.

This property value is reset with every data transfer.

Data Type
Double

See Also
TransferRate Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferRate Property  

 

Return the current file transfer rate in bytes per second.

Syntax
object.TransferRate

Remarks
The TransferRate property returns the rate at which the file data is being transferred, expressed in
bytes per second. If this property is read while a transfer is ongoing, it returns the current average
transfer rate.

If this property is read after the transfer has completed, it returns the final transfer rate which is
calculated as the total number of bytes transferred divided by the number of seconds to complete
the transfer. This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytes Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferTime Property  

 

Return the number of seconds elapsed during a data transfer.

Syntax
object.TransferTime

Remarks
The TransferTime property returns the number of seconds that have elapsed since the file
transfer started. If the property is read after the transfer has completed, it returns the total number
of seconds it took to transfer the file.

 This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytes Property, TransferRate Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 URL Property  

 

Gets and sets the current URL used to access a resource on the server.

Syntax
object.URL [= url ]

Remarks
The URL property returns the current Uniform Resource Locator string which is used by the
control to access a resource on the server. URLs have a specific format which provides information
about the server, port, resource, as well as optional information such as a username and password
for authentication:

http://[username : [password] @] hostname [:port] / resource [?
parameters]

The first part of the URL is the protocol and in this case will always be "http", or "https" if a secure
connection is being used. If a username and password is required for authentication, then this will
be included in the URL before the name of the server. Next, there is the name of the server to
connect to, optionally followed by a port number. If no port number is given, then the default port
for the protocol will be used. This is followed by the resource, which is usually a path to a file or
script on the server. Parameters to the resource may also be specified, which are typically used as
arguments to a script that is executed on the server.

Here are some common examples of URLs used to access resources on an HTTP server:

http://www.example.com/products/index.html 
In this example, the server is www.example.com and the resource is /products/index.html.
The default port will be used to access the resource, and no username and password is
provided for authentication.

http://www.example.com:8080/index.html 
In this example, the server is www.example.com and the resource is /products/index.html.
However, the client should connect to an alternative port number, in this case 8080.

https://www.example.com/order/confirm.asp 
In this example, the server is www.example.com and the resource is the script
/order/confirm.asp. Because the protocol is https, a secure connection on port 443 will be
established.

http://jsmith:secret@www.example.com:8080/~jsmith/personal/index.html 
In this example, the server is www.example.com and the resource is
/~jsmith/personal/index.html. The port 8080 will be used to access the resource, and
access to the resource will be authenticated with the username "jsmith" and the password
"secret".

When setting the URL property, the control will parse the string and automatically update the
HostName, RemotePort, UserName, Password and Resource properties according to the
values specified in the URL. This enables an application to simply provide the URL and then call the
Connect method to establish the connection.

Note that if this property is assigned a value which cannot be parsed, the control will throw an
error that indicates that the property value is invalid. In a language like Visual Basic it is important
that you implement an error handler, particularly if you are assigning a value to the property
based on user input. If the user enters an invalid URL and there is no error handler, it could result

 



in an exception which terminates the application.

Data Type
String

Example
' Setup error handling since the control will throw an error
' if an invalid URL is specified

On Error Resume Next: Err.Clear
HttpClient1.URL = Text1.Text

' Check the Err object to see if an error has occurred, and
' if so, let the user know that the URL is invalid

If Err.Number <> 0 Then
    MsgBox "The specified URL is invalid", vbExclamation
    Text1.SetFocus
    Exit Sub
End If

' Reset error handling and connect to the server using the
' default property values that were updated when the URL
' property was set (ie: HostName, RemotePort, Resource, etc.)

On Error GoTo 0
nError = HttpClient1.Connect()

If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' Get the resource and store the data in a string buffer
nError = HttpClient1.GetData(HttpClient1.Resource, strBuffer)

See Also
HostAddress Property, HostName Property, Password Property, RemotePort Property, Resource
Property, UserName Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserAgent Property  

 

Gets and sets the current user agent value which identifies the application.

Syntax
object.UserAgent [= UserAgent ]

Remarks
The UserAgent property identifies the application that is issuing the request to the server. This is a
string value that should be defined using the following format:

Application[/Version] [(Additional Information)]

For example, if the name of your application is "MyProgram" and the current version is 2.0, then
you could specify a user agent string as follows:

MyProgram/2.0

The additional information included with the user agent string should be enclosed in parenthesis
and can include the operating system, version and build numbers for additional components as
well as any other information that you wish to include. Multiple items should be separated by
semicolons. It is recommended that the user agent string not be greater than 128 characters in
length.

Data Type
String

See Also
HeaderField Property, HeaderValue Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= username ]

Remarks
The UserName property specifies the username used to authenticate the user on the current
server. This property must be set to access resources that are restricted on the server. Note that it
is required to set both the UserName and Password properties to enable client authentication.

If your application needs to use OAuth 2.0 for authentication, it is recommended you set the
BearerToken property, which will automatically set the correct authentication type.

Data Type
String

See Also
AuthType Property, BearerToken Property, Password Property, Authenticate Method, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Hypertext Transfer Protocol Control Methods  

 

Method Description

AddField Add the form field and its value to the current form

AddFile Append the contents of the file to the current form

AsyncGetFile Download a file from the server to the local system in the background

AsyncPutFile Upload a file from the local system to the server in the background

Authenticate Authenticate the client session with a username and password

Cancel Cancels the current blocking network operation

ClearForm Remove all defined fields from the current form

ClearHeaders Clears the current request and response headers

CloseFile Close the file that was opened on the server

Command Send a custom command to the server

Connect Establish a connection with a server

CreateFile Create a file on the server

CreateForm Create a new form, replacing the current form

DeleteField Delete the form field and its value from the current form

DeleteFile Remove a file on the server

Disconnect Terminate the connection with a server

GetCookie Return information about the specified cookie

GetData Transfer data from the server and store it in a local buffer

GetFile Copy a file from the server to the local system

GetFileSize Return the size of the specified file on the server

GetFileTime Return the modification date and time for specified file on the server

GetFirstHeader Return the first response header field name and value

GetHeader Return the value of the specified header field

GetNextHeader Return the next response header field name and value

GetText Retrieve a text resource from the server and store it in a string buffer

Initialize Initialize the control and validate the runtime license key

OpenFile Open a file on the server for reading

PatchData Submit patch data to the server and return the response in a string buffer

PostData Transfer data from a local buffer and stores it in a file on the server

PostFile Post the contents of the specified file to a script executed on the server

PostJson Post JSON formatted data to a script executed on the server

 



PostXml Post XML formatted data to a script executed on the server

PutData Transfer data from a local buffer to the server

PutFile Copy a file from the local system to the server

PutText Submit the contents of a string buffer to the server

Read Return data read from the server

Reset Reset the internal state of the control

SetCookie Send the specified cookie to the server when a resource is requested

SetHeader Set the value of a request header field

SubmitForm Submit the current form to the server for processing

TaskAbort Abort the specified asynchronous task

TaskDone Determine if an asynchronous task has completed

TaskResume Resume execution of an asynchronous task

TaskSuspend Suspend execution of an asynchronous task

TaskWait Wait for an asynchronous task to complete

Uninitialize Uninitialize the control and release any system resources that were allocated

Write Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AddField Method  

 

Add the form field and its value to the current form.

Syntax
object.AddField( FieldName, FieldData, [FieldLength] )

Parameters
FieldName

A string which specifies the name of the field to add to the form.

FieldData

A string or byte array which specifies the data for the form field.

FieldLength

An integer value which specifies the length of the field data in characters or bytes, depending
on whether the field data was specified as a string or byte array. If this optional argument is
omitted, the complete string or byte array will be used.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AddField method is used to add a field and its associated value to a form created using the
CreateForm method. If the field name has already been added to the form, the previous value is
deleted and replaced by the new value.

Example
HttpClient1.CreateForm "/login/php", httpMethodPost, httpFormEncoded
HttpClient1.AddField "UserName", strUserName
HttpClient1.AddField "Password", strPassword

nError = HttpClient1.SubmitForm(strResult)
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
AddField Method, AddFile Method, CreateForm Method, DeleteField Method, SubmitForm
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AddFile Method  

 

Append the contents of the file to the current form.

Syntax
object.AddFile( FieldName, FileName )

Parameters
FieldName

A string which specifies the name of the field to add to the form.

FileName

A string which specifies the name of the file.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AddFile method is used to add the contents of a file to a form created using the CreateForm
method. If the field name has already been added to the form, the previous value is deleted and
replaced by the new value.

See Also
AddField Method, AddFile Method, CreateForm Method, DeleteField Method, SubmitForm
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AsyncGetFile Method  

 

Download a file from the server to the local system in the background.

Syntax
object.AsyncGetFile( LocalFile, RemoteFile, [Options], [Offset] )

Parameters
LocalFile

A string that specifies the file on the local system that will be created, overwritten or appended
to. The file pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies the file on the server that will be transferred to the local system. The file
pathing and name conventions must be that of the server.

Options

An optional numeric bitmask which specifies one or more options. This argument may be any
one of the following values:

Value Constant Description

0 httpTransferDefault This option specifies the default transfer mode should
be used. If the local file exists, it will be overwritten with
the contents of the remote file. If the Options
argument is omitted, this is the transfer mode which
will be used.

1 httpTransferConvert If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or
linefeed characters are converted to carriage
return/linefeed character sequences.

2 httpTransferCompress This option informs the server that the client is willing
to accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled by setting the
Compression property to True. This option is ignored
if the Offset parameter is non-zero.

Offset

An optional byte offset which specifies where the file transfer should begin. The default value of
zero specifies that the file transfer should start at the beginning of the file. A value greater than
zero is typically used to restart a transfer that has not completed successfully.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

 



Remarks
The AsyncGetFile method will download the contents of a remote file to a file on the local
system. It is similar to the GetFile method, however it retrieves the file using a background worker
thread and does not block the current working thread. This enables the application to continue to
perform other operations while the file is being downloaded from the server. This method requires
that you explicitly establish a connection using the Connect method. All background tasks will
duplicate the active connection and use it establish a secondary connection with the server to
perform the file transfer. If you wish to perform multiple asynchronous file transfers from different
servers, you must create an instance of the control for each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background
task has begun the process of connecting to the server and performing the file transfer. As the file
is downloaded, the control will periodically invoke the OnTaskRun event handler. When the
transfer has completed, the OnTaskEnd event will be fired. It is not required that you implement
handlers for these events.

To determine when a transfer has completed without implementing any event handlers,
periodically call the TaskDone method. If you wish to block the current thread and wait for the
transfer to complete, call the TaskWait method. To stop a background file transfer that is in
progress, call the TaskAbort method. This will signal the background worker thread to cancel the
transfer and terminate the session.

This method can be called multiple times to download more than one file in the background;
however, most servers limit the number of simultaneous connections that can originate from a
single IP address. The application should not make any assumptions about the sequence in which
background transfers are performed or the order in which they may complete.

Example
' Establish a connection to the server
nError = HttpClient1.Connect(strHostName, 80)
    
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If
    
' Download a file in the background
nError = HttpClient1.AsyncGetFile(strLocalFile, strRemoteFile)
    
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
TaskId Property, AsyncPutFile Method, TaskAbort Method, TaskDone Method, TaskWait Method,
OnTaskBegin Event, OnTaskEnd Event, OnTaskRun Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AsyncPutFile Method  

 

Upload a file from the local system to the server in the background.

Syntax
object.AsyncPutFile( LocalFile, RemoteFile, [Options], [Offset] )

Parameters
LocalFile

A string that specifies the file on the local system that will be transferred to the server. The file
pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies the file on the server that will be created, overwritten or appended to. The
file pathing and name conventions must be that of the server.

Options

An optional numeric bitmask which specifies one or more options. This argument may be any
one of the following values:

Value Constant Description

0 httpTransferDefault This option specifies the default transfer mode should be
used. If the local file exists, it will be overwritten with the
contents of the remote file. If the Options argument is
omitted, this is the transfer mode which will be used.

Offset

An optional byte offset which specifies where the file transfer should begin. The default value of
zero specifies that the file transfer should start at the beginning of the file. A value greater than
zero is typically used to restart a transfer that has not completed successfully.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AsyncPutFile method will upload the contents of a file on the local system to the server. It is
similar to the PutFile method, however it retrieves the file using a background worker thread and
does not block the current working thread. This enables the application to continue to perform
other operations while the file is being uploaded to the server. This method requires that you
explicitly establish a connection using the Connect method. All background tasks will duplicate the
active connection and use it establish a secondary connection with the server to perform the file
transfer. If you wish to perform multiple asynchronous file transfers from different servers, you
must create an instance of the control for each server.

After this method is called, the OnTaskBegin event will be fired, indicating that the background
task has begun the process of connecting to the server and performing the file transfer. As the file
is uploaded, the control will periodically invoke the OnTaskRun event handler. When the transfer
has completed, the OnTaskEnd event will be fired. It is not required that you implement handlers
for these events.

To determine when a transfer has completed without implementing any event handlers,

 



periodically call the TaskDone method. If you wish to block the current thread and wait for the
transfer to complete, call the TaskWait method. To stop a background file transfer that is in
progress, call the TaskAbort method. This will signal the background worker thread to cancel the
transfer and terminate the session.

This method can be called multiple times to upload more than one file in the background;
however, most servers limit the number of simultaneous connections that can originate from a
single IP address. The application should not make any assumptions about the sequence in which
background transfers are performed or the order in which they may complete.

Example
' Establish a connection to the server
nError = HttpClient1.Connect(strHostName, 80, strUserName, strPassword)
    
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If
    
' Upload a file in the background
nError = HttpClient1.AsyncPutFile(strLocalFile, strRemoteFile)
    
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
TaskId Property, AsyncGetFile Method, TaskAbort Method, TaskDone Method, TaskWait Method,
OnTaskBegin Event, OnTaskEnd Event, OnTaskRun Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Authenticate Method  

 

Authenticate the client session with a username and password.

Syntax
object.Authenticate( UserName, Password, [AuthType] )

Parameters
UserName

A string which specifies the username used to authenticate the client session.

Password

A string which specifies the password which will be used to authenticate the client session with
the server. Not all server resources require the client to authenticate the session. If you are using
OAuth 2.0 authentication, this parameter specifies the bearer token.

AuthType

An optional value which specifies the authentication method. If this parameter is omitted, it will
use the method specified by the AuthType property. It may be one of the following values:

Value Constant Description

0 httpAuthNone No client authentication should be performed.

1 httpAuthBasic The Basic authentication scheme should be used. This option
is supported by all servers that support at least version 1.0 of
the protocol. The user credentials are not encrypted and Basic
authentication should not be used over standard (non-secure)
connections. Most web services which use Basic
authentication require the connection to be secure.

4 httpAuthBearer The Bearer authentication scheme should be used. This
authentication method does not require a user name and the
BearerToken property must specify the OAuth 2.0 bearer
token issued by the service provider. If the access token has
expired, the request will fail with an authorization error. This
function will not automatically refresh an expired token.

Return Value
A value of zero is returned if the method was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
This method will set the Authorization request header for the client session using the credentials
provided by the caller. It will always override any custom Authorization header value which may
have been previously set using the SetHeader method.

If both the UserName and Password parameters specify empty strings, the current authentication
type will always be set to httpAuthNone regardless of the value of the AuthType parameter. This
effectively clears the current user credentials for the client session.

If you provide a user name and password to the Connect method, or you set the UserName
property and either the Password or BearerToken property prior to calling the Connect method,
authentication will be automatically attempted at the time the connection is made. This method is

 



only required if you do not provide user credentials when the connection is established and wish
to authenticate the client session at a later time.

See Also
AuthType Property, BearerToken Property, Password Property, UserName Property, Connect
Method SetHeader Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Disconnect Method, Reset Method, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClearForm Method  

 

Remove all defined fields from the current form.

Syntax
object.ClearForm

Parameters
None.

Return Value
None.

See Also
AddField Method, AddFile Method, CreateForm Method, DeleteField Method, SubmitForm
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClearHeaders Method  

 

Clears the current request and response headers.

Syntax
object.ClearHeaders

Parameters
None.

Return Value
None.

Remarks
The ClearHeaders method clears the request and response headers for the current session,
including any cookies which may have been set. This method can be useful in persistent
connections, where the client wishes to clear any previously set header values without
disconnecting from the server.

See Also
GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CloseFile Method  

 

Close the file that was opened on the server.

Syntax
object.CloseFile

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The CloseFile method is used to close a file that was opened using the OpenFile method, or
created using the CreateFile method. It should be called before the client disconnects from the
server.

See Also
CreateFile Method, OpenFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Command Method  

 

Send a custom command to the server.

Syntax
object.Command( Command, Resource, [Parameters], [Options] )

Parameters
Command

A string which specifies the command to send. There are a number of standard commands
which may be used, and there are extended commands which depend on the type of server
that the client is connected to. Consult the protocol standard and/or the technical reference
documentation for the server to determine what commands may be issued by a client
application. An example of some common HTTP commands are:

Command Description

GET Return the contents of the specified resource. This command is recognized
by all servers.

HEAD Return only header information for the specified resource. This command
is recognized by servers that support at least version 1.0 of the protocol.

POST Post data to the specified resource. This command is recognized by
servers that support at least version 1.0 of the protocol.

PUT Create or replace the specified resource on the server. This command is
recognized by servers that support at least version 1.0 of the protocol. Not
all servers support this command.

DELETE Delete the specified resource from the server. This command is
recognized by servers that support at least version 1.1 of the protocol. Not
all servers support this command.

Resource

A string which specifies the resource that the command is to be performed upon. The resource
may be a file, such as an HTML document or an image, or it may be a script used to process
data submitted by the client. Note that this argument specifies the name of the resource only,
not a complete URL.

Parameters

An optional string or byte array which specifies one or more parameters to be sent along with
the command. The parameter data is encoded according to the encoding type specified by the
Encoding property. If the resource does not require any parameters, this argument should be
omitted. Note that it is possible to pass binary data by specifying an array of bytes rather than a
string as the argument.

Options

A numeric value which specifies one or more options. Currently this argument is reserved and
should either be omitted, or a value of zero should always be used.

Return Value
A value of zero is returned if the command was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure. To determine the result code returned by the

 



server in response to the command, read the value of the ResultCode property.

Remarks
The Command method sends a command to the server and processes the result code sent back
in response to that command. This method can be used to send custom commands to a server to
take advantage of features or capabilities that may not be supported internally by the control.

Not all servers support all of the listed commands, and some commands may require specific
changes to the server configuration. In particular, the PUT and DELETE commands typically require
that configuration changes be made by the site administrator. All servers will support the use of
the GET command, and all servers that support at least version 1.0 of the protocol will support the
POST command.

The Parameters argument is used to pass additional information to the server when a resource is
requested. This is most commonly used to provide information to scripts, similar to how
arguments are used when executing a program from the command line. Unless the POST
command is being executed, the data in the buffer will automatically be encoded using the current
encoding mechanism specified for the client. By default, the data is URL encoded, which means
that any spaces and non-printable characters are converted to printable characters before
submitted to the server. The type of encoding that is performed can be changed by setting the
Encoding property. Although the default encoding is appropriate for most applications, those that
submit XML formatted data may need to change the encoding type.

Only one request may be in progress at one time for each client session. Use the CloseFile
method to terminate the request after all of the data has been read from the server.

See Also
Encoding Property, ResultCode Property, ResultString Property, OnCommand Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

Establish a connection with a server.

Syntax
object.Connect( [RemoteHost], [RemotePort], [UserName], [Password], [Timeout], [Options] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero indicates that the default
port number for this service should be used to establish the connection.

UserName

An optional string which specifies a username used to authenticate the client session. This
argument is only required if access to the resource requires authentication. If this argument is
omitted, it defaults to the value of the UserName property. An empty string means that no
authentication will be performed.

Password

An optional string which specifies the password used to authenticate the client session. This
argument is only required if access to the resource requires authentication. If this argument is
omitted, it defaults to the value of the Password property. An empty string means that no
password will be provided.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

An unsigned integer that specifies one or more options. If this parameter is omitted, it defaults
to the value of the Options property. This parameter is constructed by using a bitwise operator
with any of the following values:

Value Constant Description

1 httpOptionNoCache This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may
be ignored.

2 httpOptionKeepAlive This instructs the server to maintain a
persistent connection between requests. This
can improve performance because it
eliminates the need to establish a separate
connection for each resource that is
requested. If the server does not support the
keep-alive option, the client will automatically



 

reconnect when each resource is requested.
Although it will not provide any performance
benefits, this allows the option to be used with
all servers.

4 httpOptionRedirect This option specifies the client should
automatically handle resource redirection. If
the server indicates that the requested
resource has moved to a new location, the
client will close the current connection and
request the resource from the new location.
Note that it is possible that the redirected
resource will be located on a different server.

8 httpOptionProxy This option specifies the client should use the
default proxy configuration for the local
system. If the system is configured to use a
proxy server, then the connection will be
automatically established through that proxy;
otherwise, a direct connection to the server is
established. The local proxy configuration can
be changed in the system settings or control
panel.

16 httpOptionErrorData This option specifies the client should return
the content of an error response from the
server, rather than returning an error code.
Note that this option will disable automatic
resource redirection, and should not be used
with httpOptionRedirect.

32 httpOptionNoUserAgent This option specifies the client should not
include a User-Agent header with any
requests made during the session. The user
agent is a string which is used to identify the
client application to the server. An application
can provide its own custom user agent value
using the SetHeader method.

64 httpOptionHttp2 This option specifies the client should attempt
a HTTP/2 connection with the server. If a
connection cannot be established using
HTTP/2 the client will attempt to connect
using an earlier version of the protocol. The
value of the ProtocolVersion property will be
ignored when this option is used.

&H400 httpOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default

 



capability selection and how the connection is
established.

&H800 httpOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This
option only affects connections using either
the SSL or TLS protocols.

&H1000 httpOptionSecure This option specifies the client should attempt
to establish a secure connection with the
server. Note that the server must support
secure connections using either the SSL or TLS
protocol. The client will default to using TLS
1.2 or later for secure connections.

&H8000 httpOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option
is specified, the client will allow connections
using TLS 1.0 and cipher suites that use RC4,
MD5 and SHA1.

&H40000 httpOptionPreferIPv6 This option specifies the client should attempt
to resolve a domain name to an IPv6 address.
If the domain name has both an IPv4 and IPv6
address assigned to it, the default is to use the
IPv4 address for compatibility purposes.
Enabling this option forces the client to always
use the IPv6 address if one is available. If the
domain name does not have an assigned IPv4
address, the IPv6 address will always be used
regardless if this option is specified.

&H100000 httpOptionHiResTimer This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more
accurate transfer times for smaller amounts of
data being uploaded or downloaded using
fast network connections.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
If the httpOptionKeepAlive option is specified and the server does not support persistent
connections, the client will automatically reconnect when each resource is requested. Although it
will not provide any performance benefits, this allows the option to be used with all servers. This
option is automatically enabled when using HTTP/2.

If your application specifies the httpOptionHttp2 option, a secure connection using TLS 1.2 or
later will always be used. The miniumum required platform for HTTP/2 support is Windows 10
(Version 1903) or Windows Server 2019. Earlier versions of Windows do not support the features



required for a secure HTTP/2 connection. If the server only accepts earlier versions of the protocol,
the client will attempt to automatically downgrade the request to HTTP/1.1.

See Also
AutoRedirect Property, HostAddress Property, HostName Property, Options Property, ProxyHost
Property, ProxyPort Property, ProxyType Property, RemotePort Property, URL Property, Disconnect
Method, OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreateFile Method  

 

Create a file on the server.

Syntax
object.CreateFile( FileName, FileLength )

Parameters
FileName

A string which specifies the name of the file being created on the server. The client must have
the appropriate access rights to create the file or an error will be returned.

FileLength

A number which specifies the size of the file in bytes. This value must be greater than zero.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The CreateFile method uses the PUT command to create the file. The server must support this
command and the user must have the appropriate permission to create the specified file. If this
method is successful, the client should then use the Write method to send the contents of the file
to the server. Once all of the data has been written, the CloseFile method should be called to
close the file and complete the operation. Note that this method is typically only accepted by
servers that support version 1.1 of the protocol or later.

When using Write to send the contents of the file to the server, it is recommended that the data
be written in logical blocks that are no larger than 8,192 bytes in size. Attempting to write very
large amounts of data in a single call can either cause the thread to block or, in the case of an
asynchronous connection, return an error if the internal buffers cannot accommodate all of the
data. To send the entire contents of a file at once, use the PutData method instead of calling
CreateFile.

See Also
CloseFile Method, OpenFile Method, PutData Method, PutFile Method, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreateForm Method  

 

Create a new form, replacing the current form.

Syntax
object.CreateForm( [Action], [Method], [FormType] )

Parameters
Action

A string which specifies the name of the resource that the form data will be submitted to.
Typically this is the name of a script that is executed on the server. If this argument is omitted,
the value of the FormAction property is used as the default value. If the FormAction property
is undefined, the value of the Resource property will be used as the default value.

Method

An integer value which specifies how the form data will be submitted to the server. This
argument may be one of the following values:

Value Constant Description

0 httpMethodDefault The form data should be submitted using the default
method, using the GET command.

1 httpMethodGet The form data should be submitted using the GET
command. This method should be used when the amount
of form data is relatively small. If the total amount of form
data exceeds 2048 bytes, it is recommended that the
POST method be used instead.

2 httpMethodPost The form data should be submitted using the POST
command. This is the preferred method of submitting
larger amounts of form data. If the total amount of form
data exceeds 2048 bytes, it is recommended that the
POST method be used.

FormType

An integer value which specifies the type of form and how the data will be encoded when it is
submitted to the server. This argument may be one of the following values:

Value Constant Description

0 httpFormDefault The form data should be submitted using the default
encoding method.

1 httpFormEncoded The form data should be submitted as URL encoded
values. This is typically used when the GET method is used
to submit the data to the server.

2 httpFormMultipart The form data should be submitted as multipart form data.
This is typically used when the POST method is used to
submit a file to the server. Note that the script must
understand how to process multipart form data if this form
type is specified.

 



Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The CreateForm method is used to create a new form that will be populated with values and then
submitted to the server for processing.

Example
HttpClient1.CreateForm "/login/php", httpMethodPost, httpFormEncoded
HttpClient1.AddField "UserName", strUserName
HttpClient1.AddField "Password", strPassword

nError = HttpClient1.SubmitForm(strResult)
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
AddField Method, AddFile Method, CreateForm Method, DeleteField Method, SubmitForm
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteField Method  

 

Delete the form field and its value from the current form.

Syntax
object.DeleteField( FieldName )

Parameters
FieldName

A string which specifies the name of the field to remove from the form.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The DeleteField method is used to remove a field and its associated value from the current form.

See Also
AddField Method, AddFile Method, CreateForm Method, DeleteField Method, SubmitForm
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteFile Method  

 

Remove a file on the server.

Syntax
object.DeleteFile( FileName )

Parameters
FileName

An string value which specifies the name of the resource or file to be deleted.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The DeleteFile method deletes an existing file from the HTTP server using the DELETE command.
This command is typically only accepted by servers that support version 1.1 of the protocol or
later. Note that this method requires that the server be configured to permit file deletion and that
the user has the appropriate permission to remove the file.

See Also
CreateFile Method, GetFile Method, OpenFile Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
IsConnected Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetCookie Method  

 

Return information about the specified cookie.

Syntax
object.GetCookie( CookieName, CookieValue, [CookiePath], [CookieDomain], [CookieExpires],
[CookieFlags] )

Parameters
CookieName

A string which specifies the name of the cookie to return information about. To obtain a list of
cookies which have been set by the server, use the CookieCount and CookieName properties.

CookieValue

A string which will contain the value of the cookie when the method returns. This parameter
must be passed by reference.

CookiePath

An optional string argument which will contain the cookie path when the method returns. This
specifies a path for the resources where the cookie should be used. For example, a path of "/"
indicates that the cookie should be provided for all resources requested from the server. A path
of "/data" would mean that the cookie should be included if the resource is found in the /data
folder or a sub-folder, such as /data/projections.asp. However, the cookie would not be
provided if the resource /info/status.asp was requested, since it is not in the /data path. The
cookie should only be sent to the server if the resource being requested is located in the
directory or subdirectory of this path. This parameter must be passed by reference. If this
information is not required, the argument can be omitted.

CookieDomain

An optional string argument which will contain the domain that the cookie is valid for. Matches
are made by comparing the name of the server against the domain name specified in the
cookie. If the domain is example.com, then any server in the example.com domain would
match; for example, both shipping.example.com and orders.example.com would match the
domain value. However, if the cookie domain was orders.example.com, then the cookie would
only be sent if the resource was requested from orders.example.com, not if the resource was
located on shipping.example.com or www.example.com. This parameter must be passed by
reference. If this information is not required, the argument can be omitted.

CookieExpires

An optional date value which specifies when the cookie expires and should no longer be sent to
the server when requesting a resource in the path specified by the CookiePath value. This is
only valid for persistent cookies, since session cookies are automatically deleted when the client
application terminates. The time is always expressed as Coordinated Universal Time. This
parameter must be passed by reference. If this information is not required, the argument can be
omitted.

CookieFlags

An optional integer value which provides status information about the cookie. A value of zero
indicates that there are no special status flags for the cookie. This parameter must be passed by
reference. This argument may be omitted if the information is not required. The following values
are currently defined:

 



Value Constant Description

1 httpCookieSecure This flag specifies that the cookie should only be provided
to the server if the connection is secure.

2 httpCookieSession This flag specifies that the cookie should only be used for
the current application session and should not be stored
permanently on the local system.

Return Value
This method returns a Boolean value. A value of true is returned if the cookie name is valid.
Otherwise, a value of false is returned, which indicates that a cookie with that name does not exist.

Remarks
The Hypertext Transfer Protocol uses special tokens called "cookies" to maintain persistent state
information between requests for a resource. These cookies are exchanged between the client and
server by setting specific header fields. When a server wants the client to use a cookie, it will
include a header field named Set-Cookie in the response header when the client requests a
resource. The client can then take this cookie and store it, either temporarily in memory or
permanently in a file on the local system. The next time that the client requests a resource from
that server, it can send the cookie back to the server by setting the Cookie header field. The
GetCookie method searches for a cookie set by the server in the Set-Cookie header field. The
SetCookie method creates or modifies the Cookie header field for the next resource requested by
the client.

There are two general types of cookies that are used by servers. Session cookies exist only for the
duration of the client session; they are stored in memory and not saved in any kind of permanent
storage. When the client application terminates, session cookies are deleted and no longer used.
Persistent cookies are stored on the local system and are used by the client until their expiration
time.

It is the responsibility of the client application to store persistent cookies and determine if a cookie
meets the criteria required to be submitted to the server. If the application wishes to send the
cookie, it can use the SetCookie method and specify the cookie name and value.

See Also
CookieCount Property, CookieName Property, CookieValue Property, SetCookie Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetData Method  

 

Retrieve data from the server and store it in a local buffer.

Syntax
object.GetData( Resource, Buffer, [Length], [Options] )

Parameters
Resource

A string that specifies the resource on the server that will be accessed. If the resource specifies a
file, then the contents of the file will be returned to the server. If the resource specifies a script
or other executable content, it will be executed and the output will be transferred to the local
system. The file pathing and name conventions must be that of the server.

Buffer

This parameter specifies the local buffer that the data will be stored in. If the variable is a String
type, then the data will be returned as a string of characters. This is the most appropriate data
type to use if the file on the server is a text file. If the remote file contains binary data, it is
recommended that a Byte array variable be specified as the argument to this method.

Length

An optional integer argument that will contain the number of bytes copied into the buffer when
the method returns.

Options

An optional integer value which specifies one or more options. This argument is constructed by
using a bitwise operator with any of the following values:

Value Constant Description

0 httpTransferDefault The default transfer mode. The resource data is
downloaded to the local system exactly as it is stored
on the server. If you are requesting a text-based
resource, the data may use a different end-of-line
character sequence. For example, the end-of-line
character may be a single linefeed character instead of
a carriage return and linefeed pair.

1 httpTransferConvert If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or
linefeed characters are converted to carriage
return/linefeed character sequences.

2 httpTransferCompress This option informs the server that the client is willing
to accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled by setting the
Compression property to True.

 



4 httpTransferErrorData This option causes the client to accept error data from
the server if the request fails. If this option is specified,
an error response from the server will not cause the
method to fail. Instead, the response is returned to the
client and the method will succeed. If this option is
used, your application should check the ResultCode
property to obtain the HTTP status code returned by
the server. This will enable you to determine if the
operation was successful.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetData method transfers data from the server to the local system, storing it in the specified
buffer . This method will cause the current thread to block until the file transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire
periodically, enabling the application to update any user interface objects such as a progress bar.

Specifying the httpTransferCompress option does not guarantee that the data returned by the
server will actually be compressed, it only informs the server that the client is willing to accept
compressed data. Whether or not a particular resource is compressed depends on the server
configuration, and the server may decide to only compress certain types of resources, such as text
files.

If compression has been enabled and the server returns compressed data, it will be automatically
expanded before being returned to the caller. If the application is using the OnProgress event to
determine the amount of data being returned by the server, it is important to keep in mind that
the values reflect the size of the compressed data.

See Also
Compression Property, GetFile Method, PutData Method, PutFile Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFile Method  

 

Copy a file from the server to the local system.

Syntax
object.GetFile( LocalFile, RemoteFile, [Options], [Offset] )

Parameters
LocalFile

A string that specifies the file on the local system that will be created, overwritten or appended
to. The file pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies the file on the server that will be transferred to the local system. The file
pathing and name conventions must be that of the server.

Options

An optional numeric value which specifies one or more options. This argument may be any one
of the following values:

Value Constant Description

0 httpTransferDefault This option specifies the default transfer mode should
be used. If the local file exists, it will be overwritten with
the contents of the remote file. If the Options
argument is omitted, this is the transfer mode which
will be used.

1 httpTransferConvert If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or
linefeed characters are converted to carriage
return/linefeed character sequences.

2 httpTransferCompress This option informs the server that the client is willing
to accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled by setting the
Compression property to True. This option is ignored
if the Offset parameter is non-zero.

4 httpTransferErrorData This option causes the client to accept error data from
the server if the request fails. If this option is specified,
an error response from the server will not cause the
method to fail. Instead, the response is returned to the
client and the method will succeed. If this option is
used, your application should check the ResultCode
property to obtain the HTTP status code returned by
the server. This will enable you to determine if the
operation was successful.

 



Offset

An optional integer value that specifies a byte offset into the file. If this value is greater than
zero, the server must support the ability to specify a byte range with the request to download
the file, otherwise this method will fail.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFile method copies an existing file from the server to the local system. This method will
cause the current thread to block until the file transfer completes, a timeout occurs or the transfer
is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

Specifying the httpTransferCompress option does not guarantee that the data returned by the
server will actually be compressed, it only informs the server that the client is willing to accept
compressed data. Whether or not a particular resource is compressed depends on the server
configuration, and the server may decide to only compress certain types of resources, such as text
files.

If compression has been enabled and the server returns compressed data, it will be automatically
expanded before being returned to the caller. If the application is using the OnProgress event to
determine the amount of data being returned by the server, it is important to keep in mind that
the values reflect the size of the compressed data.

See Also
Compression Property, GetData Method, PutData Method, PutFile Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFileSize Method  

 

Return the size of the specified file on the server.

Syntax
object.GetFileSize( RemoteFile, FileSize )

Parameters
RemoteFile

A string that specifies the name of the file on the server. The filename cannot contain any
wildcard characters and must follow the naming conventions of the operating system the server
is hosted on.

FileSize

A numeric variable which will be set to the size of the file on the server. Note that if the variable
is not large enough to contain the file size, an overflow error will occur. This parameter must be
passed by reference.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFileSize method uses the HEAD command to retrieve header information about the file
without downloading the contents of the file itself. This requires that the server support at least
version 1.0 of the protocol standard, or an error will be returned.

The server may not return a file size for some resources. This is typically the case with scripts that
generate dynamic content because the server has no way of determining the size of the output
generated by the script without actually executing it. The server may also not provide a file size for
HTML documents which use server side includes (SSI) because that content is also dynamically
created by the server. If the request to the server was successful and the file exists, but the server
does not return a file size, the method will succeed but the file size returned to the caller will be
zero.

When a request is made to the server for information about the file, the control will attempt to
keep the connection alive, even if the KeepAlive property has not been set to True. This allows an
application to request the file size and then download the file without having to write additional
code to re-establish the connection. However, it is possible that the attempt to keep the
connection open will fail. In that case, an error will be returned and the session will no longer be
valid. If this happens, the method may still return a valid file size. To determine if an error
occurred, check the value of the LastError property.

Note that if the file on the server is a text file, it is possible that the value returned by this method
will not match the size of the file when it is downloaded to the local system. This is because
different operating systems use different sequences of characters to mark the end of a line of text,
and when a file is transferred in text mode, the end of line character sequence is automatically
converted to a carriage return-linefeed, which is the convention used by the Windows platform.

Example
The following example demonstrates how to retrieve the size a file on the server:

Dim nFileSize As Long

 



nError = HttpClient1.GetFileSize(strFileName, nFileSize)
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

MsgBox "The size of " & strFileName & " is " & nFileSize " bytes"

See Also
GetFileTime Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFileTime Method  

 

Return the modification date and time for specified file on the server.

Syntax
object.GetFileTime( RemoteFile, FileDate )

Parameters
RemoteFile

A string that specifies the name of the file on the server. The filename cannot contain any
wildcard characters and must follow the naming conventions of the operating system the server
is hosted on.

FileDate

A variable that will be set to the date and time that the file was last modified. The variable's data
type may either be Variant, String or Date. This parameter must be passed by reference.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetFileTime method uses the HEAD command to retrieve header information about the file
without downloading the contents of the file itself. This requires that the server support at least
version 1.0 of the protocol standard, or an error will be returned.

The server may not return a modification time for some resources. If the request to the server was
successful and the file exists, but the server does not return a modification time, the method will
return an empty string.

When a request is made to the server for information about the file, the control will attempt to
keep the connection alive, even if the KeepAlive property has not been set to True. This allows an
application to request the modification time and then download the file without having to write
additional code to re-establish the connection. However, it is possible that the attempt to keep the
connection open will fail. In that case, an error will be returned and the session will no longer be
valid. If this happens, the method may still return a valid date and time. To determine if an error
occurred, check the value of the LastError property.

The Localize property will determine if the returned file time is adjusted for the local timezone.

Example
The following example demonstrates how to retrieve the size a file on the server:

Dim dateFileTime As Date

nError = HttpClient1.GetFileTime(strFileName, dateFileTime)
If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

MsgBox strFileName & " was modified on " & dateFileTime

See Also

 



Localize Property, GetFileSize Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFirstHeader Method  

 

Return the first response header field name and value.

Syntax
object.GetFirstHeader( HeaderField, HeaderValue )

Parameters
HeaderField

A string that will contain the name of the first header field returned by the server.

HeaderValue

A string that will contain the value of the specified header field when the method returns. This
parameter must be passed by reference.

Return Value
This method returns a Boolean value. If the method succeeds, it will return True. If the method
fails, it will return False.

Remarks
The GetFirstHeader method is used get the first header field name and value from the response
header returned by the server. This method should only be called after the client has requested
the resource. This method is typically used in conjunction with the GetNextHeader method to
enumerate all of the response header fields returned by the server.

See Also
HeaderField Property, HeaderValue Property, GetNextHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetHeader Method  

 

Return the value of the specified header field

Syntax
object.GetHeader( HeaderField, HeaderValue )

Parameters
HeaderField

A string that specifies the name of the header field to obtain the value for.

HeaderValue

A string that will contain the value of the specified header field with the method returns. This
parameter must be passed by reference.

Return Value
This method returns a Boolean value. If the method succeeds, it will return True. If the header field
has not been defined, it will return False.

Remarks
The GetHeader method is used get the value of a specified header field from the response
header returned by the server. This method should only be called after the client has requested
the resource. To enumerate all of the header fields returned by the server, use the
GetFirstHeader and GetNextHeader methods.

See Also
HeaderField Property, HeaderValue Property, GetNextHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetNextHeader Method  

 

Return the next response header field name and value.

Syntax
object.GetNextHeader( HeaderField, HeaderValue )

Parameters
HeaderField

A string that will contain the name of the first header field returned by the server.

HeaderValue

A string that will contain the value of the specified header field.

Return Value
This method returns a Boolean value. If the method succeeds, it will return True. If the method
fails, it will return False.

Remarks
The GetNextHeader method is used get the next header field name and value from the response
header returned by the server. This method should only be called after the client has requested
the resource. This method is used in conjunction with the GetFirstHeader method to enumerate
all of the response header fields returned by the server.

See Also
HeaderField Property, HeaderValue Property, GetFirstHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetText Method  

 

Retrieve a text resource from the server and store it in a string buffer.

Syntax
object.GetText( Resource, Buffer )

Parameters
Resource

A string that specifies the resource on the server that will be accessed. If the resource specifies a
text file, then the contents of the file will be returned to the server. If the resource specifies a
script or other executable content, it will be executed and the output will be stored in the
provided buffer.

Buffer

This parameter is passed by reference and specifies the string buffer which will contain the text
returned by the server. This parameter must be a String or Variant type which will reference a
string when the method returns. This method will not accept a byte array as an argument.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The GetText method is used to download a text file or retrieve the text output from a script and
store the contents in a string buffer. Because binary data can include embedded null characters
which would truncate the string, this method should only be used with text files or script output
which is known to be textual. For example, it is safe to use this method when the server returns
HTML or XML data, but should not be used if it returns an image or executable file. Always use the
GetData method if you wish to retrieve binary data and store it in a byte array.

The text returned by the server is automatically converted to Unicode using the code page
specified by the CodePage property. Text returned by a web server will typically use UTF-8
encoding, however some servers may return text content using their own locale. If you specify an
incorrect code page, this can result in a conversion error.

This method will always attempt to normalize the end-of-line character sequence to use a
carriage-return and linefeed (CRLF) pair. This can potentially result in a discrepancy between the
size of a text file on the server and the actual length of the string buffer.

This method will attempt to indicate to the server that only textual data is acceptable, however
some servers may ignore this constraint. If the server does return binary data in response to the
request, the string buffer may be empty or contain unprintable characters as the result of
attempting to convert the data to Unicode.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
CodePage Property, GetData Method, GetFile Method, PostData Method, PutData Method, PutFile
Method, OnProgress Event

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set httpClient = CreateObject("SocketTools.HttpClient.11")

nError = httpClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OpenFile Method  

 

Open a file on the server for reading.

Syntax
object.OpenFile( FileName )

Parameters
FileName

A string which specifies the name of the file being opened on the server. The client must have
the appropriate access rights to open the file for reading or an error will be returned. It may be
required that the UserName and Password properties be set to authenticate the client session
so that access to the resource is permitted.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The OpenFile method uses the GET command to access the file. If this method is successful, the
client should then use the Read method to read the contents of the file from the server. Once all
of the data has been read, the CloseFile method should be called to close the file and complete
the operation. If the file being opened is not an HTML or text document, then it's recommended
that you read the data into a byte array.

This method should not be used to post data to a script or other executable resource on the
server. If you wish to post data to a script, then the PostData method should be used instead.

See Also
CloseFile Method, CreateFile Method, GetData Method, GetFile Method, PostData Method, Read
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PatchData Method  

 

Submits patch data to the server and returns the result in a string buffer provided by the caller.

Syntax
object.PatchData( Resource, PatchData, Buffer, [Options] )

Parameters
Resource

A string that specifies the resource that the patch data will be submitted to. Typically this is the
name of an executable script.

PatchData

A string that contains the patch information. Typically this is XML or JSON formatted data which
contains the information that should be used to update the specified resource.

Buffer

A string or byte array that will contain the output generated by the script. Typically this is XML
or JSON content which is generated by the script as a result of processing the data that was
posted to it.

Options

An optional integer value which specifies one or more options. This argument is constructed by
using a bitwise operator with any of the following values:

Constant Description

httpPatchDefault The default patch mode. The contents of the buffer are not
encoded and the data patch data submitted to the server as
provided by the caller. The data returned by the server is copied to
the result buffer exactly as it is returned from the server.

httpPatchConvert If the data being returned from the server is textual, it is
automatically converted so that the end of line character sequence
is compatible with the Windows platform. Individual carriage return
or linefeed characters are converted to carriage return/linefeed
character sequences. Note that this option does not have any effect
on the form data being submitted to the server, only on the data
returned by the server.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PatchData method is used to submit XML or JSON formatted patch data to a service, and
then returns a copy of the response from the server into a local string buffer. This method will not
perform any encoding and will not automatically define the type of patch data being submitted.
Your application is responsible for specifying the content type for the patch data, and ensuring
that the XML or JSON data that is being submitted to the server is formatted correctly.

This method sends a PATCH command to the server, which is similar to a POST or PUT request. It
is used to make partial updates to a resource, rather than creating or replacing it entirely. The

 



format of the patch data is specific to the service being used. If the resource being patched does
not exist, the behavior is defined by the server. If enough information is provided, it may choose to
create the resource just as if a PUT command was used, or it may return an error.

Your application should use the SetHeader method to define the Content-Type header prior to
calling the PatchData method. One of the most common formats used is the JSON Merge Patch
which is defined in RFC 7396. The value for the Content-Type header for this patch format is
"application/merge-patch+json". Refer to your service API documentation to determine what
patch formats are acceptable, along with any additional header values that must be defined.

This method will cause the current thread to block until the operation completes, a timeout occurs
or the post is canceled. During the operation, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

See Also
GetData Method, PostData Method, PutFile Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PostData Method  

 

Submits the contents of the specified buffer to a script on the server.

Syntax
object.PostData( Resource, ResourceData, Buffer, [Options] )

Parameters
Resource

A string that specifies the resource that the data will be posted to on the server. Typically this is
the name of an executable script.

ResourceData

A string or byte array that contains the data which will be provided to the script. If the script
expects binary data, it is recommended that a byte array be used.

Buffer

A string or byte array that will contain the output generated by the script. Typically this is HTML
content which is generated by the script as a result of processing the data that was posted to it.

Options

An optional integer value which specifies one or more options. This argument is constructed by
using a bitwise operator with any of the following values:

Value Constant Description

0 httpPostDefault The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data
returned by the server is copied to the result buffer exactly
as it is returned from the server.

1 httpPostConvert If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

2 httpPostMultipart The contents of the buffer being sent to the server consists
of multipart form data. This causes the Content-Type
request header field to be set to multipart/form-data and
the contents of the buffer will be sent as-is without any
encoding.

4 httpPostErrorData This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the method to fail.
Instead, the response is returned to the client and the
method will succeed.

Return Value

 



A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PostData method uses the POST command to submit the contents of the specified buffer to
a script on the server and returns the result in a string or byte array provided by the caller. This
method will cause the current thread to block until the operation completes, a timeout occurs or
the post is canceled. During the operation, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the httpPostErrorData option which
causes the error message to be returned in the Buffer provided by the caller. If this option is used,
your application should check the value of the ResultCode property to obtain the HTTP status
code returned by the server. This will enable you to determine if the operation was successful.

If you need to submit XML formatted data to the server for processing, it is recommended that
you use the PostXml method. There is also a PostJson method for submitting JSON formatted
data. Both methods ensure that the data is sent to the server using the correct content type and
encoding.

See Also
GetData Method, GetFile Method, PatchData Method, PostFile Method, PostJson Method, PostXml
Method, PutData Method, PutFile Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PostFile Method  

 

Post the contents of the specified file to a script executed on the server.

Syntax
object.PostFile( LocalFile, Resource, [FieldName], [Options] )

Parameters
LocalFile

A string that specifies the file on the local system that will be transferred to the server. The file
pathing and name conventions must be that of the local host.

Resource

A string that specifies the resource that the data will be posted to on the server. Typically this is
the name of an executable script.

FieldName

An optional string argument that specifies the form field name that the script expects. If this
argument is omitted or is an empty string, a default field name of "File1" is used.

Options

A numeric value which specifies one or more options. This argument may be any one of the
following values:

Value Constant Description

0 httpTransferDefault This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with the
contents of the uploaded file.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PostFile method posts the contents of a file to a script that is executed on the server. This
method will cause the current thread to block until the file transfer completes, a timeout occurs or
the transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

This method is similar to the PutFile method in that it can be used to upload the contents of a
local file to a server. However, instead of using the PUT command, the POST command is used to
send the file data to a script that is executed on the server. This method has the advantage of not
requiring any special configuration settings on the server, however it does require that the script
be able to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the
action that specifies the script that will accept the file data and process it. For example, the HTML
code could look like this:

<form action="/cgi-bin/upload.cgi" method="post" enctype="multipart/form-
data">
<input type="file" name="datafile" size="20">
<input type="submit">

 



</form>

In this example, the script /cgi-bin/upload.cgi is responsible for processing the file data that is
posted by the client, and the form field name "datafile" is used. The user can select a file, and
when the Submit button is clicked, the file data is posted to the script. To simulate this using the
PostFile method, the LocalFile argument should be set to the name of the local file that will be
posted to the server. The Resource argument should be the name of the script, in this case "/cgi-
bin/upload.cgi". The FieldName argument should be specified as the string "datafile" to match the
name of the field used by the form.

Note that the PostFile function always submits the file contents as multipart/form-data with the
content type set to application/octet-stream. The script that accepts the posted data must be able
to parse the multipart header block and correctly process 8-bit data. If the script assumes that the
data will be posted using a specific encoding type such as base64, then the file data may not be
accepted or may be corrupted by the script.

See Also
GetData Method, GetFile Method, PostData Method, PutData Method, PutFile Method,
OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PostJson Method  

 

Submits JSON formatted data to the server and returns the result in a buffer provided by the
caller.

Syntax
object.PostJson( Resource, JsonData, Buffer, [Options] )

Parameters
Resource

A string that specifies the resource that the data will be posted to on the server. Typically this is
the name of an executable script.

XmlData

A string that contains the JSON formatted data which will be provided to the script.

Buffer

A string or byte array that will contain the output generated by the script. Typically this is HTML
content which is generated by the script as a result of processing the data that was posted to it.

Options

An optional integer value which specifies one or more options. This argument is constructed by
using a bitwise operator with any of the following values:

Value Constant Description

0 httpPostDefault The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data
returned by the server is copied to the result buffer exactly
as it is returned from the server.

1 httpPostConvert If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

4 httpPostErrorData This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the method to fail.
Instead, the response is returned to the client and the
method will succeed.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PostJson method is used to submit JSON formatted data to a script that executes on the
server and then copy the output from that script into a local buffer. This function automatically

 



sets the correct content type and encoding required for submitting JSON data to a server,
however it does not parse the JSON data itself to ensure that it is well-formed. Your application is
responsible for ensuring that the JSON data that is being submitted to the server is formatted
correctly.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the httpPostErrorData option which
causes the error message to be returned in the Buffer provided by the caller. If this option is used,
your application should check the value of the ResultCode property to obtain the HTTP status
code returned by the server. This will enable you to determine if the operation was successful.

This method will cause the current thread to block until the operation completes, a timeout occurs
or the post is canceled. During the operation, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

See Also
GetData Method, GetFile Method, PostData Method, PostFile Method, PostXml Method, PutData
Method, PutFile Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PostXml Method  

 

Submits XML formatted data to the server and returns the result in a buffer provided by the caller.

Syntax
object.PostXml( Resource, XmlData, Buffer, [Options] )

Parameters
Resource

A string that specifies the resource that the data will be posted to on the server. Typically this is
the name of an executable script.

XmlData

A string that contains the XML formatted data which will be provided to the script.

Buffer

A string or byte array that will contain the output generated by the script. Typically this is HTML
content which is generated by the script as a result of processing the data that was posted to it.

Options

An optional integer value which specifies one or more options. This argument is constructed by
using a bitwise operator with any of the following values:

Value Constant Description

0 httpPostDefault The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data
returned by the server is copied to the result buffer exactly
as it is returned from the server.

1 httpPostConvert If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

4 httpPostErrorData This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the method to fail.
Instead, the response is returned to the client and the
method will succeed.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PostXml method is used to submit XML formatted data to a script that executes on the server
and then copy the output from that script into a local buffer. This function automatically sets the
correct content type and encoding required for submitting XML data to a server, however it does

 



not parse the XML data itself to ensure that it is well-formed. Your application is responsible for
ensuring that the XML data that is being submitted to the server is formatted correctly.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the httpPostErrorData option which
causes the error message to be returned in the Buffer provided by the caller. If this option is used,
your application should check the value of the ResultCode property to obtain the HTTP status
code returned by the server. This will enable you to determine if the operation was successful.

This method will cause the current thread to block until the operation completes, a timeout occurs
or the post is canceled. During the operation, the OnProgress event will fire periodically, enabling
the application to update any user interface objects such as a progress bar.

See Also
GetData Method, GetFile Method, PostData Method, PostFile Method, PostJson Method, PutData
Method, PutFile Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutData Method  

 

Transfer data from a local buffer to the server.

Syntax
object.PutData( Resource, Buffer, [Length], [Reserved] )

Parameters
Resource

A string that specifies the resource on the server that will receive the data being transferred. If
the resource is a file on the server, the contents will be replaced with the data provided in the
buffer.

Buffer

This parameter specifies the local buffer that the data will be copied from. If the variable is a
String type, then the data will be written as a string of characters. This is the most appropriate
data type to use if the file on the server is a text file. If the remote file should contain binary
data, it is recommended that a Byte array variable be specified as the argument to this method.

Length

An optional integer argument that specifies the amount of data to be copied from the buffer. If
this argument is omitted, the entire contents of the buffer is transferred to the server.

Reserved

An argument reserved for future expansion. This argument should always be omitted or
specified as a numeric value of zero.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PutData method transfers data from a local buffer and submits to the server using the PUT
command. If a String variable is used for the buffer, the text will be automatically UTF-8 encoded
before it is submitted to the server. If you need to submit binary data, you should always use a
Byte array as the buffer rather than a String. If you need to use something other than UTF-8
encoding, use the PutText method in combination with the CodePage parameter to specify an
alternate encoding.

Not all servers will accept data submitted using this method, and some may require that specific
configuration changes be made to the server in order to support the PUT command. Consult your
server's technical reference documentation to see if it supports the PUT command, and if so, what
must be done to enable it. It may be required that the client authenticate itself by setting the
UserName and Password properties prior to uploading the data.

If the Buffer parameter is a String type, this method presumes that it only contains text and will
automatically convert the contents to UTF-8 encoded text. If the string contains binary data, this
encoding can corrupt the data. To prevent this conversion, convert the string to a byte array using
the StrConv function.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

 



See Also
GetData Method, GetFile Method, PostData Method, PutFile Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutFile Method  

 

Copy a file from the local system to the server.

Syntax
object.PutFile( LocalFile, RemoteFile, [Options], [Offset] )

Parameters
LocalFile

A string that specifies the file on the local system that will be transferred from the local system.
The file pathing and name conventions must be that of the local host.

RemoteFile

A string that specifies the file on the server that will be created or overwritten. The file pathing
and name conventions must be that of the server.

Options

An optional numeric value which specifies one or more options. This argument may be any one
of the following values:

Value Constant Description

0 httpTransferDefault This option specifies the default transfer mode should be
used. If the local file exists, it will be overwritten with the
contents of the remote file. If the Options argument is
omitted, this is the transfer mode which will be used.

Offset

An optional byte offset which specifies where the file transfer should begin. The default value of
zero specifies that the file transfer should start at the beginning of the file. A value greater than
zero is typically used to restart a transfer that has not completed successfully.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PutFile method is used to transfer a file from the local system to a server using the PUT
command. Not all servers permit files to be uploaded using this method, and some may require
that specific configuration changes be made to the server in order to support this functionality.
Consult your server's technical reference documentation to see if it supports the PUT command,
and if so, what must be done to enable it. It may be required that the client authenticate itself by
setting the UserName and Password properties prior to uploading the file.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
GetData Method, GetFile Method, PostFile Method, PutData Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 PutText Method  

 

Submit the contents of a string buffer to the server.

Syntax
object.PutText( RemoteFile, Buffer )

Parameters
RemoteFile

A string that specifies the name of a file on the server that will be downloaded. The file pathing
and name conventions must be that of the server.

Buffer

A string which contains the text to be stored on the server. This method will not accept a Byte
array as an argument.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PutText method is used to submit the contents of a string to the server using the PUT
command. Although a String variable may contain binary data, this method should only be used
with strings which contain printable text. Always use the PutData method if you wish to submit
binary data, using a Byte array instead of a String variable.

 Not all servers will accept data submitted using this method, and some may require that specific
configuration changes be made to the server in order to support the PUT command. Consult your
server's technical reference documentation to see if it supports the PUT command, and if so, what
must be done to enable it. It may be required that the client authenticate itself by setting the
UserName and Password properties prior to uploading the data

The text submitted to the server is automatically converted from Unicode using the code page
specified by the CodePage property. By default, text will be automatically converted to use UTF-8
encoding, however you can change this if you prefer to send the data using a different localized
encoding. In most cases it is recommended you use UTF-8 to ensure the broadest compatibility
with other applications.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
CodePage Property, FileType Property, GetData Method, GetText Method, PutData Method,
OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/http/control/property/filetype.html


 Read Method  

 

Return data read from the server.

Syntax
object.Read( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, a Byte array
should be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the server is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will wait until data is returned by the server
or the connection is closed.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Read method.
When you provide a String variable as the buffer, the control will process the data as
text. Binary characters may be interpreted as UTF-8 encoding and embedded null
characters will corrupt the data. Reading the data into a byte array ensures that you
receive the data exactly as it was sent by the server.

See Also
IsConnected Property, IsReadable Property, Write Method, OnRead Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

The Reset and Uninitialize methods will abort all active background transfers and wait for those
tasks to complete before returning to the caller. It is recommended that your application explicitly
wait for background transfers to complete or abort them using this method before allowing the
program to terminate. This will ensure that your program can perform any necessary cleanup
operations. If there are active background tasks running at the time that the control instance is
destroyed, it can force the control to stop those worker threads immediately without waiting for
them to terminate gracefully.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SetCookie Method  

 

Send the specified cookie to the server when a resource is requested.

Syntax
object.SetCookie( CookieName, CookieValue )

Parameters
CookieName

A string which specifies the name of the cookie that is to be sent to the server when the next
resource is requested.

CookieValue

A string which specifies the value of the cookie. To delete a cookie that has been previously set,
this parameter should be an empty string.

Return Value
This method returns a Boolean value. A value of true is returned if the cookie has been set.
Otherwise, a value of false is returned, which indicates that the cookie could not be created.

Remarks
The SetCookie method submits the cookie name and value to the server when a resource is
requested or data is posted to a script. For more information about cookies and how they are
used, refer to the GetCookie method.

See Also
CookieCount Property, CookieName Property, CookieValue Property, GetCookie Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SetHeader Method  

 

Set the value of a request header field.

Syntax
object.SetHeader HeaderField, HeaderValue

Parameters
HeaderField

A string that specifies the name of the request header field.

HeaderValue

A string that specifies the value associated with the given header field. If this argument is set to
an empty string, the field is deleted from the request header.

Return Value
This method returns a Boolean value. If the method succeeds, it will return True. If the header field
cannot be created or modified, it will return False.

Remarks
The SetHeader method is used to set the values of specific fields in the HTTP request header. This
method should be called before the client has requested the resource. Some headers are
automatically generated by methods that send resource requests. Some of these are supplied by
the requesting methods only if the application has not previously defined the header. For others,
the requesting method overrides what the application may have defined. The affected headers
include:

The Accept header value is generated with a value of */* for most requests unless it has
already been assigned. This tells the server that the client will accept all content types.
Changing this header may cause requests to fail if the resource does not return a data type
that matches the specified value.

The Authorization header value is generated automatically if authentication has been
specified. Applications should not modify this header value directly, set the UserName and
Password properties instead.

The Connection header value is generated in accordance with the settings of the
KeepAlive property and the version of the HTTP protocol being used. This header is not
used with HTTP 1.0 connections that do not support persistent client sessions.

The Content-Length header value is generated automatically for POST and PUT requests.
Applications should not modify this header value directly.

The Content-Type header value is generated with a value of application/x-www-form-
urlencoded for POST requests unless the EncodingProperty has been set to prevent URL-
encoding of data. If a file is being uploaded using the PUT method, the header value is set
according to the type of data that is being sent to the server. Applications should not
modify this header value directly.

The Host header value is assigned the host name of the server that was specified when the
connection was established. It is not recommended that applications change this header
value because it may yield unexpected results on servers that use virtual hosting.

 



The Proxy-Authorization header value is generated for proxy connections which a
username and password has been specified. Applications should not modify this header
value directly, set the ProxyUser and ProxyPassword properties instead.

See Also
HeaderField Property, HeaderValue Property, GetFirstHeader Method, GetHeader Method,
GetNextHeader Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SubmitForm Method  

 

Submits the current form to the server for processing.

Syntax
object.SubmitForm( Buffer, [Length], [Options] )

Parameters
Buffer

A string or byte array that will contain the output generated by the script. Typically this is HTML
content which is generated by the script as a result of processing the data that was posted to it.

Length

An optional integer variable which specifies the maximum number of characters or bytes to be
copied into the buffer. This variable will be updated with the actual number of characters or
bytes copied when the method returns.

Options

An optional integer value which specifies one or more options. This argument is constructed by
using a bitwise operator with any of the following values:

Constant Description

httpSubmitDefault The default submission mode. The contents of the buffer are
encoded and sent as standard form data. The data returned by
the server is copied to the result buffer exactly as it is returned
from the server.

httpSubmitConvert If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform. Individual
carriage return or linefeed characters are converted to carriage
return/linefeed character sequences. Note that this option does
not have any effect on the form data being submitted to the
server, only on the data returned by the server.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The SubmitForm method submits the current form data to a script on the server and returns the
result in a string or byte array provided by the caller. This method will cause the current thread to
block until the operation completes, a timeout occurs or the post is canceled. During the
operation, the OnProgress event will fire periodically, enabling the application to update any user
interface objects such as a progress bar.

Example
HttpClient1.CreateForm "/login/php", httpMethodPost, httpFormEncoded
HttpClient1.AddField "UserName", strUserName
HttpClient1.AddField "Password", strPassword

nError = HttpClient1.SubmitForm(strResult)

 



If nError > 0 Then
    MsgBox HttpClient1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
AddField Method, AddFile Method, CreateForm Method, DeleteField Method, SubmitForm
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskAbort Method  

 

Abort the specified asynchronous task.

Syntax
object.TaskAbort ( [TaskId], [Milliseconds] )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Milliseconds

An optional integer value that specifies the number of milliseconds to wait for the background
task to abort.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The TaskAbort method signals the background worker thread associated with the task ID to abort
the current operation and terminate as soon as possible. If the TaskId parameter is omitted, this
method will abort all active background file transfers, otherwise it will only abort the specified task.
If the Milliseconds parameter is omitted or has a value of zero, the method returns immediately
after the background thread has been signaled. If the Milliseconds parameter is non-zero, the
method will wait that amount of time for the background thread to terminate.

The Reset and Uninitialize methods will abort all active background transfers and wait for those
tasks to complete before returning to the caller. It is recommended that your application explicitly
wait for background transfers to complete or abort them using this method before allowing the
program to terminate. This will ensure that your program can perform any necessary cleanup
operations. If there are active background tasks running at the time that the control instance is
destroyed, it can force the control to stop those worker threads immediately without waiting for
them to terminate gracefully.

See Also
TaskCount Property, TaskList Property, TaskDone Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskDone Method  

 

Determine if an asynchronous task has completed.

Syntax
object.TaskDone ( [TaskId] )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
A Boolean value that specifies if the task has completed. A return value of True specifies that the
background task has completed. A return value of False specifies that the background task is
active.

Remarks
The TaskDone method is used to determine if the specified asynchronous task has completed. If
the TaskId parameter is omitted, the method will check the status of the last background task that
was started.

If you use this method to poll the status of a background task from within the main UI thread, you
must ensure that Windows messages are processed so that the application remains responsive to
the end-user. To check if a background transfer has completed, it is recommended that you use a
timer to periodically call this method rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the TaskWait method will provide the last error
code associated with the task. Note that if this method returns True, it is guaranteed that calling
TaskWait using the same task ID will return the error code to the caller immediately without
causing the application to block.

See Also
TaskCount Property, TaskId Property, TaskList Property, TaskAbort Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskResume Method  

 

Resume execution of an asynchronous task.

Syntax
object.TaskResume ( TaskId )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The TaskResume method resumes execution of the background worker thread that was
previously suspended using the TaskSuspend method. If the TaskId parameter is omitted, the
method will resume execution of the last background task that was started.

See Also
TaskId Property, TaskSuspend Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskSuspend Method  

 

Suspend execution of an asynchronous task.

Syntax
object.TaskSuspend ( TaskId )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The TaskSuspend method will suspend execution of the background worker thread associated
with the task. If the TaskId parameter is omitted, the method will suspend the last background task
that was started.

Once the task has been suspended, it will no longer be scheduled for execution, however the
client session will remain active and the task may be resumed using the TaskResume method.
Note that if a task is suspended for a long period of time, the background operation may fail
because it has exceeded the timeout period imposed by the server.

See Also
TaskId Property, TaskResume Method, TaskWait Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TaskWait Method  

 

Wait for an asynchronous task to complete.

Syntax
object.TaskWait ( [ TaskId ], [ Milliseconds ], [ TimeElapsed ], [ TaskError ] )

Parameters
TaskId

An optional integer value that specifies the unique identifier associated with a background task.

Milliseconds

An optional integer value that specifies the number of milliseconds to wait for the background
task to complete.

TimeElapsed

An optional integer value passed by reference that will contain the elapsed time for the task in
milliseconds when the method returns. If this information is not required, this parameter may be
omitted. This parameter is ignored if the TaskId parameter is omitted.

TaskError

An optional integer value passed by reference that will contain the last error code for the task
when the method returns. If this information is not required, this parameter may be omitted.
This parameter is ignored if the TaskId parameter is omitted.

Return Value
A Boolean value that specifies if the task has completed. A return value of True specifies that the
background task has completed. A return value of False specifies that the background task is
active.

Remarks
The TaskWait method waits for the specified task to complete. If the TaskId parameter is omitted,
this method will wait for all active tasks to complete. If a task ID is specified and the Milliseconds
parameter is non-zero, this method will cause the current working thread to block until the task
completes or the amount of time exceeds the number of milliseconds specified by the caller. If the
Milliseconds parameter is zero, then this function will poll the status of the task and return
immediately to the caller. If the Milliseconds parameter is omitted, then the method will wait an
infinite period of time for the task to complete.

If the specified task has already completed at the time this method is called, the method will return
immediately without causing the current thread to block. If the TimeElapsed parameter has been
specified, it will contain the number of milliseconds that it took for the task to complete. If the
TaskError parameter has been specified, it will contain the last error code value that was set by the
worker thread before it terminated. If the TaskError value is zero, that means that the background
task was successful and no error occurred. A non-zero value will indicate that the background task
has failed.

You should not call this method from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this method is
blocked waiting for the background task to complete, and this can cause your application to
appear non-responsive to the end-user. If you have a GUI application and you need to determine
if a background task has finished, create a timer to periodically call the TaskDone method. When
it returns True (indicating that the task has completed), you can safely call TaskWait to obtain the

 



elapsed time and last error code without blocking the current thread.

See Also
TaskCount Property, TaskList Property, TaskAbort Method, TaskDone Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

The Reset and Uninitialize methods will abort all active background transfers and wait for those
tasks to complete before returning to the caller. It is recommended that your application explicitly
wait for background transfers to complete or abort them using this method before allowing the
program to terminate. This will ensure that your program can perform any necessary cleanup
operations. If there are active background tasks running at the time that the control instance is
destroyed, it can force the control to stop those worker threads immediately without waiting for
them to terminate gracefully.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the server.

Syntax
object.Write( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the server is
expecting binary data, you should use a Byte array instead.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the server, or -1 if an error was
encountered.

Remarks
The Write method sends the data in buffer to the server. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is blocking, the application will wait until the data can be sent. If the control
is non-blocking and the write fails because it could not send all of the data to the server, the
OnWrite event will be fired when the server can accept data again.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Write method.
When you provide a String variable as the buffer, the control will process the data as
text. If the string contains Unicode characters, it will automatically be converted to
UTF-8 (8-bit) encoded text prior to being written. Using a byte array ensures that
binary data will be sent as-is without being encoded.

See Also
IsConnected Property, IsWritable Property, Timeout Property, Read Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Hypertext Transfer Protocol Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnCommand This event is generated when the server processes a command issued by the client

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnProgress This event is generated during data transfer

OnRead This event is generated when data is available to be read

OnRedirect This event is generated when the server indicates a resource has been moved

OnTaskBegin This event is generated when a background task begins

OnTaskEnd This event is generated when a background task completes

OnTaskRun This event is generated while a background task is active

OnTimeout This event is generated when a blocking operation times out

OnWrite This event is generated when data can be written to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCommand Event  

 

The OnCommand event is generated when the client sends a command to the server and
receives a reply indicating the results of that command.

Syntax
Sub object_OnCommand( [Index As Integer], ByVal ResultCode As Variant, ByVal ResultString
As Variant )

Remarks
The OnCommand event is generated when the client receives a reply from the server after some
action has been taken. The ResultCode argument contains the numeric result code returned by
the server. The result codes returned from the server fall into one of the following categories:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being
initiated, and the client should expect another reply from the server before
proceeding.

200-
299

Positive completion result. This indicates that the server has successfully
completed the requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot
complete until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action
did not take place, but the error condition is temporary and may be attempted
again.

500-
599

Permanent negative completion result. This indicates that the requested action
did not take place.

The ResultString argument contains the descriptive string returned by the server which describes
the result. The string contents may vary depending on the type of server.

See Also
ResultCode Property, ResultString Property, Command Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a server as a result of a
Connect method call. This event is only triggered when the Blocking property is set to False.

See Also
Blocking Property, Connect Method, OnDisconnect Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server. This
event is only triggered when the Blocking property is set to False.

When the OnDisconnect event fires, it is possible that there may still be buffered data available to
read from the server. Before disconnecting from the server, the application should attempt to read
any remaining data until the Read method returns a value of zero, or returns an error indicating
that the operation would block.

See Also
Blocking Property, IsConnected Property, IsReadable Property, Connect Method, Disconnect
Method, Read Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnProgress Event  

 

The OnProgress event is generated during data transfer.

Syntax
Sub object_OnProgress ( [Index As Integer], ByVal BytesTotal As Variant, ByVal BytesCopied
As Variant, ByVal Percent As Variant )

Remarks
The OnProgress event is generated during the transfer of data between the client and server,
indicating the amount of data exchanged. For transfers of large amounts of data, this event can be
used to update a progress bar or other user-interface control to provide the user with some visual
feedback. The arguments to this event are:

BytesTotal

A value that specifies the total amount of data being transferred in bytes. This value may be
zero if the control cannot determine the total amount of data that will be copied. If the total
number of bytes is less than 2 GiB, the value will be a Long (32-bit) integer. For very large
transfers, it will be a Double floating-point value.

BytesCopied

A value that specifies the number of bytes that have been transferred between the client and
server. If the number of bytes copied is less than 2 GiB, the value will be a Long (32-bit) integer.
For very large transfers, it will be a Double floating-point value.

Percent

The percentage of data that's been transferred, expressed as an integer value between 0 and
100, inclusive. If the size of the file on the server cannot be determined, this value will always be
100.

This event is only generated when data is transferred using the GetData, GetFile, PostData,
PostFile, PutData or PutFile methods. If the client is reading or writing the file data directly to the
server using the Read or Write methods then the application is responsible for calculating the
completion percentage and updating any user interface controls.

See Also
TransferBytes Property, TransferRate Property, TransferTime Property, GetData Method, GetFile
Method, PostData Method, PostFile Method, PutData Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ([Index As Integer] )

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only triggered when the Blocking
property is set to False.

See Also
IsReadable Property, Read Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRedirect Event  

 

The OnRedirect event is generated when the server indicates a resource has been moved

Syntax
Sub object_OnRedirect ( [Index As Integer,] ByVal Resource As Variant)

Remarks
This event is generated when the server indicates that the requested resource has been moved to
a new location. This new location is typically on the same server, however it may specify another
server. The Resource argument specifies the new location.

If the AutoRedirect property is set to True, then the control will automatically retrieve the
resource from its new location. If the property is set to False, then the application is responsible for
handling the redirection.

See Also
AutoRedirect Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTaskBegin Event  

 

The OnTaskBegin event occurs when a background task starts.

Syntax
Sub object_OnTaskBegin ( [Index As Integer], ByVal TaskId As Variant )

Remarks
The OnTaskBegin event is generated when a background task associated with an asynchronous
file transfer begins running. The arguments to this event are:

TaskId

An integer value that uniquely identifies the background task.

This event can be used in conjunction with the OnTaskEnd event to monitor one or more
background tasks that are created to perform asynchronous file transfers. The task ID passed to
this event can be used to uniquely identify the task and corresponds to the worker thread that has
been created to manage the client session. The application should consider the ID to be an
opaque value and never make assumptions about how an ID is assigned to a background task.

See Also
AsyncGetFile Method, AsyncPutFile Method, OnTaskEnd Event, OnTaskRun Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTaskEnd Event  

 

The OnTaskEnd event occurs when a background task completes.

Syntax
Sub object_OnTaskEnd ( [Index As Integer], ByVal TaskId As Variant, ByVal TimeElapsed As
Variant, ByVal ErrorCode As Variant )

Remarks
The OnTaskEnd event is generated when a file transfer completes and the background task has
terminated. The arguments to this event are:

TaskId

An integer value that uniquely identifies the background task.

TimeElapsed

An integer value that specifies the amount of elapsed time in milliseconds.

ErrorCode

An integer value that specifies the last error code for the task.

This event can be used in conjunction with the OnTaskBegin event to monitor one or more
background tasks that are created to perform asynchronous file transfers. The TimeElapsed
parameter will specify the number of milliseconds that the background task was active. The
ErrorCode parameter specifies the last error code associated with the background task. If this
value is zero, that indicates that the task completed successfully. A non-zero value indicates that
the task failed and the error code value identifies why the task failed.

See Also
AsyncGetFile Method, AsyncPutFile Method, OnTaskBegin Event, OnTaskRun Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTaskRun Event  

 

The OnTaskRun event occurs while a background task is active.

Syntax
Sub object_OnTaskRun ( [Index As Integer], ByVal TaskId As Variant, ByVal TimeElapsed As
Variant, ByVal Completed As Variant )

Remarks
The OnTaskRun event is generated periodically during a file transfer while the background task is
active. The arguments to this event are:

TaskId

An integer value that uniquely identifies the background task.

TimeElapsed

An integer value that specifies the amount of elapsed time in milliseconds.

Completed

An integer value that specifies an estimated percentage of completion.

The rate and number of times that this event will be generated depends on the task being
performed. This event is generally analogous to the OnProgress event for file transfers that are
performed in the current working thread, however the OnTaskRun event will occur for each
individual background task that is active. The TimeElapsed parameter specifies the amount of time
that the task has been active, and the Completed parameter specifies an estimated percentage of
completion. This can be used to update the user interface if needed, however it is the application's
responsibility to determine which UI component (such as a ProgressBar control) is associated with
a particular task.

See Also
AsyncGetFile Method, AsyncPutFile Method, OnTaskBegin Event, OnTaskEnd Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property. This event is only triggered when the Blocking property is
set to True.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ( [Index As Integer] )

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
triggered when the Blocking property is set to False.

See Also
IsWritable Property, Read Method, Write Method, OnConnect Event, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Hypertext Transfer Server Control

Implements a server that enables the application to send and receive files using the Hypertext
Transfer Protocol.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name HttpServerCtl.HttpServer

File Name CSHTSX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.HttpServer.11

ClassID 95A2302E-2F22-49AC-A158-5D175C89C64C

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 1945, RFC 2616, RFC 3875

Overview
This ActiveX control provides an interface for implementing an embedded, lightweight server that
can be used to provide access to documents and other resources using the Hypertext Transfer
Protocol. The server can accept connections from any standard web browser, third-party
applications or programs developed using the SocketTools HTTP client API.

The application specifies an initial server configuration and then responds to events that are
generated when the client sends a request to the server. An application may implement only
minimal handlers for most events, in which case the default actions are performed for most
standard HTTP commands. However, an application may also use the event mechanism to filter
specific commands or to extend the protocol by providing custom implementations of existing
commands or add entirely new commands.

The server includes support for CGI scripting, virtual hosting, client authentication and the creation
of virtual directories and files. The server also supports secure connections using SSL/TLS. Secure
connections require that a valid SSL certificate be installed on the system.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the



desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Hypertext Transfer Server Control Properties  

 

Property Description

AdapterAddress Returns the IP address associated with the specified network adapter

AdapterCount Returns the number of available local and remote network adapters

CertificateName Gets and sets the common name for the server certificate

CertificatePassword Gets and sets the password associated with the server certificate

CertificateStore Gets and sets the name of the server certificate store or file

CertificateUser Gets and sets the user that owns the server certificate

ClientAccess Gets and sets the access rights that have been granted to the client session

ClientAddress Return the Internet address of the current client connection

ClientCount Return the number of active client sessions connected to the server

ClientHost Return the host name that the client used to establish the connection

ClientId Return the unique identifier for the active client session

ClientIdle Get and set the idle timeout period for the active client session

ClientPort Return the port number allocated by the active client connection

ClientUser Return the user name associated with the specified client session

CommandLine Return the complete command line issued by the client

Directory Get and set the full path to the root directory assigned to the server

ExecTime Get and set maximum number of seconds that the server will permit an external command to execute

ExternalAddress Return the external IP address for the local system

HiddenFiles Determine if the server should permit access to hidden files

Identity Gets and sets a string that identifies the server to the client

IdleTime Gets and sets the maximum number of seconds a client can be idle before the server terminates the session

IsActive Determine if the server has been started

IsAuthenticated Determine if the active client session has been authenticated

IsInitialized Determine if the server has been initialized

IsListening Determine if the server is listening for client connections

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error that occurred

LocalPath Return the full path to the local file or directory that is the target of the current request

LocalUser Determines if the server should perform user authentication using the Windows local account database

LockFiles Determines if files should be exclusively locked when a client attempts to upload or download a file

LogFile Gets and sets the name of the server log file

LogFormat Gets and sets the format used when updating the server log file

LogLevel Gets and sets the level of detail included in the server log file

MaxClients Gets and sets the maximum number of clients that are permitted to connect to the server

MemoryUsage Gets the amount of memory allocated for the server and all client sessions

MultiUser Determine if the server should be started in multi-user mode

NoIndex Determine if the server should search for a default index page

Options Gets and sets the options used when creating an instance of the server

Priority Gets and sets the priority assigned to the server

 



ReadOnly Determine if the server should prevent clients from uploading files

Restricted Determine if the server should be started in restricted mode, limiting client access to the server

Secure Determine if the server should accept secure client connections

ServerAddress Gets and sets the address that will be used by the server to listen for connections

ServerName Gets and sets the fully qualified domain name for the server

ServerPort Gets and sets the port number that will be used by the server to listen for connections

ServerUuid Gets and sets the Universally Unique Identifier (UUID) associated with the server

StackSize Gets and sets the size of the stack allocated for threads created by the server

ThrowError Enable or disable error handling by the container of the control

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

Version Return the current version of the object

VirtualPath Return the virtual path to the local file or directory that is the target of the current command

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AdapterAddress Property  

 

Returns the IP address associated with the specified network adapter.

Syntax
object.AdapterAddress(Index)

Remarks
The AdapterAddress property array returns the IP addresses that are associated with the local
network or remote dial-up network adapters configured on the system. The AdapterCount
property can be used to determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and
dial-up adapters will not be listed in a specific order. An application should not make the
assumption that the address returned by AdapterAddress(0) always refers to a local network
adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will return the IP address allocated for that
connection.

When using Visual Studio .NET, you must use the accessor method get_AdapterAddress instead
of the property name, otherwise an error will be returned indicating that it not a member of the
control class.

Data Type
String

See Also
AdapterCount Property, ServerAddress Property, ServerName Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AdapterCount Property  

 

Returns the number of available local and remote network adapters.

Syntax
object.AdapterCount

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress
property array to enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will returned IP address allocated for that
connection.

Data Type
Integer (Int32)

See Also
AdapterAddress Property, ServerAddress Property, ServerName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the server certificate.

Syntax
object.CertificateName [= name ]

Remarks
The CertificateName property sets the common name or friendly name of the server certificate
that should be used with secure SSL/TLS connections. The certificate must be designated as a
server certificate and have a private key associated with it, otherwise the server will be unable to
create the security context for the client session. This property value is only used if security has
been enabled by setting the Secure property to True.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property, ServerName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the server certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the server certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the server certificate that should
be used when accepting secure client connections. The certificate may either be stored in the
registry or in a file. If the certificate is stored in the registry, then this property should be set to one
of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the certificate will be installed in the user's personal certificate store, and therefore it
is not necessary to set this property value because that is the default location that will be used to
search for the certificate. This property is only used if the CertificateName property is also set to
a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the server certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the server certificate. If this property is not set,
the certificate store for the current user will be used when searching for the certificate. If this
property is used to specify another user, the process must have the appropriate permission to
access the registry location that contains the client certificate. On Windows Vista and later versions
of the operating system, this requires that the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientAccess Property  

 

Gets and sets the access rights that have been granted to the client session.

Syntax
object.ClientAccess [ = accessflags ]

Remarks
The ClientAccess property is used to determine all of the access permissions that are currently
granted to an authenticated client session and optionally change those permissions. For a list of
user access rights that can be granted to the client, see User and File Access Constants.

When modifying the value of this property, it is recommended that you use bitwise OR and AND
operands to set and clear specific bitflags. The exception is when using the httpAccessDefault
permission. If you wish to reset the client session to use the default permissions based on the
server configuration and client authentication, then you should assign this value directly to the
ClientAccess property.

This property should only be accessed within an event handler such as OnCommand because its
value is specific to the client session that raised the event. This property will always return a value
of zero outside of an event handler, and an exception will be raised if you attempt to modify this
property outside of an event handler.

Data Type
Integer (Int32)

Example
' Allow the client to execute registered programs
HttpServer1.ClientAccess = HttpServer1.ClientAccess Or httpAccessExecute

' Prevent the client from listing files
HttpServer1.ClientAccess = HttpServer1.ClientAccess And Not httpAccessList

See Also
AddUser Method, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html


 ClientAddress Property  

 

Return the Internet address of the current client connection.

Syntax
object.ClientAddress

Remarks
The ClientAddress property returns the address of the current client session which has connected
to the server. This property should only be accessed within an event handler such as OnConnect
because its value is specific to the client session that raised the event. This property will always
return an empty string when accessed outside of an event handler.

Data Type
String

See Also
ClientHost Property, ClientPort Property, ServerAddress Property, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientCount Property  

 

Return the number of active client sessions connected to the server.

Syntax
object.ClientCount

Remarks
The ClientCount read-only property returns the number of active client sessions that have been
established with the server. The value includes both authenticated and unauthenticated client
sessions.

Data Type
Integer (Int32)

See Also
MaxClients Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientHost Property  

 

Return the host name that the client used to establish the connection.

Syntax
object.ClientHost

Remarks
The ClientHost property returns the host name that the client used to establish the connection. If
the client uses HTTP 1.0 or a later version of the protocol, this property will return the host name
specified in the request header, otherwise it will return the default host name that was assigned to
the server when it started.

Data Type
String

See Also
ClientAddress Property, ClientPort Property, ServerName Property, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientId Property  

 

Return the unique identifier for the active client session.

Syntax
object.ClientId

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This
value is by the application to identify that client session, and is different than the socket handle
allocated for the client. Client IDs are unique throughout the life of the server session and are
never duplicated.

This property only returns a meaningful value when accessed from within an event handler, or a
function that has been called from within an event handler. This property will always return a value
of zero when accessed outside of an event handler.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientHost Property, ServerAddress Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientIdle Property  

 

Gets and sets the maximum number of seconds a client can be idle before the server terminates
the session.

Syntax
object.ClientIdle [ = seconds ]

Remarks
The ClientIdle property returns the maximum number of seconds that the active client session
may be idle before the server closes the control connection. The idle timeout period for each
client session is based on the value of the IdleTime property when the server was started, with the
default value of 60 seconds. Changing this value inside an event handler will change the timeout
period for the active client session.

This property should only be accessed within an event handler such as OnConnect because its
value is specific to the client session that raised the event. This property will always return a value
of zero outside of an event handler, and an exception will be raised if you attempt to modify this
property outside of an event handler.

When the timeout period for the client has elapsed, the OnTimeout event will fire prior to the
client being disconnected from the server.

Data Type
Integer (Int32)

See Also
IdleTime Property, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientPort Property  

 

Return the port number allocated by the active client connection.

Syntax
object.ClientPort

Remarks
The ClientPort property returns the port number that the current client has used when
establishing a connection with the server. This property value is only meaningful when accessed
within an event handler such as the OnConnect event.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientHost Property, ServerAddress Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientThread Property  

 

Return the thread ID for the active client session.

Syntax
object.ClientThread

Remarks
The ClientThread property returns the thread ID for the current client session. Until the thread
terminates, the thread identifier uniquely identifies the thread throughout the system. This
property only returns a meaningful value when accessed from within an event handler, or a
function that has been called from within an event handler.

The thread ID can be used with Windows API functions such as OpenThread. Exercise caution
when using thread-related functions, interfering with the normal operation of the thread can have
unexpected results. You should never use this property value to obtain a thread handle and then
call the TerminateThread function to terminate a client session. This will prevent the thread from
releasing the resources that were allocated for the session and can leave the server in an unstable
state. To terminate a client session, use the Disconnect method.

Data Type
Integer (Int32)

See Also
ClientId Property, ServerThread Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientUser Property  

 

Return the user name associated with the specified client session.

Syntax
object.ClientUser

Remarks
The ClientUser property returns the user name that the client used to authenticate the client
session. This property should only be accessed within an event handler after the client session has
been authenticated. Unauthenticated clients are not assigned a user name. This property will
always return an empty string when accessed outside of an event handler.

Data Type
String

See Also
ClientAddress Property, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CommandLine Property  

 

Return the complete command line issued by the client.

Syntax
object.CommandLine

Remarks
The CommandLine property is used to obtain the command that was issued by the client, and is
commonly used inside OnCommand and OnResult event handlers to pre-process and post-
process client commands, respectively. If the command sent by the client is used to perform an
action on a file or directory, use the LocalPath property to get the full path to the local file that is
the target of the command. Note that this property only returns the command, and not the
associated request headers.

This property should only be accessed within an event handler because its value is specific to the
client session that raised the event. This property will always return an empty string when accessed
outside of an event handler.

Data Type
String

See Also
LocalPath Property, VirtualPath Property, OnCommand Event, OnResult Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Directory Property  

 

Get and set the full path to the root directory assigned to the server.

Syntax
object.Directory [ = pathname ]

Remarks
The Directory property returns the path to the root directory for the server. If this property is set
to the name of a valid directory before the server is started, that directory will be considered the
root directory for the server. If this property is not set, or is set to an empty string, then the server
will use the current working directory as its root directory, however this is not recommended. It is
recommended that you specify an absolute path to the directory, otherwise the path will be
relative to the current working directory. You may include environment variables in the path
surrounded by percent (%) symbols and they will be expanded.

If you have configured the server to permit clients to upload files, you must ensure that your
application has permission to create files in the directory that you specify. A recommended
location for the server root directory would be a subdirectory of the %ALLUSERSPROFILE%
directory. Using the environment variable ensures that your server will work correctly on different
versions of Windows. If the root directory does not exist at the time that the server is started, it will
be created.

If the MultiUser property is False, all authenticated clients will have their current working directory
initialized to the server root directory. If the MultiUser property is True, then users are assigned
their own home directories and clients can access documents in those directories by including the
username in the request URI.

This property can be read after the server has started and it will return the full path to the root
directory. However, attempting to change the value of this property after the server has started
will cause an exception to be raised. To change the root directory for the server, you must first call
the Stop method which will terminate all active client connections.

Data Type
String

Example
' Set the server root directory
HttpServer1.Directory = "%ALLUSERSPROFILE%\MyProgram\WebServer"

See Also
MultiUser Property, AddUser Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExecTime Property  

 

Get and set maximum number of seconds that the server will permit an external command to
execute.

Syntax
object.ExecTime [ = seconds ]

Remarks
The ExecTime property specifies the maximum number of seconds that an external program is
permitted to run on the server. External programs are either registered using the
RegisterProgram method, or a script handler is registered using the RegisterHandler method. If
this value is zero, the default timeout period of 5 seconds will be used. The minimum execution
time is 1 second and the maximum time limit is 30 seconds.

Data Type
Integer (Int32)

See Also
IdleTime Property, RegisterHandler Method, RegisterProgram Method, OnExecute Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExternalAddress Property  

 

Return the external IP address for the local system.

Syntax
object.ExternalAddress

Remarks
The ExternalAddress property returns the IP address assigned to the router that connects the
local host to the Internet. This is typically used by an application executing on a system in a local
network that uses a router which performs Network Address Translation (NAT). In that network
configuration, the ServerAddress property will only return the IP address for the local system on
the LAN side of the network. The ExternalAddress property can be used to determine the IP
address assigned to the router on the Internet side of the connection and can be particularly
useful for servers running on a system behind a NAT router. Note that you should not assign the
ServerAddress property to the value returned by the ExternalAddress property. If the server is
running behind a NAT router, the router must be configured to forward incoming connections to
the appropriate address on the LAN.

Using this property requires that you have an active connection to the Internet; checking the value
of this property on a system that uses dial-up networking may cause the operating system to
automatically connect to the Internet service provider. The control may be unable to determine
the external IP address for the local host for a number of reasons, particularly if the system is
behind a firewall or uses a proxy server that restricts access to external sites on the Internet. If the
external address for the local host cannot be determined, the property will return an empty string.

If the control is able to obtain a valid external address for the local host, that address will be
cached for sixty minutes. Because dial-up connections typically have different IP addresses
assigned to them each time the system is connected to the Internet, it is recommended that this
property only be used in conjunction with persistent broadband connections.

Data Type
String

See Also
ClientAddress Property, ServerAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HiddenFiles Property  

 

Determine if the server should permit access to hidden files.

Syntax
object.HiddenFiles [= { True | False } ]

Remarks
The HiddenFiles property determines if the server should allow clients to access files with the
hidden and/or system attribute. If this property is True, then hidden files are included in directory
listings and clients may download or replace hidden files. If the property is False, hidden files are
not included in directory listings and any attempt to access, delete or modify a hidden file will
result in an error.

The default value for this property is False.

Data Type
Boolean

See Also
NoIndex Property, ReadOnly Property, Restricted Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Identity Property  

 

Gets and sets a string that identifies the server to the client.

Syntax
object.Identity [ = description ]

Remarks
The Identity property returns a string that is used to identify the server. It is used for informational
purposes only and does not affect the operation of the server. Typically the string specifies the
name of the application and a version number, and is returned to the client as part of the
standard response header block. This property can be set to assign an identity to the server,
however after the server has started this property becomes read-only.

Data Type
String

See Also
ClientAddress Property, ClientPort Property, ServerName Property, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IdleTime Property  

 

Gets and sets the maximum number of seconds a client can be idle before the server terminates
the session.

Syntax
object.IdleTime [ = seconds ]

Remarks
The IdleTime property specifies the maximum number of seconds that a client session may be
idle before the server closes the control connection to the client. A value of zero specifies the
default value of 60 seconds. If the value is non-zero, the minimum value is 10 seconds and the
maximum value is 300 seconds (5 minutes). This value is used to initialize the default idle timeout
period for each client session. The server determines if a client is idle based on the time the last
command was issued and whether or not a data transfer is in progress.

The ClientIdle property can be used to determine the idle timeout period for a specific client.
When the timeout period for the client has elapsed, the OnTimeout event will fire prior to the
client being disconnected from the server.

Data Type
Integer (Int32)

See Also
ClientIdle Property, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsActive Property  

 

Determine if the server has been started.

Syntax
object.IsActive

Remarks
The IsActive property returns True if the server has been started using the Start method. If the
server has not been started, the property will return False.

To determine if the server is accepting client connections, use the IsListening property. This
property will only indicate if the server has been started. For example, if the server has been
suspended using the Suspend method, this property will return a value of True, while the
IsListening property will return a value of False.

An application should not depend on this property returning False immediately after the Stop
method has been called to shutdown the server. This property will continue to return True until all
clients have disconnected from the server and the server thread has terminated. To determine
when the server has stopped, implement a handler for the OnStop event.

Data Type
Boolean

See Also
IsListening Property, Start Method, Stop Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsAuthenticated Property  

 

Determine if the active client session has been authenticated.

Syntax
object.IsAuthenticated

Remarks
The IsAuthenticated property returns True if the active client session has successfully
authenticated with a valid username and password. This property should only be accessed within
an event handler such as OnCommand because its value is specific to the client session that
raised the event. This property will always return a value of False outside of an event handler.

Data Type
Boolean

See Also
IsListening Property, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the server has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the server control has
been initialized properly. Normally this is done automatically when the control is loaded, however
there are circumstances where the control may not be able to initialize itself. If this property
returns False, the application must call the Initialize method to initialize the control before
performing any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method, Start Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsListening Property  

 

Determine if the server is listening for client connections.

Syntax
object.IsListening

Remarks
The IsListening property returns True if the server is listening for connections after the Start
method has been called.

Data Type
Boolean

See Also
IsActive Property, Start Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= errorcode ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero (to clear the error) or a valid error code
for the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error that occurred.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a string that contains a description of the last error that
occurred.

Data Type
String

See Also
LastError Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalPath Property  

 

Return the full path to the local file or directory that is the target of the current request.

Syntax
object.LocalPath [ = filename ]

Remarks
The LocalPath property returns the full path to a local file name or directory that maps to the
request URI provided by the client. For example, if the client sends the GET command to the
server, this property will return the complete path to the local file that the client wants to
download. This property will only return a value for those standard HTTP requests that perform
some action on a file or directory, otherwise it will return an empty string.

Setting this property allows you to effectively redirect the client to use a different file than the one
that was actually requested. If the path is absolute, then it will be used as-is. If the path is relative, it
will be relative to the server root directory. The full path to this file is not limited to the server root
directory or its subdirectory, it can specify a file anywhere on the local system. If this property is set
to an empty string, then the server will revert to using the actual file or directory name specified by
the command.

This property should only be set within an OnCommand event handler, and only for those
requests that perform an action on a file or directory. If the current request does not target a file
or directory, setting this property will cause an exception to be raised by the control. Exercise
caution when using this property to redirect the server to use a different file than the one
requested by the client; changing the target file may cause the client to behave in unexpected
ways.

Data Type
String

See Also
VirtualPath Property, ResolvePath Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalUser Property  

 

Determines if the server should perform user authentication using the Windows local account
database.

Syntax
object.LocalUser [= { True | False } ]

Remarks
The LocalUser property determines if the server should perform user authentication using the
Windows local account database. If this option is not specified, the application is responsible for
creating virtual users using the AddUser method or implementing an OnAuthenticate event
handler and authenticating client sessions individually.

If this property is set to True, a client can authenticate as a local user, however the session will not
inherit that user's access rights. All files that are accessed or created by the server will continue to
use the permissions of the process that started the server. For example, consider a server
application that was started by local user A. Next, a client connects to the server and authenticates
itself as local user B. When that client uploads a file to the server using the PUT command, the file
that is created will be owned by user A, not user B. This ensures that the server application retains
ownership and control of the files that have been created or modified.

The default value for this property is False.

Data Type
Boolean

See Also
IsAuthenticated Property, AddUser Method, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LockFiles Property  

 

Determines if files should be exclusively locked when a client attempts to upload or download a
file.

Syntax
object.LockFiles [= { True | False } ]

Remarks
The LocalTime property determines if files should be exclusively locked when a client attempts to
upload or download a file. If another client attempts to access the same file, the operation will fail.
By default, the server will permit multiple clients to access the same file, although it will still write-
lock files that are in the process of being uploaded..

The default value for this property is False.

Data Type
Boolean

See Also
HiddenFiles Property, ReadOnly Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LogFile Property  

 

Gets and sets the name of the server log file.

Syntax
object.LogFile [ = filename ]

Remarks
The LogFile property is used to specify the name of a file that will contain a log of all client
activity. The LogFormat and LogLevel properties affect the specific format for the file and the
level of detail included in the log. It is recommended that you specify an absolute path to the log
file, otherwise the path will be relative to the current working directory. You may include
environment variables in the path surrounded by percent (%) symbols and they will be expanded.

If the log file does not exist it will be created when the server is started. If file already exists, the
server will append the new logging data to the file. The server must have permission to create
and/or modify the specified file.

Setting this property to an empty string after the server has been started will have the effect of
disabling logging, setting the logging level to 0 and the logging format to httpLogNone.

Data Type
String

Example
' Enable server logging
HttpServer1.LogFile = "%ALLUSERSPROFILE%\MyProgram\WebServer.log"
HttpServer1.LogFormat = httpLogCombined
HttpServer1.LogLevel = 5

See Also
LogFormat Property, LogLevel Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LogFormat Property  

 

Gets and sets the format used when updating the server log file.

Syntax
object.LogFormat [ = format ]

Remarks
The LogFormat property is used to specify the format of the server log file. It may be one of the
following values:

Value Constant Description

0 httpLogNone This value specifies that the server should not create or
update a log file. This is the default property value.

1 httpLogCommon This value specifies that the log file should use the
common log format that records a subset of information in
a fixed format. This log format usually only provides
information about GET, PUT and POST requests.

2 httpLogCombined This value specifies that the server should use the
combined log file format. This format is similar to the
common format, however it includes the client referrer and
user agent. This is the format that most Apache web
servers use by default.

3 httpLogExtended This value specifies that the log file should use the standard
W3C extended log file format. This is an extensible format
that can provide additional information about the client
session. This format typically generates the largest logfiles.

Data Type
Integer (Int32)

Example
' Enable server logging
HttpServer1.LogFile = "%ALLUSERSPROFILE%\MyProgram\Server.log"
HttpServer1.LogFormat = httpLogExtended
HttpServer1.LogLevel = 5

See Also
LogFile Property, LogLevel Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LogLevel Property  

 

Gets and sets the level of detail included in the server log file.

Syntax
object.LogLevel [ = level ]

Remarks
The LogLevel property is used to specify the level of detail that should generated in the log file.
The minimum value is 1 and the maximum value is 10. If this parameter is zero, it is the same as
specifying a log file format of httpLogNone and will disable logging by the server

Data Type
Integer (Int32)

Example
' Enable server logging
HttpServer1.LogFile = "%ALLUSERSPROFILE%\MyProgram\WebServer.log"
HttpServer1.LogFormat = httpLogCombined
HttpServer1.LogLevel = 5

See Also
LogFile Property, LogFormat Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MaxClients Property  

 

Gets and sets the maximum number of clients that can connect to the server.

Syntax
object.MaxClients [= clients ]

Remarks
The MaxClients property specifies the maximum number of client connections that will be
accepted by the server. Once the maximum number of connections has been established, the
server will reject any subsequent connections until the number of active client connections drops
below the specified value.

Changing the value of this property while a server is actively listening for connections will modify
the maximum number of client connections permitted, but it will not affect connections that have
already been established. You can also use the Throttle method to change the maximum number
of guest users, the maximum number of clients per IP address and the rate at which clients can
connect to the server.

It is important to note that regardless of the maximum number of clients specified by this
property, the actual number of client connections that can be managed by the server depends on
the number of sockets that can be allocated from the operating system. The amount of physical
memory installed on the system affects the number of connections that can be maintained
because each connection allocates memory for the socket context from the non-paged memory
pool.

The default value for this property is 100 active client connections.

Data Type
Integer (Int32)

See Also
Start Method, Throttle Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MemoryUsage Property  

 

Gets the amount of memory allocated for the server and all client sessions.

Syntax
object.MemoryUsage

Remarks
This read-only property returns the amount of memory allocated by the server and all active client
sessions. It enumerates all memory allocations made by the server process and client session
threads, returning the total number of bytes allocated for the server process. This value reflects the
amount of memory explicitly allocated by this control and does not reflect the total working set
size of the process, or memory allocated by any other components or libraries.

Getting the value of this property forces the server into a locked state, and all client sessions will
block while the memory usage is being calculated. Because this enumerates all heaps allocated for
the server process, it can be an expensive operation, particularly when there are a large number of
active clients connected to the server. Frequently checking the value of this property can
significantly degrade the performance of the server. It is primarily intended for use as a debugging
tool to determine if memory usage is the result of an increase in active client sessions. If the value
returned by this property remains reasonably constant, but the amount of memory allocated for
the process continues to grow, it could indicate a memory leak in some other area of the
application.

Data Type
Double

See Also
StackSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MultiUser Property  

 

Determine if the server should be started in multi-user mode.

Syntax
object.MultiUser [= { True | False } ]

Remarks
The MultiUser property determines if the server should be started in multi-user mode. If this
property is set to True, virtual users can be assigned their own home directories and clients can
access documents in those directories by including the username in the request URI. If this
property is set to False, all users will share the server root directory by default. This property does
not have any effect on the maximum number of simultaneous client sessions that can be
established with the server.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

The default value for this property is False.

Data Type
Boolean

See Also
Directory Property, ReadOnly Property, Restricted Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NoIndex Property  

 

Determine if the server should search for a default index page.

Syntax
object.NoIndex [= { True | False } ]

Remarks
The NoIndex property determines if the server should should search for a default index file if the
client requests a resource that maps to a local directory on the server. If this property is set to
True, the server will not search for an index file. If this property is set to False, the server will
search for a file named index.htm, index.html, default.htm, default.html or index.txt in the
directory. If a file by one of those names is found, it will return the contents of that file rather than
a list of files in the directory.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

The default value for this property is False.

Data Type
Boolean

See Also
HiddenFiles Property, ReadOnly Property, Restricted Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Options Property  

Gets and sets the options used when creating an instance of the server.

Syntax
object.Options [= value ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when starting the server. The property value is
created by using a bitwise operator with one or more of the following values:

Value Constant Description

1 httpServerMultiUser This option specifies the server should be started
in multi-user mode, where users are assigned
their own home directories and clients can
access documents in those directories by
including the username in the request URI. If this
option is not specified, then all users will share
the server root directory by default. This option
does not have any effect on the maximum
number of simultaneous client sessions that can
be established with the server.

2 httpServerRestricted This option specifies the server should be
initialized in a restricted mode, limiting certain
functionality. The only commands accepted by
the server will be the GET and HEAD commands.
The server will never return a list of files if the
client provides a URL that maps to a local
directory and there is no default index page.
Clients will not be able to execute CGI programs
or scripts, and cannot access files outside of the
server root directory or its subdirectories.

4 httpServerLocalUser This option specifies the server should perform
user authentication using the Windows local
account database. This option is useful if the
server should accept local usernames, or if the
application does not wish to implement an event
handler for user authentication. If this option is
not specified, the application is responsible for
authenticating all users.

8 httpServerNoIndex This option specifies the server should not
search for a default index page if the client
provides a URL that maps to a local directory. By
default, the server will search for a file named
index.htm, index.html, default.htm, default.html
or index.txt in the directory. If a file by one of
those names is found, it will return the contents



 

of that file rather than a list of files in the
directory.

16
(&H10)

httpServerReadOnly This option specifies the server should only allow
read-only access to files by default. If this option
is enabled, it will change the default permissions
granted to authenticated users. Commands that
are used to create, delete or modify files on the
server will be disabled by default. It is
recommended that this option be enabled if the
server is publicly accessible over the Internet.

64
(&H40)

httpServerLockFiles This option specifies that files should be
exclusively locked when a client attempts to
upload or download a file. If another client
attempts to access the same file, the operation
will fail. By default, the server will permit multiple
clients to access the same file, although it will
still write-lock files that are in the process of
being uploaded.

128
(&H80)

httpServerHiddenFiles This option specifies that when a client requests
a resource, the server should permit access to
hidden and system files or subdirectories. By
default, the server will not allow access to a
hidden or system file, even if the client session
has been authenticated. This option is ignored if
the server is started in restricted mode.

4096
(&H1000)

httpServerSecure This option specifies that secure connections
using SSL and/or TLS should be enabled. This
option requires that a valid SSL certificate be
installed on the local host. The default port
number for secure HTTP connections is 443. If
security is enabled, all client connections to the
server must be secure. Standard and secure
connections cannot be shared by the same
instance of the server. If your application must
support both standard and secure connections,
you must create two instances of the server
listening on two different ports, one with the
httpServerSecure option enabled and the
other without.

32768
(&H8000)

httpServerSecureFallback This option specifies the server should permit
the use of less secure cipher suites for
compatibility with legacy clients. If this option is
specified, the server will allow connections using
TLS 1.0 and cipher suites that use RC4, MD5 and
SHA1.

Most of these options have a corresponding Boolean property. For example, the
httpServerRestricted option corresponds to the Restricted property, where setting the property

 



to True enables the option and setting it to False disables the option.

In most cases, it is recommended that you use the property value related to the option, rather
than setting the Options property. It will make your code more readable and prevent potential
compatibility issues with subsequent versions of the control. If you do decide to specify option
bitflags, it is recommended that you use the constant name rather than the numeric value.

Data Type
Integer (Int32)

See Also
HiddenFiles Property, LocalUser Property, LockFiles Property, MultiUser Property, ReadOnly
Property, Restricted Property, Secure Property, Start Method

file:///C|/Projects/cstools11/pdf/httpsrv/control/property/property/hiddenfiles.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/property/property/localuser.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/property/property/lockfiles.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/property/property/multiuser.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/property/property/readonly.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/property/property/readonly.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/property/property/restricted.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/property/property/secure.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/property/method/start.html


 Priority Property  

 

Gets and sets the priority assigned to the server.

Syntax
object.Priority [= priority ]

Remarks
The Priority property can be used to control the processor usage, memory and network
bandwidth allocated by the server for client sessions. One of the following values may be
specified:

Value Constant Description

0 httpPriorityBackground This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. Each client thread will be assigned
a lower scheduling priority and will be frequently
forced to yield execution to other threads.

1 httpPriorityLow This priority lowers the overall resource utilization for
the client session and meters the processor utilization
for the client session. Each client thread will be
assigned a lower scheduling priority and will
occasionally be forced to yield execution to other
threads.

2 httpPriorityNormal The default priority which balances resource and
processor utilization. It is recommended that most
applications use this priority.

3 httpPriorityHigh This priority increases the overall resource utilization
for each client session and their threads will be given
higher scheduling priority. It is not recommended that
this priority be used on a system with a single
processor.

4 httpPriorityCritical This priority can significantly increase processor,
memory and network utilization. Each client thread
will be given higher scheduling priority and will be
more responsive to network events. It is not
recommended that this priority be used on a system
with a single processor.

The httpPriorityNormal priority balances resource and network bandwidth utilization while
ensuring that a single-threaded server application remains responsive to the user. Lower priorities
reduce the overall resource utilization of the server at the expense of throughput.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

 



Data Type
Integer (Int32)

See Also
Start Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadOnly Property  

 

Determine if the server should prevent clients from uploading files.

Syntax
object.ReadOnly [= { True | False } ]

Remarks
The ReadOnly property determines if the server should only allow read-only access to files by
default, changing the default permissions granted to authenticated users. If this property is set to
True, commands that are used to create, delete or modify files on the server will be disabled by
default.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

The default value for this property is False.

Data Type
Boolean

See Also
Directory Property, NoIndex Property, ReadOnly Property, Restricted Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Restricted Property  

 

Determine if the server should be started in restricted mode, limiting client access to the server.

Syntax
object.Restricted [= { True | False } ]

Remarks
The Restricted property determines if the server should be initialized in a restricted mode that
isolates the server and limits the ability for clients to access files on the host system. If this property
is set to True, the only commands accepted by the server will be the GET and HEAD commands.
The server will never return a list of files if the client provides a URL that maps to a local directory
and there is no default index page. Clients will not be able to execute CGI programs or scripts, and
cannot access files outside of the server root directory or its subdirectories.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

The default value for this property is False.

Data Type
Boolean

See Also
Directory Property, MultiUser Property, NoIndex Property, Restricted Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if client connections are encrypted using the TLS protocol.

Syntax
object.Secure [={ True | False } ]

Remarks
The Secure property determines if client connections are encrypted using the Transport Layer
Security (TLS) protocol. The default value for this property is False, which specifies that clients will
use a standard, unencrypted connection to the server. To enable secure connections, the
application should set this property value to True prior to calling the Start method.

When secure connections are enabled, the server will accept the client connection and then wait
for the client to initiate the handshake where both the client and server negotiate the various
encryption options available. This process is handled automatically by the server, and all that is
required is that the application specify the server certificate which should be used. This is done by
setting the CertificateName property, and optionally the CertificateStore property if required.

Data Type
Boolean

See Also
CertificateName Property, CertificateStore Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerAddress Property  

 

Gets and sets the address that will be used by the server to listen for connections.

Syntax
object.ServerAddress [= address ]

Remarks
The ServerAddress property is used to specify the default address that the server will use when
listening for connections. By default the server will accept connections on any appropriately
configured network adapter. If an address is specified, it must be a valid Internet address that is
bound to a network adapter configured on the local system. Clients will only be able to connect to
the server using that specific address.

If an IPv6 address is specified as the server address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

It is common to set this property to the value 127.0.0.1 for testing purposes. It is a non-routable
address that specifies the local system, and most software firewalls are configured so they do not
block applications using this address.

Data Type
String

See Also
ExternalAddress Property, ServerName Property, ServerPort Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerName Property  

 

Gets and sets the fully qualified domain name for the server.

Syntax
object.ServerName [ = hostname ]

Remarks
The ServerName property returns the fully qualified domain name assigned to the server. This
consists of the local computer name and its domain name. The actual value returned depends on
the system configuration. If no domain has been specified for the system, then only the machine
name will be returned.

Setting this property assigns the default hostname for the server which is returned to the client in
the standard response header block. If the server is publicly accessible over the Internet, this
property should be set to the same hostname that is associated with the server IP address.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

Data Type
String

See Also
ExternalAddress Property, ServerAddress Property, ServerPort Property, AddHost Method, Start
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerPort Property  

 

Gets and sets the port number that will be used by the server to listen for connections.

Syntax
object.ServerPort [= port ]

Remarks
The ServerPort property is used to set the port number that server will use to listen for incoming
client connections. Valid port numbers are in the range of 1 to 65535. It is recommended that
most custom servers specify a port number larger than 5000 to avoid potential conflicts with
standard Internet services and ephemeral ports used by client applications. The default port
numbers used are port 80 for standard connections and port 443 for secure connections.

If a port number is specified that is already in use by another application, the OnError event will
fire and the background server thread will terminate. Attempting to change the value of this
property after the server has started will cause an exception to be raised. To change this property
value, you must first call the Stop method which will terminate all active client connections.

Data Type
Integer (Int32)

See Also
ServerAddress Property, ServerName Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerThread Property  

 

Return the thread ID for the server.

Syntax
object.ServerThread

Remarks
The ServerThread property returns the thread ID for the active server. Until the thread terminates,
the thread identifier uniquely identifies the thread throughout the system. If there is no active
server, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientThread Property, ServerAddress Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerUuid Property  

 

Gets and sets the Universally Unique Identifier (UUID) associated with the server.

Syntax
object.ServerUuid [ = uuid ]

Remarks
The ServerUuid property returns the UUID that uniquely identifies this instance of the server. If the
application does not set this property, a temporary UUID will be assigned to the server. If a value is
assigned to this property, it must be a valid UUID string. A permanent UUID can be generated
using a utility such as uuidgen which is included with Visual Studio.

Attempting to change the value of this property after the server has started will cause an
exception to be raised. To change this property value, you must first call the Stop method which
will terminate all active client connections.

Data Type
String

See Also
ServerAddress Property, ServerName Property, ServerPort Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StackSize Property  

 

Gets and sets the size of the stack allocated for threads created by the server.

Syntax
object.StackSize [= bytes ]

Remarks
The StackSize property returns the initial amount of memory that is committed to the stack for
each thread created by the server. By default, the stack size for each thread is set to 256K.
Increasing or decreasing the stack size will only affect new threads that are created by the server, it
will not affect those threads that have already been created to manage active client sessions. It is
recommended that most applications use the default stack size.

You should not change this value unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Data Type
Integer (Int32)

See Also
MemoryUsage Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown
to the container of the control. In addition, the OnError event will fire. For example, in Visual Basic,
it is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the tracing of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the HTTP client and server controls, and you set the Trace
property to True on the HTTP client control, function calls made by both controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Only those function calls made by the SocketTools networking controls will be logged. Calls made
directly to the Windows Sockets API, or calls made by other controls, will not be logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named CSTRACE.LOG is created in the system's temporary directory. If no temporary directory
exists, then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column identifies if the trace record is reporting information, a warning, or
an error. What follows is the name of the function being called, the arguments passed to the
function and the function's return value. If a warning or error is reported, the error code is
appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= flags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 stTraceInfo All function calls are written to the trace file. This is the default value.

1 stTraceError Only those function calls which fail are recorded in the trace file.

2 stTraceWarning Only those function calls which fail, or return values which indicate a
warning, are recorded in the trace file.

4 stTraceHexDump All functions calls are written to the trace file, plus all the data that is
sent or received is displayed, in both ASCII and hexadecimal format.

Since socket function tracing is enabled per-process, the trace flags are shared by all instances of
the controls being used. If multiple controls have tracing enabled, the TraceFlags property should
be set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and the error WSAEWOULDBLOCK is
returned, a warning is generated since the application simply needs to attempt to write the data at
a later time.

Data Type
String

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 VirtualPath Property  

 

Return the virtual path to the local file or directory that is the target of the current command.

Syntax
object.VirtualPath [ = filename ]

Remarks
The VirtualPath property returns the virtual path to the resource requested by the client. For
example, if the client sends the GET command to the server, this property will return the complete
virtual path to the local resource that the client wants to download. This property will only return a
value for those requests that perform some action on a file or directory, otherwise it will return an
empty string.

Setting this property allows you to effectively redirect the client to use a different resource than the
one that was actually requested. If the path is absolute, then it will be used as-is. If the path is
relative, it will be relative to the server root directory. If this property is set to an empty string, then
the server will revert to using the actual file or directory name specified by the command.

This property should only be set within an OnCommand event handler, and only for those
requests that perform an action on a file or directory. If the current command does not target a
file or directory, setting this property will cause an exception to be raised by the control. Exercise
caution when using this property to redirect the server to use a different file than the one
requested by the client; changing the target file may cause the client to behave in unexpected
ways.

To instruct the client to use a different resource URI, it is recommended that you use the
RedirectRequest method rather than modifying the value of this property.

Data Type
String

See Also
LocalPath Property, RedirectRequest Method, ResolvePath Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Hypertext Transfer Server Control Methods  

 

Method Description

AddHost Add a new virtual host to the server virtual host table

AddPath Add a new virtual path for the specified host

AddUser Add a new virtual user to the server

Authenticate Authenticate the client and assign access rights for the session

CheckPath Determine if the client has permission to access the specified virtual path

ClearHeaders Delete all of the response headers for the specified client session

DeleteHost Delete a virtual host associated with the specified server

DeletePath Delete a virtual path from the specified virtual host

DeleteUser Remove a virtual user from the server

Disconnect Disconnect the specified client session from the server

GetAllHeaders Return all of the request header values in the specified string buffer

GetHeader Return the value of a request header for the specified client session

GetVariable Return the value of a CGI environment variable for the specified client

Initialize Initialize the control and validate the runtime license key

ReceiveRequest Receive the request that was sent by the client to the server

RedirectRequest Redirect the request from the client to another URL

RegisterHandler Register a CGI program for use and associate it with a file name extension

RegisterProgram Register a CGI program for use and associate it with a virtual path on the server

RequireAuthentication Send a response to the client indicating that authentication is required

Reset Reset the internal state of the control to its default values

ResolvePath Resolve a path to its full virtual or local file name

Restart Restart the server, terminating all active client connections

Resume Resume accepting new client connections

SendError Send a customized error response to the specified client

SendResponse Send a result code and message to the client in response to a command

SetHeader Create or change the value of a response header for the client session

SetVariable Create or change the value of a CGI environment variable for the specified client

Start Start listening for client connections on the specified IP address and port number

Stop Stop listening for new client connections and terminate all client sessions

Suspend Suspend accepting new client connections

Throttle Limit the maximum number of client connections, connections per IP address and connection rate

Uninitialize Uninitialize the control and release any system resources that were allocated

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AddHost Method  

 

Add a new virtual host to the server virtual host table.

Syntax
object.AddHost( VirtualHost, [VirtualPort], [Directory] )

Parameters
VirtualHost

A string which specifies the hostname that will be added to the virtual host table. This parameter
must specify a valid hostname and cannot be a zero-length string.

VirtualPort

An optional integer value which specifies the port number for the virtual host. If this parameter
is specified, the value must be zero or the same value as the original port number that the
server was configured to use. Port-based virtual hosting is currently not supported and this
parameter is included for future use.

Directory

An optional string that specifies the root document directory for the virtual host. If this
parameter is omitted or a zero-length string, the virtual host will use the same root directory
that was specified when the server was started. This parameter may contain environment
variables enclosed in % symbols.

Return Value
An integer value that specifies the host ID that is used to reference the virtual host. A return value
of -1 indicates that an error has occurred.

Remarks
Virtual hosting is a method for sharing multiple domain names on a single instance of a server.
The client provides the server with the hostname that it has used to establish the connection, and
that name is compared against a table of virtual hosts configured for the server. If the hostname
matches a virtual host, the client will use the root directory and any virtual paths that have been
assigned to that host.

When the server is first started, a default virtual host with an ID of zero is automatically created
and is identified as httpHostDefault. This virtual host uses the same hostname, port number and
root directory that the server instance was created with. The application should treat all other host
IDs as opaque values and never make assumptions about how they are allocated.

The virtual host ID returned by this method can be used with the AddPath method to create a
virtual path assigned to the host, the AddUser to create a virtual user, and the RegisterHandler
and RegisterProgram methods which are used to register script handlers and CGI programs.

See Also
AddPath Method, AddUser Method, DeleteHost Method, RegisterHandler Method,
RegisterProgram Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AddPath Method  

 

Add a new virtual path for the specified host.

Syntax
object.AddPath( HostId, VirtualPath, LocalPath, [AccessFlags] )

Parameters
HostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual
host should be used.

VirtualPath

A string which specifies the virtual path that will be created. This parameter cannot be an empty
string and the maximum length of the virtual path is 1024 characters.

LocalPath

A string which specifies the local directory or file name that the virtual path will be mapped to.
This path must exist and can be no longer than 260 characters. This parameter cannot be an
empty string.

AccessFlags

An optional integer value which specifies the access clients will be given to the virtual path. This
value created from one or more bitflags. For a list of access permissions, see User and File
Access Constants. If this parameter is omitted, the virtual path is assigned default file access
permissions based on the server configuration.

Return Value
A value of zero is returned if the virtual path was created. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AddPath method maps a virtual path name to a directory or file name on the local system.
Virtual paths are assigned to specific hosts and if multiple virtual hosts are created for the server,
each can have its own virtual paths which map to different files. To create a virtual path for the
default server, the caller should specify the HostId parameter as httpHostDefault which has a
value of zero.

It is recommended that the LocalPath parameter always specify the full path to the local file or
directory. If the path is relative, it will be considered relative to the current working directory for
the process and expanded to its full path name. The local path can include environment variables
surrounded by % symbols. For example, if the value %ProgramData% is included in the path, it will
be expanded to the full path for the common application data folder. The local path cannot
specify a Windows system folder or the root directory of a mounted drive volume.

The local file or directory does not need to located in the document root directory for the server
or virtual host. It can specify any valid local path that the server process has the appropriate
permissions to access. You should exercise caution when creating virtual paths to files or
directories outside of the server root directory. If the LocalPath parameter specifies a directory,
clients will have access to that directory and all subdirectories using its virtual path.

If you wish to password protect the virtual file or directory, include the httpAccessProtected flag
in the file permissions. The default command handlers will recognize this flag and require that the

 

file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html


client authenticate itself to grant access to the resource. If the server application implements a
custom command handler, it is responsible for checking for the presence of this flag and perform
the appropriate checks to ensure that the client session has been authenticated.

If the server was started in restricted mode, the client will be unable to access documents outside
of the server root directory and its subdirectories. This restriction also applies to virtual paths that
reference documents or other resources outside of the root directory. To allow a client to access a
document outside of the server root directory, the ClientAccess property should be used to grant
the client httpAccessRead permission.

See Also
ClientAccess Property, LocalPath Property, VirtualPath Property, DeletePath Method, ResolvePath
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AddUser Method  

 

Add a new virtual user to the server.

Syntax
object.AddUser( HostId, UserName, Password, [AccessFlags], [Directory] )

Parameters
HostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual
host should be used.

UserName

A string which specifies the user name. The maximum length of a username is 63 characters and
it is recommended that names be limited to alphanumeric characters. Whitespace, control
characters and certain symbols such as path delimiters and wildcard characters are not
permitted. If an invalid character is included in the name, the method will fail with an error
indicating the username is invalid. The username must be at least three characters in length.
Usernames are not case sensitive.

Password

A string which specifies the user password. The maximum length of a password is 63 characters
and is limited to printable characters. Whitespace and control characters are not permitted. If an
invalid character is included in the password, the method will fail with an error indicating the
password is invalid. The password must be at least one character in length. Passwords are case
sensitive.

AccessFlags

An optional integer value which specifies the access clients will be given when authenticated as
this user. This value created from one or more bitflags. For a list of user access permissions, see
User and File Access Constants. If this parameter is omitted, the user is assigned default access
permissions based on the server configuration.

Directory

An optional string which specifies the directory that will be the virtual user's home directory. If
the server was started in multi-user mode, this directory will be relative to the user directory
created by the server, otherwise it will be relative to the server root directory. If the directory
does not exist, it will be created the first time that the virtual user successfully logs in to the
server. If this parameter is omitted or is an empty string, a default home directory will be
created for the virtual user.

Return Value
A value of zero is returned if the virtual user was created. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AddUser method creates a virtual user that is associated with the server. When a client
connects with the server and provides authentication credentials, the server will check if the
username has been created using this method. If a match is found, the client access rights will be
updated.

If you wish to modify the information for an existing user, it is not necessary to delete the

 

file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html


username first. If this method is called with a username that already exists, that record is replaced
with the values passed to this method.

The virtual users created by this method exist only as long as the server is active. If you wish to
maintain a persistent database of users and passwords, you are responsible for its implementation
based on the requirements of your specific application. For example, a simple implementation
would be to store the user information in a local XML or INI file and then read that configuration
file after the server has started, calling this method for each user that is listed.

See Also
Authenticate Method, DeleteUser Method, RequireAuthentication Method, OnAuthenticate Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Authenticate Method  

 

Authenticate the client and assign access rights for the session.

Syntax
object.Authenticate( ClientId, [AccessFlags] )

Parameters
ClientId

An integer that identifies the client session.

AccessFlags

An optional integer value which specifies the access clients will be given when authenticated as
this user. This value created from one or more bitflags. For a list of user access permissions, see
User and File Access Constants. If this parameter is omitted, the client is authenticated using the
default access permissions based on the server configuration.

Return Value
A value of zero is returned if the client session was authenticated. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The Authenticate method is used to authenticate a specific client session, typically in response to
an OnAuthenticate event that indicates a client has provided authentication credentials as part of
the request for a document or other resource.

To enable the server to automatically authenticate a client session, use the AddUser method to
add one or more virtual users. The server will search the list of virtual users for a match to the
credentials provided by the client and will set the appropriate permissions for the session without
requiring a event handler to manually authenticate the session using this method.

If the server was started with the LocalUser property set to True and the client session is not
authenticated using this method, the server will attempt to authenticate the client session using
the local Windows user database. Although this option can be convenient because it does not
require the implementation of an event handler for the OnAuthenticate event, it can be used by
clients to attempt to discover valid usernames and passwords for the local system. It is
recommended that you use the AddUser method to create virtual users rather than using the
local user database.

See Also
MultiUser Property, Restricted Property, AddUser Method, DeleteUser Method, OnAuthenticate
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html


 CheckPath Method  

 

Determine if the client has permission to access the specified virtual path.

Syntax
object.CheckPath( ClientId, VirtualPath, [AccessFlags] )

Parameters
ClientId

An integer value which identifies the client session.

VirtualPath

A string which specifies the virtual path that will be created. The path must be absolute and
cannot be an empty string. The maximum length of the virtual path is 1024 characters.

AccessFlags

An optional integer value which specifies the access permissions that should be checked. This
value created from one or more bitflags. For a list of access permissions, see User and File
Access Constants. If this parameter is omitted, the method checks to ensure the client has read
access to the virtual path.

Return Value
A Boolean value that specifies if the client has access to the virtual path. A return value of True
indicates that the virtual path exists and the client has the requested permissions. A return value of
False indicates that the path does not exist, or the client does not have the requested access to
the file or directory.

Remarks
The CheckPath method is used to determine if the client has permission to access the virtual file
or directory, based on the value of the AccessFlags parameter. For example, if the AccessFlags
parameter has the value httpAccessWrite, this method will check if the client has write permission
for the file or directory. The method will return a non-zero value if the client does have the
requested permission, or zero if it does not.

Applications that implement their own custom handlers for standard HTTP commands should use
this method to ensure that the client has the appropriate permissions to access the requested
resource. Failure to check the access permissions for the client can result in the client being able to
access restricted documents and other resources. It is recommended that most applications use
the default command handlers.

To obtain the path to the local file or directory that the virtual path is mapped to, use the
ResolvePath method.

See Also
ClientAccess Property, LocalPath Property, VirtualPath Property, AddPath Method, DeletePath
Method, ResolvePath Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/useraccess.html


 ClearHeaders Method  

 

Delete all of the response headers for the specified client session.

Syntax
object.ClearHeaders( ClientId )

Parameters
ClientId

An integer value which identifies the client session.

Return Value
A value of zero is returned if the response headers were deleted. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The ClearHeaders method is used to delete all of the current response header values and
automatically generate a new set of default response headers. This method can be useful if the
client application wants to clear any custom headers that were specified prior to sending a
response to the client. In most cases it is not necessary to use this method because the server will
automatically clear the response headers when a session terminates.

See Also
GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteHost Method  

 

Delete a virtual host associated with the specified server.

Syntax
object.DeleteHost( HostId )

Parameters
HostId

An integer value which identifies the virtual host.

Return Value
A value of zero is returned if the virtual host was deleted. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The DeleteHost method removes a virtual host that was created by a previous call to the
AddHost method. All virtual paths and users associated with the specified host are no longer
valid. It is not necessary to call this method to delete any of the virtual hosts prior to stopping the
server. Part of the normal shutdown process is releasing the resources allocated for each virtual
host that was added to the server.

This method cannot be used to delete the virtual host with an ID of zero, which is the default
virtual host that is allocated when the server is started.

See Also
ServerName Property, AddHost Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeletePath Method  

 

Delete a virtual path from the specified virtual host.

Syntax
object.DeletePath( HostId, VirtualPath )

Parameters
HostId

An integer value which identifies the virtual host.

VirtualPath

A string that specifies the virtual path to be removed. This path must be absolute and cannot be
an empty string.

Return Value
A value of zero is returned if the virtual path was deleted. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
This method removes a virtual path that was created by a previous call to the AddPath method.

See Also
LocalPath Property, VirtualPath Property, AddPath Method, CheckPath Method, ResolvePath
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteUser Method  

 

Remove a virtual user from the server.

Syntax
object.DeleteUser( HostId, UserName )

Parameters
HostId

An integer value which identifies the virtual host.

UserName

A string which specifies the user name to be deleted. Usernames are not case sensitive.

Return Value
A value of zero is returned if the virtual user was deleted. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The DeleteUser method removes a virtual user that was created by a previous call to the
AddUser method. This method will not match partial usernames and wildcard characters cannot
be used to delete multiple users. Usernames are not case sensitive.

See Also
AddUser Method, Authenticate Method, OnAuthenticate Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Disconnect the specified client session from the server.

Syntax
object.Disconnect( ClientId )

Parameters
ClientId

An integer that identifies the client session.

Return Value
A value of zero is returned if the client was signaled to terminate its connection to the server.
Otherwise, a non-zero error code is returned which indicates the cause of the failure.

Remarks
This method terminates the specified client connection, releasing the socket handle other
resources that were allocated for the session. It is only necessary to use this method if you want
the server to explicitly terminate a client connection. Normally the client will close its connection to
the server, the OnDisconnect event will fire and the server will automatically disconnect the client.

The thread that is managing the client will be signaled that it should disconnect from the server,
and it will begin the process of terminating the session. This is an asynchronous process and it is
not guaranteed that the client will have actually disconnected from the server at the time that this
method returns to the caller.

See Also
Start Method, Stop Method, OnConnect Event, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetAllHeaders Method  

 

Return all of the request header values in the specified string buffer.

Syntax
object.GetAllHeaders( ClientId, Headers )

Parameters
ClientId

An integer that identifies the client session.

Headers

A string variable that is passed by reference which will contain the request headers when the
method returns.

Return Value
A Boolean value that specifies if the method was successful.

Remarks
The GetAllHeaders method is used to obtain all of the request headers that were provided by the
client. Each header name is separated from its value by the colon (:) and each header is
terminated with a carriage return and linefeed (CRLF) sequence. Typically this method would be
used within an OnCommand event handler. To get the value of a specific request header, use the
GetHeader method.

Refer to Hypertext Transfer Protocol Headers for a list of common request and response headers
that are used.

See Also
GetHeader Method, SetHeader Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/httpsrv/control/headers.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/headers.html


 GetHeader Method  

 

Return the value of a request header for the specified client session.

Syntax
object.GetHeader( ClientId, HeaderName, HeaderValue )

Parameters
ClientId

An integer that identifies the client session.

HeaderName

A string that specifies the name of the header field. Header names are not case-sensitive and
should not include the colon which acts as a delimiter that separates the header name from its
value.

HeaderValue

A string variable that is passed by reference which will contain the value of the header when the
method returns.

Return Value
A Boolean value that specifies if the method was successful.

Remarks
The GetHeader method will return the value of a specific header field included in the request sent
by the client. Typically this is used within an OnCommand event handler when the server
application needs to process a custom command. The GetAllHeaders method can be used to
obtain a copy of the complete request header block submitted by the client.

Refer to Hypertext Transfer Protocol Headers for a list of common request and response headers
that are used.

See Also
GetAllHeaders Method, SetHeader Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/httpsrv/control/headers.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/headers.html


 GetVariable Method  

 

Return the value of a CGI environment variable for the specified client.

Syntax
object.GetVariable( ClientId, VariableName, VariableValue )

Parameters
ClientId

An integer that identifies the client session.

VariableName

A string that that specifies the name of the environment variable. Variable names are not case-
sensitive and should not include the equal sign which acts as a delimiter that separates the
variable name from its value.

VariableValue

A string variable that is passed by reference which will contain the value of the environment
variable when the method returns.

Return Value
A Boolean value that specifies if the method was successful.

Remarks
The GetVariable method will return the value of an environment variable that has been defined
for the client. Each client session inherits a copy of the process environment block, which is then
modified to define various environment variables that are used with CGI programs and scripts. The
SetVariable method can be used to change existing environment variables or create new
variables.

The standard CGI environment variables that are defined by the server are not created until the
client request has been processed. This means that environment variables such as REMOTE_ADDR
and SERVER_NAME will not be defined inside an OnConnect event handler.

See Also
SetVariable Method, OnExecute Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the server and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Dim objServer As Object
Set objServer = CreateObject("SocketTools.HttpServer.11")

nError = objServer.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize the SocketTools object"
    End
End If

See Also
IsInitialized Property, Start Method, Stop Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReceiveRequest Method  

 

Receive the request that was sent by the client to the server.

Syntax
object.ReceiveRequest( ClientId, Buffer, [Length] )

Parameters
ClientId

An integer that identifies the client session.

Buffer

A string variable or byte array that is passed by reference which will contain any request data
submitted by the client.

Length

An optional integer value that specifies the maximum amount of data returned by the method.
If this parameter is omitted the entire request buffer will be returned. If a fixed length string or
byte array is provided as the buffer, the maximum amount of data returned is limited by the size
of the buffer.

Return Value
A value of zero is returned if the method completed successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The ReceiveRequest method is called within an OnCommand event handler to process the
command issued by the client and return information about the request to the server application.
It is only necessary for the application to call this method if it wants to implement its own custom
handling for a command.

It is recommended that you only use this method to process custom commands and not standard
commands such as GET and POST. This ensures that the appropriate security checks are
performed and the response conforms to the protocol standard. After the request data has been
processed, the application should use the SendResponse or SendError method to send a
response back to the client indicating success or failure.

This method may only be called once per command issued by the client.

See Also
SendError Method, SendResponse Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RedirectRequest Method  

 

Redirect the request from the client to another URL.

Syntax
object.RedirectRequest( ClientId, Location, [Method] )

Parameters
ClientId

An integer that identifies the client session.

Location

A string that specifies the new location for the requested resource. This value must be a
complete URL, including the http:// or https:// scheme.

Method

An optional integer value that specifies if the redirection is permanent or temporary. If this
parameter is omitted, the client will be informed that the redirection is temporary. One of the
following values may be used:

Value Constant Description

1 httpRedirectPermanent This value is used for permanent redirection,
indicating that the client should update any record of
the link with the new URL specified by the Location
parameter. This result is cacheable and when the
client makes subsequent requests for the resource, it
should always use the new URL.

2 httpRedirectTemporary This value is used for temporary redirection, indicating
that the client should issue a request for the resource
using the new URL specified by the Location
parameter, but subsequent requests should continue
to use the original URL.

3 httpRedirectOther This value is used for temporary redirection, however
it instructs the client that it should use the GET
command to request the redirected resource. This
option is typically used to redirect a client after it has
used the POST command.

Return Value
A value of zero is returned if the method completed successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The RedirectRequest method can be used within an OnCommand event handler to redirect the
client to a new location for the resource that it has requested. This redirection can be permanent
or temporary, depending on whether the server expects the client to continue to use the original
URL when requesting the resource.

If httpRedirectTemporary is specified, the actual status code that is returned to the client
depends on the version of the protocol that is being used. If the client has issued the request

 



using HTTP 1.0 then the server will return a 302 code to the client. If the client used HTTP 1.1, the
server will return a 307 code to the client that indicates it should use the same command verb
(GET, POST, etc.) when requesting the resource at the new location.

If httpRedirectOther is specified, the status code that is returned to the client depends on which
version of the protocol is being used. For clients who are using HTTP 1.0, the server will return a
302 code to the client just as with httpRedirectTemporary. If the client is using HTTP 1.1, the
server will return a 303 code to the client that indicates it should always use the GET command to
request the new resource, regardless if a different command was originally used (POST, PUT, etc.)

This method provides a simplified interface for sending a redirection status code that also implicitly
sets the Location response header to the value of the Location parameter. If the server application
needs to send alternate redirection codes such as 305 (Use Proxy) then it should use SetHeader
method to set the value of the Location response header, followed by the SendReponse method
to send the redirection status code.

See Also
SendError Method, SendResponse Method, OnCommand Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RegisterHandler Method  

 

Register a CGI program for use and associate it with a file name extension.

Syntax
object.RegisterHandler( HostId, FileExtension, ProgramFile, [Parameters], [Directory] )

Parameters
HostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual
host should be used.

FileExtension

A string which specifies the file name extension that is associated with the CGI program.

ProgramFile

A string which specifies the full path to the CGI program on the local system.

Parameters

An optional string that specifies additional parameters for the program. This value will be
passed to the program as command line arguments. If the CGI program does not require any
command line parameters, this parameter may be omitted.

Directory

An optional string that specifies the current working directory for the program. If this parameter
is omitted, the server will use the root document directory for the virtual host.

Return Value
A value of zero is returned if the program was registered successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The RegisterHandler method registers an executable CGI program and associates it with a file
name extension. When the client issues a GET or POST command that specifies a file with that
extension, the program will be executed and the output return to the client.

The ProgramFile string specifies file name of the CGI program. You should not install any
executable programs in the server root directory or its subdirectories. A client should never have
the ability to directly access the executable file itself. It is permitted to have multiple file name
extensions that reference the same program. The only requirement is that the extension be unique
for the given host. The program name may contain environment variables surrounded by %
symbols. For example, %ProgramFiles% would be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a
script or batch file. If the program name does not contain a directory path, then the standard
Windows pathing rules will be used when searching for an executable file that matches the given
name. It is recommended that you always provide a full path to the executable file.

The Parameters string can specify additional command line parameters that should be passed to
the CGI program as arguments. This string can also contain a placeholder named "%1" that will be
replaced by the full path to the local script filename. If no placeholder is included in the
parameters, or the Parameters argument is omitted, the script file name will be passed to the
program as its only argument.

 



The executable program that is registered using this program must be a console application that
conforms to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as
part of a POST will be provided to the program as standard input. The output from the program
must be written to standard output. The first lines of output from the program should be any
response headers, followed by an empty line. Each line should be terminated with a carriage-
return and linefeed (CRLF) sequence. If the CGI program outputs additional data to be processed
by the client, it should provide Content-Type and Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it
will be executing in. The program will be started as a child process of the server application, and
will inherit the same privileges. This means that it will typically have access to the boot drive, the
Windows folders and the system registry. CGI programs must ensure that all query parameters
and request data submitted by the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have
elevated privileges, do not register a program that requires elevated privileges or has a manifest
that specifies the requestedExecutionLevel as requiring administrative privileges.

Example
// Register a handler for VBScript
HttpServer1.RegisterHandler httpHostDefault, "vbs", 
"%SystemRoot%\System32\cscript.exe", "/nologo /b ""%1"""

See Also
RegisterProgram Method, OnCommand Event, OnExecute Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RegisterProgram Method  

 

Register a CGI program for use and associate it with a virtual path on the server.

Syntax
object.RegisterProgram( HostId, CommandName, ProgramFile, [Parameters], [Directory] )

Parameters
HostId

An integer value which identifies the virtual host. A value of zero specifies that the default virtual
host should be used.

CommandName

A string which specifies the virtual path to the CGI program. This must be an absolute path, but
does not have to specify a pre-existing virtual path or map to the directory structure of the root
document directory for the server. The maximum length of the virtual path is 1024 characters.

ProgramFile

A string which specifies the full path to the CGI program on the local system.

Parameters

An optional string that specifies additional parameters for the program. This value will be
passed to the program as command line arguments. If the CGI program does not require any
command line parameters, this parameter may be omitted.

Directory

An optional string that specifies the current working directory for the program. If this parameter
is omitted, the server will use the root document directory for the virtual host.

Return Value
A value of zero is returned if the program was registered successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The RegisterProgram method registers a CGI program and associates it with a virtual path. When
the client issues a GET or POST command specifying the virtual path associated with the program,
the program will be executed and the output return to the client.

The ProgramFile string specifies file name of the CGI program. You should not install any
executable programs in the server root directory or its subdirectories. A client should never have
the ability to directly access the executable file itself. It is permitted to have multiple virtual paths
that reference the same executable file. The only requirement is that the virtual path be unique for
the given host. The program name may contain environment variables surrounded by % symbols.
For example, %ProgramFiles% would be expanded to the C:\Program Files folder.

It is important to note that the program specified by ProgramFile must be an executable file, not a
script or batch file. If the program name does not contain a directory path, then the standard
Windows pathing rules will be used when searching for an executable file that matches the given
name. It is recommended that you always provide a full path to the executable file.

The Parameters string can specify additional command line parameters that should be passed to
the CGI program as arguments. This string can also contain a placeholder named "%1" that will be
replaced by the virtual path associated with the program. If this argument is omitted, no additional
parameters are passed to the program.

 



The executable program that is registered using this program must be a console application that
conforms to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as
part of a POST will be provided to the program as standard input. The output from the program
must be written to standard output. The first lines of output from the program should be any
response headers, followed by an empty line. Each line should be terminated with a carriage-
return and linefeed (CRLF) sequence. If the CGI program outputs additional data to be processed
by the client, it should provide Content-Type and Content-Length response headers.

When developing a CGI program, it is important to take into consideration the environment that it
will be executing in. The program will be started as a child process of the server application, and
will inherit the same privileges. This means that it will typically have access to the boot drive, the
Windows folders and the system registry. CGI programs must ensure that all query parameters
and request data submitted by the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have
elevated privileges, do not register a program that requires elevated privileges or has a manifest
that specifies the requestedExecutionLevel as requiring administrative privileges.

See Also
RegisterHandler Method, OnCommand Event, OnExecute Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RequireAuthentication Method  

 

Send a response to the client indicating that authentication is required.

Syntax
object.RequireAuthentication( ClientId, [AuthType], [Realm] )

Parameters
ClientId

An integer that identifies the client session.

AuthType

An optional integer value that corresponds to a result code, informing the client if the
redirection is permanent or temporary. If this parameter is omitted, then Basic authentication
will be used by default. This parameter may be one of the following values:

Value Constant Description

1 httpAuthBasic This option specifies the Basic authentication scheme should be
used. This option is supported by all clients that support at least
version 1.0 of the protocol.

Realm

An optional string value that is displayed a web browser to indicate to the user which username
and password they should use. If this parameter is omitted or is an empty string, the domain
name the client used to establish the connection will be used.

Return Value
A value of zero is returned if the method completed successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The RequireAuthentication method can be used within an OnCommand event handler to
indicate to the client that it must provide a username and password to access the requested
resource. The client should respond by issuing another request that includes the required
credentials. To determine if a client has included valid credentials with its request, check the value
of the IsAuthenticated property.

Some clients may require that the session be secure if authentication is requested or display
warning messages to the user if the connection is not secure. If your application will require clients
to authenticate before accessing specific resources, it is recommended that you enable security by
setting the Secure property to True prior to starting the server.

See Also
SendError Method, SendResponse Method, OnAuthenticate Event, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control to its default values.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released. Is the server is active when this method is called, the method will return
immediately and the server shutdown process will proceed asynchronously in the background.

If this method is used to forcibly stop an active server, no further events will be generated by the
control. The OnDisconnect event will not fire for each client session that is terminated and the
OnStop event will not fire when the shutdown process has completed. If your application depends
on these events, you should not use the Reset method to stop an active server.

See Also
Disconnect Method, Initialize Method, Stop Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResolvePath Method  

 

Resolve a path to its full virtual or local file name.

Syntax
object.ResolvePath( ClientId, SourcePath, ResolvedPath, [IsVirtual] )

Parameters
ClientId

An integer that identifies the client session.

SourcePath

A string that specifies the name of the path to resolve. This may either be a virtual path, or a
path to a local file name or directory.

ResolvedPath

A string that will contain the resolved path when the method returns.

IsVirtual

An optional Boolean parameter that specifies if the source path is a virtual path or local path.

Return Value
A value of zero is returned if the path could be resolved. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ResolvePath method is used to resolve a local file name or directory to obtain its virtual path
name, or obtain the full path name of a file or directory that is mapped to a virtual path.  If the
IsVirtual parameter is omitted or is False, the SourcePath parameter is considered to be a path to
a local file or directory and the ResolvedPath parameter will contain the virtual path. If the
IsVirtual parameter is True, then the SourcePath parameter is considered to be a virtual path and
the ResolvedPath parameter will contain the full path to the local file or directory that the virtual
path is mapped to

A virtual path for the client is either relative to the server root directory, or the client home
directory if the user was specified in the request URI. These virtual paths are what the client will see
as an absolute path on the server. For example, if the server was configured to use
"C:\ProgramData\MyServer" as the root directory, and the SourcePath parameter was specified as
"C:\ProgramData\MyServer\Documents\Research", this method would return the virtual path to
that directory as "/Documents/Research".

See Also
LocalPath Property, VirtualPath Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Restart Method  

 

Restart the server, terminating all active client connections

Syntax
object.Restart

Parameters
None.

Return Value
A value of zero is returned if the server was restarted, otherwise a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Restart method terminates all active client connections, recreates a new listening socket
bound to the same address and port number, and then resumes accepting new client
connections. The OnDisconnect event will not fire for those client sessions that are terminated
when the server is restarted.

See Also
Resume Method, Start Method, Stop Method, Suspend Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Resume Method  

 

Resume accepting new client connections.

Syntax
object.Restart

Parameters
None.

Return Value
A value of zero is returned if the server has resumed accepting new connections, otherwise a non-
zero error code is returned which indicates the cause of the failure.

Remarks
The Resume method instructs the server to resume accepting new client connections after the
Suspend method was called.

See Also
Restart Method, Start Method, Stop Method, Suspend Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendError Method  

 

Send a result code and message to the client in response to a command.

Syntax
object.SendError( ClientId, ErrorCode, [Message] )

Parameters
ClientId

An integer that identifies the client session.

ErrorCode

An integer value that specifies the error code that should be sent to the client. This value should
correspond to the error result codes defined for HTTP in RFC 2616, which are three-digit values
in the range of 400 through 599. The function will fail if an invalid error code is specified.

Message

An optional string value that specifies a message to be sent to the client. If this parameter is
omitted is an empty string, a default message associated with the result code will be used.

Return Value
A value of zero is returned if the response was sent to the client. Otherwise, a non-zero error code
is returned which indicates the cause of the failure.

Remarks
The SendError method sends a response to the client indicating that an error has occurred,
providing a numeric error code and HTML formatted text which may be displayed to the user. The
Message parameter should provide a brief description of the error that will be included in the
output sent to the client. Note that the message should not contain any special formatting control
characters or HTML markup.

This method provides a simplified interface for sending an error response to the client. In some
cases, a browser may choose to display its own error message to the user in place of the generic
HTML document generated by this method. If you want your application to send a customized
HTML document for a specific type of error, you should use the SendResponse method.

If you wish to redirect the client to use an alternate URL to access the requested resource, it is
recommended that you use the RedirectRequest method rather than sending an error response.

See Also
RedirectRequest Method, SendResponse Method, OnCommand Event, OnResult Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendResponse Method  

 

Send a result code and message to the client in response to a command.

Syntax
object.SendResponse( ClientId, ResultCode, [Buffer], [Length] )

Parameters
ClientId

An integer that identifies the client session.

ResultCode

An integer value that specifies the command result code to be returned to the client.

Buffer

An optional string or byte array that contains data that should be returned to the client in
response to a request. If the server does not wish to send any response data to the client, this
parameter can be omitted.

Length

An optional integer value that specifies the number of bytes of data that should be sent to the
client. If this parameter is omitted, the number of bytes sent is determined by the length of the
string buffer or number of bytes in the byte array provided by the caller. This parameter is
ignored if no response data is provided.

Return Value
A value of zero is returned if the response was sent to the client. Otherwise, a non-zero error code
is returned which indicates the cause of the failure.

Remarks
The SendResponse method is used to respond to a command issued by the client from within an
OnCommand event handler. Command responses are normally handled by the server as a
normal part of processing a command and this method is only used if the application has
implemented custom commands or wishes to modify the standard responses sent by the server.

Result codes must be three digits (in the range of 100 through 999) and although this method will
support the use of non-standard result codes, it is recommended that the client application use
the standard codes defined in RFC 2616 whenever possible. The use of non-standard result codes
may cause problems with HTTP clients that expect specific result codes in response to a particular
command.

If you do not wish to return any data to the client in response to its request (for example, if you
want the response to only consist of the headers set using the SetHeader method), then you can
omit the Buffer and Length parameter, and should specify a result code of 204. This tells the client
that the request was successful and there is no data included with the response.

This method should only be called once in response to a command sent by the client. If a result
code has already been sent in response to a command and this method is called, it will fail and
return an error. This is necessary because sending multiple result codes in response to a single
command may cause unpredictable behavior by the client.

See Also
OnCommand Event, OnResult Event

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SetHeader Method  

 

Create or change the value of a response header for the client session.

Syntax
object.SetHeader( ClientId, HeaderName, HeaderValue )

Parameters
ClientId

An integer that identifies the client session.

HeaderName

A string that specifies the name of the header field. Header names are not case-sensitive and
should not include the colon which acts as a delimiter that separates the header name from its
value.

HeaderValue

A string variable that contains the new value of the response header.

Return Value
A Boolean value that specifies if the method was successful.

Remarks
The SetHeader method will change the value of a response header for the specified client session,
typically within an OnCommand event handler. If the HeaderName value matches an existing
header field, its value will be replaced. If the header name is not defined, then a new header will
be created with the given value. You should not change the value of most standard response
header values unless you are certain of the impact that it would have on the normal operation of
the client.

If you wish to define a custom header value that would be included in the response to a client
request, you should prefix the header name with "X-" to avoid potential conflicts with the standard
response headers. For example, if you wanted to identify a customer, you could create a header
field with the name "X-Customer-ID" and set the value to the customer ID number. The client
application would receive this custom header value as part of the response to its request for a
document.

Refer to Hypertext Transfer Protocol Headers for a list of common request and response headers
that are used.

See Also
GetAllHeaders Method, GetHeader Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/httpsrv/control/headers.html
file:///C|/Projects/cstools11/pdf/httpsrv/control/headers.html


 SetVariable Method  

 

Create or change the value of a CGI environment variable for the specified client.

Syntax
object.SetVariable( ClientId, VariableName, VariableValue )

Parameters
ClientId

An integer that identifies the client session.

VariableName

A string that specifies the name of the header field. Header names are not case-sensitive and
should not include the colon which acts as a delimiter that separates the header name from its
value.

VariableValue

A string variable that contains the new value of the response header.

Return Value
A Boolean value that specifies if the method was successful.

Remarks
The SetVariable method will change the value of a environment variable for the specified client
session, typically within an OnCommand event handler. If the VariableName value matches an
existing variable, its value will be replaced. If the variable is not defined, then a new variable will be
created with the given value. The value of an environment variable can be obtained using the
GetVariable function.

The server will automatically create a number of different environment variables that will be
passed to a program or script executed by the server. These variables are defined in RFC 3875 as
part of the Common Gateway Interface (CGI) 1.1 specification. The following variables are defined
by the server and should not be modified directly by the application:

Variable Name Description

AUTH_TYPE The authorization scheme used by the server to authenticate the client
session

CONTENT_LENGTH The length of the request data provided by the client

CONTENT_TYPE The MIME type that identifies the type of content provided by the
client

DOCUMENT_ROOT The full path to the local document root directory on the server

GATEWAY_INTERFACE The version of the Common Gateway Interface that is being used by
the server

PATH_INFO The resource or sub-resource that is to be returned by the program or
script

PATH_TRANSLATED The path information mapped to the server root document directory
structure

QUERY_STRING The URL encoded query parameters passed to the program or script

 



REMOTE_ADDR The network address of the client sending the request to the server

REMOTE_HOST The same value as the REMOTE_ADDR variable

REMOTE_USER The username specified as part of the authentication credentials
provided by the client

REQUEST_METHOD The method used by the client to request the resource

REQUEST_URI The URI for the script provided by the client

SCRIPT_FILENAME The full path to the program or script on the server

SCRIPT_NAME The path to the program or script specified by the client

SERVER_NAME The hostname or IP address of the server that the client connected to

SERVER_PORT The port number that the client used to connect to the server

SERVER_PORT_SECURE This variable has a value of "1" if the client connection to the server is
secure

SERVER_PROTOCOL The version of the server protocol used

SERVER_SOFTWARE The server identity string which specifies the application name and
version

In addition to the environment variables listed, the server will also create variables that are prefixed
with "HTTP_" that are set to the value of request headers that are not otherwise defined. For
example, the HTTP_USER_AGENT variable will be set to the value of the User-Agent header
provided by the client as part of the request.

Note that calling the SetVariable method from within the OnExecute event handler will have no
effect because it occurs after the CGI program or script has completed execution. To create or
modify environment variables for the client session, it should be done within an OnCommand
event handler.

This method will not change the environment block for the server process. Each client session is
allocated its own private environment block which is inherited by the CGI program. When the
client session terminates, the memory allocated for its environment is released.

See Also
GetHeader Method, OnCommand Event, OnExecute Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Start Method  

 

Start listening for client connections on the specified IP address and port number.

Syntax
object.Start( [ServerAddress], [ServerPort], [Directory] [MaxClients], [IdleTime], [Options] )

Parameters
ServerAddress

An optional string which specifies the local hostname or IP address address that the server
should be bound to. If this parameter is an empty string, then an appropriate address will
automatically be used. If a specific address is used, the server will only accept client connections
on the network interface that is bound to that address. If this parameter is omitted, the control
will accept connections on the address specified by the value of the ServerAddress property.

ServerPort

An optional integer that specifies the port number the server should use to listen for client
connections. If a value of zero is specified, the server will use the standard port number 21 to
listen for connections, or port 990 if the server is configured to use implicit SSL. The port
number used by the application must be unique and multiple instances of a server cannot use
the same port number. It is recommended that a port number greater than 5000 be used for
private, application-specific implementations. If this parameter is omitted, it defaults to the value
specified by the ServerPort property.

Directory

An optional string that specifies the path to the root directory for the server. If this parameter is
omitted, it defaults to the value specified by the Directory property. If this property is not set
and no directory is specified, the server will use the current working directory as the root
directory.

MaxClients

An optional integer value that specifies the maximum number of clients that may connect to the
server. If this parameter is omitted, the value specified by the MaxClients property will be used.
This value can be adjusted after the server has been created by calling the Throttle method.

IdleTime

An optional integer value that specifies the number of seconds a client can be idle before the
server terminates the session. If this argument is not specified, the value of the IdleTime
property will be used. The default idle timeout period is 300 seconds (5 minutes).

Options

An optional integer value that specifies specifies one or more server options. This value is
created by combining the options using a bitwise Or operator. Note that if this argument is
specified, it will override any property values that are related to that option. For a list of options,
see Server Option Constants.

Return Value
A value of zero is returned if the server was started, otherwise a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port

 

file:///C|/Projects/cstools11/pdf/httpsrv/control/options.html


number. The server is started in its own thread and manages the client sessions independently of
the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

It is recommended that you always specify an absolute path for the server root directory, either by
passing the full pathname as an argument to this method or by setting the Directory property. If
the path includes environment variables surrounded by percent (%) symbols, they will be
automatically expanded.

If you have configured the server to permit clients to upload files, you must ensure that your
application has permission to create files in the directory that you specify. A recommended
location for the server root directory would be a subdirectory of the %ALLUSERSPROFILE%
directory. Using the environment variable ensures that your server will work correctly on different
versions of Windows. If the root directory does not exist at the time that the server is started, it will
be created.

See Also
Restart Method, Resume Method, Stop Method, Suspend Method, Throttle Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Stop Method  

 

Stop listening for new client connections and terminate all client sessions.

Syntax
object.Stop

Parameters
None.

Return Value
A value of zero is returned if the server was stopped, otherwise a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active
client connections and terminates the thread that is managing the server session.

See Also
Restart Method, Resume Method, Start Method, Suspend Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Suspend Method  

 

Suspend accepting new client connections.

Syntax
object.Suspend

Parameters
None.

Return Value
A value of zero is returned if the server has suspended accepting new connections, otherwise a
non-zero error code is returned which indicates the cause of the failure.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. All
subsequent attempts to connect to the server will be rejected by the server. To resume accepting
new client connections, call the Resume method. This method will not affect those clients that
have already established a connection with the server before the Suspend method was called.

See Also
Restart Method, Resume Method, Start Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Throttle Method  

 

Limit the maximum number of client connections, connections per IP address and connection rate.

Syntax
object.Throttle( [MaxClients], [MaxClientsPerAddress], [ConnectionRate] )

Parameters
MaxClients

An optional integer value that specifies the maximum number of clients that may connect to the
server. If this parameter is omitted, the maximum number of clients allowed will be unchanged.
The default value is 100 active client connections.

MaxClientsPerAddress

An optional integer value that specifies the maximum number of clients that may connect to the
server from the same IP address. If this parameter is omitted, the maximum number of clients
per address will be unchanged. The default value is 4 client connections per address.

ConnectionRate

An optional integer value that specifies a restriction on the rate of client connections, limiting
the number of connections that will be accepted within that period of time. A value of zero
specifies that there is no restriction on the rate of client connections. The higher this value, the
fewer the number of connections that will be accepted within a specific period of time. By
default, there is no limit on the client connection rate.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Throttle method limits the number of connections and the connection rate to minimize the
potential impact of a large number of client connections over a short period of time. This can be
used to protect the server from a client application that is malfunctioning or a deliberate denial-
of-service attack in which the attacker attempts to flood the server with connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the Start method is called with the maximum number of clients set to 100, and then
the Throttle method is called lowering that value to 75, no existing client connections will be
affected by the change. However, the server will not accept any new connections until the number
of active clients drops below 75.

Increasing the ConnectionRate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000
would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

See Also

 



MaxClients Property, Resume Method, Start Method, Suspend Method, Stop Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Hypertext Transfer Server Control Events  

 

Event Description

OnAuthenticate The client has requested authentication with the specified username and password

OnCommand The client has issued a command to the server

OnConnect The client established a connection to the server

OnDisconnect The client has disconnected from the server

OnDownload The client has downloaded a file from the server

OnError The client encountered an error when handling a client request

OnExecute The client has executed an external program on the server

OnIdle The last client has disconnected from the server

OnResult The command issued by the client has been processed by the server

OnStart The server has started listening for connections

OnStop The server has stopped accepting connections and all client sessions are terminated

OnTimeout The client has exceeded the maximum allowed idle time

OnUpload The client has uploaded a file to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnAuthenticate Event  

 

The client has requested authentication with the specified username and password.

Syntax
Sub object_OnAuthenticate ( [Index As Integer,] ByVal ClientId As Variant, ByVal HostName
As Variant, ByVal UserName As Variant, ByVal Password As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

HostName

A string that specifies the host name that the client used to establish the connection.

UserName

A string that specifies the user name provided by the client.

Password

A string that specifies the password provided by the client.

Remarks
The OnAuthenticate event occurs when the client has included authentication credentials with its
request. The event handler can call the Authenticate method to authenticate the client session. If
the client session is not authenticated, the server will send an error response to the client and close
the connection.

In most cases, a client will not provide credentials unless the server indicates that they are required
to access a specific resource. If you wish to password protect documents in a specific folder, use
the AddPath method to create a virtual path to the folder and include the httpAccessProtected
permission. The server will automatically require the client to provide credentials when accessing
those documents. To require authentication for a specific resource, implement an OnCommand
event handler and check the value of the IsAuthenticated property when that resource is
requested. If the property returns False, then use the RequireAuthentication method to indicate
to the client that it must provide authentication credentials.

If the application has created one or more virtual users using the AddUser method and/or the
LocalUser property has been set to True, it is not necessary to implement an OnAuthenticate
handler unless you also wish to perform custom authentication for specific users.

See Also
AddPath Method, AddUser Method, Authenticate Method, RequireAuthentication Method,
OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCommand Event  

 

The client has issued a command to the server.

Syntax
Sub object_OnCommand ( [Index As Integer,] ByVal ClientId As Variant, ByVal Command As
Variant, ByVal Resource As Variant, ByVal Parameters As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

Command

A string that specifies the command that was sent to the server.

Resource

A string that specifies the resource that the client has requested. Depending on the command
issued, it may be a document, a folder or an executable script.

Parameters

A string that specifies any query parameters that have been provided by the client. The string
will be empty if there were no query parameters included with the request. The query
parameters in this string will be URL encoded.

Remarks
The OnCommand event occurs after the client has sent a command to the server, but before the
command has been processed. This event occurs for all commands issued by the client, including
invalid or disabled commands. If the application wishes to handle the command itself, it must
perform any processing and then call the SendResponse method to return data to the client, or
the SendError method to send an error response. If no response to the request is sent from within
the event handler, then the server will perform its default processing for the command.

After the command has been processed, the OnResult event handler will be invoked.

See Also
CommandLine Property, SendError Method, SendResponse Method, OnResult Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The client has established a connection to the server.

Syntax
Sub object_OnConnect ( [Index As Integer,] ByVal ClientId As Variant, ByVal ClientAddress As
Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

ClientAddress

A string that specifies the IP address of the client. This address may either be in IPv4 or IPv6
format, depending on how the server was configured and the address the client used to
establish the connection.

Remarks
The OnConnect event occurs after the client has established its initial connection to the server,
after the server has checked the active client limits and the TLS handshake has been performed if
required. If the server has been suspended, or the limit on the maximum number of client sessions
has been exceeded, the server will terminate the client session prior to this event handler being
invoked.

If no event handler is implemented, the server will perform the default action of accepting the
connection and waiting for the client to send its request. To reject a connection, call the
SendError method to send an error response to the client. If you do not wish to send an error
response, you may simply call the Disconnect method to terminate the session.

See Also
OnCommand Event, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The client has disconnected from the server.

Syntax
Sub object_OnDisconnect ( [Index As Integer,] ByVal ClientId As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

Remarks
The OnDisconnect event occurs when the client disconnects from the server or when the server
terminates the connection to the client by calling the Disconnect method. It is not required for
the application to explicitly disconnect the client within the event handler, and the application
cannot prevent the client from disconnecting from the server.

This event may not occur for a each client session when the server is reset or the control instance
is disposed without the application first calling the Stop method to shutdown the server.

See Also
OnCommand Event, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDownload Event  

 

The client has successfully downloaded a file from the server.

Syntax
Sub object_OnDownload ( [Index As Integer,] ByVal ClientId As Variant, ByVal FileName As
Variant, ByVal FileSize As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

FileName

A string that specifies the full path name of the file on the server that was downloaded.

FileSize

An integer value that specifies the number of bytes of data that was downloaded by the client.

Remarks
The OnDownload event occurs after the client has successfully downloaded a file from the server
using the GET command. If the file transfer fails or is aborted, this event will not occur.

See Also
OnCommand Event, OnUpload Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The client encountered an error when handling a client request.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ClientId As Variant, ByVal ErrorCode As
Variant, ByVal Description As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

ErrorCode

An integer value which specifies the error that has occurred.

Description

A string that describes the error.

Remarks
The OnError event occurs whenever the server encounters an error while accepting a client
connection or processing a request. It is important to note that this event is not raised for every
error that occurs. The following are some common situations in which this event handler may be
invoked:

A network error occurs when the client connection is being accepted by the server. This
could be the result of an aborted connection or some other lower-level failure reported by
the networking subsystem on the server.

The server is configured to use implicit SSL but cannot obtain the security credentials
required to create the security context for the session. Usually this indicates that the server
certificate cannot be found, or the certificate does not have a private key associated with it.
It could also indicate a general problem with the cryptographic subsystem where the client
and server could not successfully negotiate a cipher suite.

A network error occurs when attempting to process a command issued by the client. This
usually indicates that the connection to the client has been aborted, either because the
client is not acknowledging the data that has been exchanged with the server, or the client
has terminated abnormally. This event will not occur if the client terminates the connection
normally.

In most situations where this event handler is invoked, the error is not recoverable and the only
action that can be taken is to terminate the client session.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnExecute Event  

 

The client has executed an external program on the server.

Syntax
Sub object_OnExecute ( [Index As Integer,] ByVal ClientId As Variant, ByVal Resource As
Variant, ByVal Parameters As Variant, ByVal Output As Variant, ByVal ExitCode As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

Resource

A string that specifies the resource that the client has requested.

Parameters

A string that specifies any query parameters that have been provided by the client. The string
will be empty if there were no query parameters included with the request. The query
parameters in this string will be URL encoded.

Output

A string that contains the standard output of the program that was executed. The format of this
output depends on the application that was executed. If the program outputs control characters
or other binary data, it will be replaced by spaces to ensure that only printable text is returned.

ExitCode

An integer value that specifies the exit code that was returned by the program.

Remarks
The OnExecute event occurs after the client has successfully executed an external CGI program or
script.

External programs must be registered by the server application using the RegisterProgram
method. To enable the use of scripts, the RegisterHandler method can be used to associate an
executable program with a specific file extension.

See Also
RegisterHandler Method, RegisterProgram Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnIdle Event  

 

The OnIdle event is generated after the last client has disconnected from the server.

Syntax
Sub object_OnIdle ( [Index As Integer ] )

Remarks
This event will only occur after at least one client has connected to the server and then closes its
connection or is disconnected. This event will not occur immediately after the server has started
using the Start method, and will not occur when the server is stopped using the Stop method.
Your application should implement an OnStart event handler for when the server first starts, and
an OnStop event handler for when the server is stopped.

If one or more new client connections are accepted after this event occurs, the event will be
generated again when those clients disconnect and the active client count drops to zero.
Therefore it is to be expected that this event will occur multiple times over the lifetime of the
server as it continues to listen for connections.

See Also
IsActive Property, Restart Method, Start Method, Stop Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnResult Event  

 

The command issued by the client has been processed by the server.

Syntax
Sub object_OnResult ( [Index As Integer,] ByVal ClientId As Variant, ByVal Resource As
Variant, ByVal ResultCode As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

Resource

A string that specifies the resource that was requested by the client.

ResultCode

An integer value that specifies the result code that was sent to the client.

Remarks
The OnResult event occurs after the server has processed a command issued by the client. This
event will inform the application whether the command that was issued by the client was
successful or not. If the command was successful, then other related events such as OnExecute
may also fire after this event.

The ResultCode parameter is a three-digit numeric code that is used to indicate success or failure.
These codes are defined as part of the Hypertext Transfer Protocol standard, with values in the
range of 200-299 indicating success. Values in the range of 400-499 and 500-599 indicate failure
due to various error conditions. Examples of such failures would be attempting to access a file that
does not exist, issuing an unrecognized command or attempting to perform a privileged
operation.

See Also
OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnStart Event  

 

The OnStart event is generated when the server starts listening for connections.

Syntax
Sub object_OnStart ( [Index As Integer ] )

Remarks
This event is generated after the Start method has been called and the server and begins listening
for connections from clients. An application can use this event to update the user interface and
perform any additional initialization functions that are required by the application.

See Also
IsActive Property, Start Method, Stop Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnStop Event  

 

The OnStop event is generated when the server has stopped.

Syntax
Sub object_OnStop ( [Index As Integer ] )

Remarks
This event is generated after the Stop method has been called and all active client sessions have
terminated. An application can use this event to update the user interface and perform any
additional cleanup functions that are required by the application. If the server has a large number
of active clients, this event may not occur immediately. The OnDisconnect event will fire for each
client as the server is in the process of shutting down. During the shutdown process, the server is
still considered to be active, however it will not accept any further connections. When the OnStop
event is fired, the server thread has terminated and the listening socket has been closed.

This event will not occur if the server is forcibly stopped using the Reset method, or when the
Uninitialize method is called prior to disposing an instance of the control. Applications that
depend on this event should ensure that the server is shutdown gracefully using the Stop method
prior to terminating the application.

See Also
IsActive Property, Start Method, Stop Method, OnDisconnect Event, OnStart Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The client has exceeded the maximum allowed idle time.

Syntax
Sub object_OnTimeout ( [Index As Integer,] ByVal ClientId As Variant, ByVal Elapsed As
Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

Elapsed

An integer value that specifies the number of seconds that have elapsed.

Remarks
The OnTimeout event occurs after the client has has exceeded the maximum allowed idle time,
and immediately before the client is disconnected from the server. This event will never occur
during a file transfer or directory listing.

To change the default idle timeout period for all clients, set the IdleTime property prior to starting
the server. To set the idle timeout period for a specific client, set the ClientIdle property in an
OnConnect event handler.

See Also
ClientIdle Property, IdleTime Property, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnUpload Event  

 

The client has successfully uploaded a file to the server.

Syntax
Sub object_OnUpload ( [Index As Integer,] ByVal ClientId As Variant, ByVal FileName As
Variant, ByVal FileSize As Variant )

Parameters
ClientId

An integer value which uniquely identifies the client session.

FileName

A string that specifies the full path name of the file on the server that was created or replaced.

FileSize

An integer value that specifies the number of bytes of data that was uploaded by the client.

Remarks
The OnUpload event occurs after the client has successfully uploaded a file to the server using the
PUT command. If the file transfer fails or is aborted, this event will not occur.

See Also
OnCommand Event, OnUpload Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Internet Control Message Protocol Control

Determine if a remote host is reachable and how packets of data are routed to that system.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name IcmpClientCtl.IcmpClient

File Name CSICMX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.IcmpClient.11

ClassID EFBC543A-466D-4C07-A884-F28590D095BD

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 792

Overview
The Internet Control Message Protocol (ICMP) is commonly used to determine if a remote host is
reachable and how packets of data are routed to that system. Users are most familiar with this
protocol as it is implemented in the ping and traceroute command line utilities. The ping
command is used to check if a system is reachable and the amount of time that it takes for a
packet of data to make a round trip from the local system, to the remote host and then back
again. The traceroute command is used to trace the route that a packet of data takes from the
local system to the remote host, and can be used to identify potential problems with overall
throughput and latency. The control can be used to build in this type of functionality in your own
applications, giving you the ability to send and receive ICMP echo datagrams in order to perform
your own analysis.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires



the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Control Message Protocol Properties  

 

Property Description

AutoResolve Determines if host names and IP addresses are automatically resolved

Blocking Gets and sets the blocking state of the control

HostAddress Gets and sets the IP address of the remote host

HostName Gets and sets the name of the remote host

Interval Gets and sets the number of milliseconds between ICMP echo packets

IsBlocked Return if the control is blocked performing an operation

IsInitialized Determine if the control has been initialized

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

PacketSize Gets and sets the size of an ICMP echo datagram

RecvCount Returns the number of packets that have been received

SendCount Returns the number of packets that have been sent

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

TimeToLive Gets and sets the time-to-live value for the ICMP datagram

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

TripAverage Returns the average packet trip time in milliseconds

TripMaximum Returns the maximum packet trip time in milliseconds

TripMinimum Returns the minimum packet trip time in milliseconds

Version Return the current version of the object

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/icmp/control/property/isinitialized.html


 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnEcho and OnReply are only
fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, OnEcho Event, OnReply Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the remote host.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a remote system that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the remote host.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the remote system that you wish to
communicate with. If the name is found in the host table, the HostAddress property is updated to
reflect the IP address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Interval Property  

 

Gets and sets the number of milliseconds between ICMP echo packets.

Syntax
object.Interval [= msecs ]

Remarks
The Interval property determines the number of milliseconds the control waits until an ICMP echo
packet is sent to the target system. If the interval is set to 0, no more packets are sent.

Data Type
Integer (Int32)

See Also
PacketSize Property, SendCount Property, RecvCount Property, OnEcho Event, OnReply Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PacketSize Property  

 

Gets and sets the size of an ICMP echo datagram.

Syntax
object.PacketSize [= bytes ]

Remarks
The PacketSize property determines the size of an ICMP echo packet. The default packet size is
32 bytes. The minimum packet size is 1 byte and the maximum packet size is 65,535 bytes.
Specifying a packet size outside of this range will result in an error. Note that packet sizes over 512
bytes may not be supported by your local networking hardware or intermediate routers.

Data Type
Integer (Int32)

See Also
Interval Property, Echo Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RecvCount Property  

 

Returns the number of packets that have been received.

Syntax
object.RecvCount

Remarks
The RecvCount property returns the number of packets that have been echoed back from the
remote system.

Data Type
Integer (Int32)

See Also
SendCount Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendCount Property  

 

Returns the number of packets that have been sent.

Syntax
object.SendCount

Remarks
The SendCount property returns the number of packets that have been echoed to the remote
system.

Data Type
Integer (Int32)

See Also
RecvCount Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

IcmpClient1.ThrowError = False
nError = IcmpClient1.Echo(strHostName)

If nError > 0 Then
    MsgBox IcmpClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

IcmpClient1.ThrowError = True
IcmpClient1.Echo strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= milliseconds ]

Remarks
Setting the Timeout property specifies the number of milliseconds until a blocking operation fails
and the control returns an error.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TimeToLive Property  

 

Gets and sets the time-to-live value for the ICMP datagram.

Syntax
object.TimeToLive [= value ]

Remarks
The time-to-live (TTL) value is specified in the IP header of a datagram, and is used to control the
number of routers that the datagram is passed through. Each router that handles the datagram
decrements the TTL value by one. When it drops to zero, a datagram is returned to the sender,
specifying that the TTL has been exceeded.

Setting this property changes the default TTL value for all subsequent ICMP datagrams sent by the
control, with the default value being 255. Reading this property returns the value of the TTL field in
the IP header of the last datagram received.

Data Type
Integer (Int32)

See Also
PacketSize Property, Timeout Property, Echo Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 icmpTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 icmpTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 icmpTraceWarning Only those function calls which fail, or return values
which indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 icmpTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the remote host.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TripAverage Property  

 

Returns the average packet trip time in milliseconds.

Syntax
object.TripAverage

Remarks
The TripAverage property returns the average number of milliseconds for an ICMP echo packet
to be returned from the remote host.

Data Type
Integer (Int32)

See Also
Interval Property, RecvCount Property, SendCount Property, TripMaximum Property, TripMinimum
Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TripMaximum Property  

 

Returns the maximum packet trip time in milliseconds.

Syntax
object.TripMaximum

Remarks
The TripMaximum property returns the maximum number of milliseconds for an ICMP echo
packet to be returned from the remote host.

Data Type
Integer (Int32)

See Also
Interval Property, RecvCount Property, SendCount Property, TripAverage Property, TripMinimum
Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TripMinimum Property  

 

Returns the minimum packet trip time in milliseconds.

Syntax
object.TripMinimum

Remarks
The TripMinimum property returns the minimum number of milliseconds for an ICMP echo
packet to be returned from the remote host.

Data Type
Integer (Int32)

See Also
Interval Property, RecvCount Property, SendCount Property, TripAverage Property, TripMaximum
Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Control Message Protocol Methods  

 

Method Description

Cancel Cancels the current blocking network operation

Echo Send an ICMP echo datagram to the specified host

Initialize Initialize the control and validate the runtime license key

Reset Reset the internal state of the control

TraceRoute Send a series of ICMP echo datagrams to trace the route taken from the local system to the remote host

Uninitialize Uninitialize the control and release any system resources that were allocated

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Reset Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Echo Method  

 

Send an ICMP echo datagram to the specified host.

Syntax
object.Echo( [RemoteHost], [Timeout], [TimeToLive] )

Parameters
RemoteHost

A string which specifies the host name or IP address which the ICMP echo datagram will be sent
to. If this argument is omitted, the value of the HostAddress property will be used. If the
HostAddress property has not been set, then the value of the HostName property will be
used as the default value.

Timeout

An integer value which specifies the number of milliseconds until a blocking operation fails and
the control returns an error. If this argument is omitted, the value of the Timeout property will
be used as the default value.

TimeToLive

An integer value which specifies the time-to-live (TTL) value for the ICMP echo datagram. If this
argument is omitted, the value of the TimeToLive property will be used as the default value.
For more information about how this is used, refer to the TimeToLive property.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Echo method sends an ICMP echo datagram to the specified host. The failure for a host to
respond to an ICMP echo datagram may not indicate a problem with the remote system. In some
cases, a router between the local and remote host may be malfunctioning or discarding the
datagrams. Systems can also be configured to specifically ignore ICMP echo datagrams and not
respond to them; this is often a security measure to prevent certain kinds of Denial of Service
attacks.

The ability to send ICMP datagrams may be restricted to users with administrative privileges,
depending on the policies and configuration of the local system. If you are unable to send or
receive any ICMP datagrams, it is recommended that you check the firewall settings and any third-
party security software that could impact the normal operation of this component.

See Also
Blocking Property, HostAddress Property, HostName Property, Timeout Property, TimeToLive
Property, TraceRoute Method, OnEcho Event, OnReply Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set icmpClient = CreateObject("SocketTools.IcmpClient.11")

nError = icmpClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/icmp/control/property/isinitialized.html


 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceRoute Method  

 

Send a series of ICMP echo datagrams to trace the route taken from the local system to the
remote host.

Syntax
object.TraceRoute( [RemoteHost], [MaxHops], [Timeout] )

Parameters
RemoteHost

An optional string which specifies the host name or IP address which the ICMP echo datagram
will be sent to. If this argument is omitted, the value of the HostAddress property will be used.
If the HostAddress property has not been set, then the value of the HostName property will
be used as the default value.

MaxHops

An optional integer value which specifies the maximum number of routers the datagram will be
forwarded through (the number of hops) to the remote host. The minimum value is 1 and the
maximum value is 255. It is recommended that most applications specify a value of at least 30. If
this argument is omitted, the default value of 30 will be used.

Timeout

An optional integer value which specifies the number of milliseconds until a blocking operation
fails and the control returns an error. If this argument is omitted, the value of the Timeout
property will be used as the default value.

Return Value
The method returns the total number of hops from the local system to the remote host. If the
method fails, it will return a value of -1. Check the value of the LastError property to determine
the cause of the failure.

Remarks
The TraceRoute method sends a series of ICMP echo datagrams to the specified host, adjusting
the time-to-live value to determine the intermediate hosts that route the packet. This method will
always block until the trace completes, regardless of how the Blocking property is set. The
OnTrace event will fire for each intermediate host along the route.

It is important to note that the failure of an intermediate host to respond to an ICMP echo
datagram may not indicate a problem with the remote system. Systems can be configured to
specifically ignore ICMP echo datagrams and not respond to them; this is often a security measure
to prevent certain kinds of Denial of Service attacks.

The ability to send ICMP datagrams may be restricted to users with administrative privileges,
depending on the policies and configuration of the local system. If you are unable to send or
receive any ICMP datagrams, it is recommended that you check the firewall settings and any third-
party security software that could impact the normal operation of this component.

See Also
HostAddress Property, HostName Property, Timeout Property, Echo Method, OnTrace Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Control Message Protocol Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnEcho The OnEcho event is generated when a packet is sent to the remote host

OnError This event is generated when a control error occurs

OnReply The OnReply event is generated when reply to the ICMP echo datagram is received

OnTimeout This event is generated when a blocking operation times out

OnTrace This event is generated for each intermediate host when tracing the route from the local system to a remote host

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnEcho Event  

 

The OnEcho event is generated when a packet is sent to the remote host.

Syntax
Sub object_OnEcho( [Index As Integer,] ByVal SequenceId As Variant, ByVal RemoteHost As
Variant, ByVal PacketSize As Variant )

Remarks
The OnEcho event is generated for non-blocking sockets when an ICMP echo datagram is sent to
the remote host. This event is only generated when the Blocking property is set to False. The
following arguments are passed to the event handler:

SequenceId

An integer which specifies the packet sequence number, which is used to uniquely identify each
packet that is sent to the remote host. This value will increase for each ICMP echo datagram
that is sent until the remote host address is changed. Once a new remote host is specified, the
sequence number is reset.

RemoteHost

A string which specifies the host name or IP address that the echo datagram was sent to.

PacketSize

An integer which specifies the size of the ICMP echo datagram that was sent to the remote
host.

See Also
Blocking Property, Echo Method, OnReply Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnReply Event  

 

The OnReply event is generated when reply to the ICMP echo datagram is received.

Syntax
Sub object_OnReply( [Index As Integer,] ByVal SequenceId As Variant, ByVal RemoteHost As
Variant, ByVal PacketSize As Variant, ByVal ElapsedTime As Variant )

Remarks
The OnReply event is fired when a packet is echoed back from the remote system. Note that
there is no guarantee that packets will be returned in the same sequence order they were sent or
that they will be returned at all. This event is only generated when the Blocking property is set to
False. The following arguments are passed to the event handler:

SequenceId

An integer which specifies the packet sequence number, which is used to uniquely identify each
packet that is sent to the remote host. This value will increase for each ICMP echo datagram
that is received.

RemoteHost

A string which specifies the host name or IP address that returned the echo datagram.

PacketSize

An integer which specifies the size of the ICMP echo datagram that was received.

ElapsedTime

An integer which specifies the number of milliseconds that have elapsed since the packet was
sent by the control. This value can be used to measure the latency between the local system
and remote host.

See Also
Blocking Property, Echo Method, OnEcho Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. This event is only triggered when the Blocking property is set to True.

See Also
Blocking Property, Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTrace Event  

 

The OnTrace event is generated for each intermediate host when tracing the route from the local
system to a remote host.

Syntax
Sub object_OnTrace( [Index As Integer,] ByVal Distance As Variant, ByVal RemoteHost As
Variant, ByVal TripAverage As Variant ByVal TripMaximum As Variant ByVal TripMinimum As
Variant )

Remarks
The OnTrace event is generated when the TraceRoute method is called. This event will fire for
each intermediate host in the route from the local system and the remote host. The following
arguments are passed to the event handler:

Distance

An integer which specifies distance from the local system to the specified host. This value
represents the number of times that the packet was forwarded through a router, also known as
the number of "hops" to the remote host. With a trace route, this value will start at one and
increment by one for each intermediate host until the destination is reached or the operation
times out.

RemoteHost

A string which specifies the host name or IP address for the host along the route. If the
AutoResolve property is True, then the control will attempt to determine the host name of the
system. If the host name can not be determined, or the property is False, then this argument will
specify the IP address. Note that performing the reverse DNS lookup to resolve the host name
can be time consuming.

TripAverage

An integer which specifies the average number of milliseconds that it took for a series of ICMP
echo packets to be returned from the host.

TripMaximum

An integer which specifies the maximum number of milliseconds that it took for a series of ICMP
echo packets to be returned from the host.

TripMinimum

An integer which specifies the minimum number of milliseconds that it took for a series of ICMP
echo packets to be returned from the host.

See Also
AutoResolve Property, TraceRoute Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Internet Message Access Protocol Control

Manage email messages and mailboxes on a mail server.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name ImapClientCtl.ImapClient

File Name CSMAPX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.ImapClient.11

ClassID 63472DEA-CB51-4A3F-8886-703D7AC887E2

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 3501

Overview
The Internet Message Access Protocol (IMAP) is an application protocol which is used to access a
user's email messages which are stored on a mail server. However, unlike the Post Office Protocol
(POP) where messages are downloaded and processed on the local system, the messages on an
IMAP server are retained on the server and processed remotely. This is ideal for users who need
access to a centralized store of messages or have limited bandwidth. For example, traveling
salesmen who have notebook computers or mobile users on a wireless network would be ideal
candidates for using IMAP.

The SocketTools IMAP control implements the current standard for this protocol, and provides
functions to retrieve messages, or just certain parts of a message, create and manage mailboxes,
search for specific messages based on certain criteria and so on. The interface is designed as a
superset of the Post Office Protocol interface, so developers who are used to working with the
POP3 control will find the IMAP control very easy to integrate into an existing application.

This control supports secure connections using the standard SSL and TLS protocols.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)



installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Message Access Protocol Control Properties  

Property Description

AuthType Gets and sets the method used to authenticate the user

AutoResolve Determines if host names and IP addresses are automatically resolved

BearerToken Gets and sets the OAuth 2.0 bearer token used for authentication

Blocking Gets and sets the blocking state of the control

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the client certificate

CertificatePassword Gets and sets the password associated with the client certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the client certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was
issued

CertificateUser Gets and sets the user that owns the client certificate

CipherStrength Return the length of the key used by the encryption algorithm

Delimiter Returns the hierarchical path delimiter used for the current mailbox

HashStrength Return the length of the message digest that was selected

HeaderField Gets and sets the current header field name

HeaderValue Return the value of the current header field

HostAddress Gets and sets the IP address of the mail server

HostName Gets and sets the host name of the mail server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsReadable Return if data can be read from the server without blocking

IsWritable Return if data can be sent to the server without blocking

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

Mailbox Returns the name of the specified mailbox from a list of mailboxes on the server

Mailboxes Returns the number of mailboxes available on the server

MailboxFlags Returns one or more flags which identify characteristics of the current mailbox

MailboxMask Gets and sets the current mailbox wildcard mask



 

MailboxName Gets and sets the name of the current mailbox

MailboxPath Gets and sets the current mailbox reference path

MailboxSize Return the size of the current mailbox

MailboxUID Returns the unique identifier for the current mailbox

Message Gets and sets the current message number

MessageCount Return the number of messages available in the current mailbox

MessageFlags Returns one or more flags which identify characteristics of the current message

MessagePart Return the contents of the specified part in a multipart message

MessageParts Return the number of parts in the current message

MessageSize Return the size of the current message in bytes

MessageUID Return the UID for the current message on the mail server

NewMessages Return the number of new messages available in the current mailbox

Options Gets and sets the options that are used in establishing a connection

Password Gets and sets the password for the current user

ReadOnly Determine if the mailbox can be modified

RecentMessages Returns the number of messages which have recently arrived in the mailbox

RemotePort Gets and sets the port number for a remote connection

ResultCode Return the result code of the previous action

ResultString Return a string describing the results of the previous action

Secure Set or return if a connection to the server is secure

SecureCipher Return the encryption algorithm used to establish the secure connection with the
server

SecureHash Return the message digest selected when establishing the secure connection with
the server

SecureKeyExchange Return the key exchange algorithm used to establish the secure connection with
the server

SecureProtocol Gets and sets the security protocol used to establish the secure connection with
the server

Subscribed Determines if the user has subscribed to the currently selected mailbox

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

UnreadMessages Returns the number of unread messages in the current mailbox

UserName Gets and sets the current user name

 



Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AuthType Property  

 

Gets and sets the method used to authenticate the user.

Syntax
object.AuthType [= type ]

Remarks
The AuthType property specifies the type of authentication that should be used when the client
connects to the mail server. The following authentication methods are supported:

Value Constant Description

0 imapAuthLogin This authentication type will use the LOGIN method to
authenticate the client session. This encodes the username
and password in a specific format, but the credentials are
not encrypted. It should be used over a secure
connection. The server must support the Simple
Authentication and Security Layer (SASL) mechanism as
defined in RFC 4422.

1 imapAuthPlain This authentication type will use the PLAIN method to
authenticate the client session. This encodes the username
and password in a specific format, but the credentials are
not encrypted. It should be used over a secure
connection. The server must support the PLAIN Simple
Authentication and Security Layer (SASL) mechanism as
defined in RFC 4616.

4 imapAuthXOAuth2 This authentication type will use the XOAUTH2 method to
authenticate the client session. This authentication method
does not require the user password, instead the
BearerToken property must specify the OAuth 2.0 bearer
token issued by the service provider.

5 imapAuthBearer This authentication type will use the OAUTHBEARER
method to authenticate the client session as defined in
RFC 7628. This authentication method does not require
the user password, instead the BearerToken property
must specify the OAuth 2.0 access token issued by the
service provider.

Data Type
Integer (Int32)

Remarks
The imapAuthXOAuth2 and imapAuthBearer authentication methods are similar, but they are
not interchangeable. Both use an OAuth 2.0 bearer token to authenticate the client session, but
they differ in how the token is presented to the server. It is currently preferable to use the
XOAUTH2 method because it is more widely available and some service providers do not yet
support the OAUTHBEARER method.

Changing the value of the BearerToken property will automatically set the current authentication

 



method to use OAuth 2.0.

See Also
BearerToken Property, Password Property, UserName Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 BearerToken Property  

 

Gets and sets the OAuth 2.0 bearer token for the current user.

Syntax
object.BearerToken [= token ]

Remarks
The BearerToken property specifies the OAuth 2.0 bearer token used to authenticate the user.
This property is used as the default value for the Connect method if the token is not provided as
an parameter.

Assigning a value to this property will change the current authentication method to use OAuth 2.0
if necessary.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an bearer token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the token using the appropriate scope for the service. Obtaining
the initial token will typically involve interactive confirmation on the part of the user, requiring they
grant permission to your application to access their mail account.

Your application should not store an OAuth 2.0 bearer token for later use. They have a relatively
short lifespan, typically about an hour, and are designed to be used with that session. You should
specify offline access as part of the OAuth 2.0 scope if necessary and store the refresh token
provided by the service. The refresh token has a much longer validity period and can be used to
obtain a new bearer token when needed.

If the current authentication method does not use OAuth 2.0, this property will return an empty
string and you should check the value of the Password property to obtain the current user's
password. Refer to the AuthType property for more information on the available authentication
methods.

Data Type
String

See Also
AuthType Property, Password Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnConnect, OnDisconnect,
OnRead and OnWrite are only fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, IsReadable Property, IsWritable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateExpires Property  

 

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssued Property  

 

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssuer Property  

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function
     End If



      nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the name of the company who issued the server
certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = ImapClient1.CertificateIssuer
If Len(strIssuer) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strCompanyName = GetCertNameValue(strIssuer, "O")
     MsgBox "This certificate was issued by " & strCompanyName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the client certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the certificate that should be used to
establish the connection with the server. It is only required that you set this property value if the
server requires a client certificate for authentication. If this property is not set, a client certificate
will not be provided to the server. If a certificate name is specified, the certificate must have a
private key associated with it, otherwise the connection attempt will fail because the control will be
unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the client certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStatus Property  

 

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property returns an integer value which identifies the status of the server
certificate. This property may return one of the following values:

Constant Value Description

stCertificateNone 0 No certificate information is available. A secure
connection was not established with the server.

stCertificateValid 1 The certificate is valid.

stCertificateNoMatch 2 The certificate is valid, however the domain name
specified in the certificate does not match the domain
name of the site that the client has connected to. This is
typically the case if the HostAddress property is used
rather than the HostName property. It is
recommended that the client examine the
CertificateSubject property to determine the domain
name of the site that the certificate was issued for.

stCertificateExpired 3 The certificate has expired and is no longer valid. The
client can examine the CertificateExpires property to
determine when the certificate expired.

stCertificateRevoked 4 The certificate has been revoked and is no longer valid.
It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateUntrusted 5 The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the local
host. It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateInvalid 6 The certificate is invalid. This typically indicates that the
internal structure of the certificate is damaged. It is
recommended that the client application immediately
terminate the connection if this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
Integer (Int32)

Example

 



The following example establishes a secure connection to a server:

'
' Initialize the control properties
'

ImapClient1.HostName = strHostName
ImapClient1.Secure = True

nError = ImapClient1.Connect()
If nError > 0 Then
     MsgBox "Unable to connect to server " & strHostName, vbExclamation
     Exit Sub
End If

If ImapClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          ImapClient1.Disconnect
          Exit Sub
     End If
End If

ImapClient1.Disconnect

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the client certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the client certificate that should
be used when establishing a secure connection with the server. The certificate may either be
stored in the registry or in a file. If the certificate is stored in the registry, then this property should
be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateSubject Property  

Returns information about the organization that the server certificate was issued to.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the subject's company or country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function



 

     End If

     nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the domain name that the server certificate was issued
for:

Dim strSubject As String
Dim strDomainName As String

strSubject = ImapClient1.CertificateSubject
If Len(strSubject) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strDomainName = GetCertNameValue(strSubject, "CN")
     MsgBox "This certificate was issued for " & strDomainName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus

 



Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the client certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the client certificate that will be used to establish
a secure connection with the server. If this property is not set, the certificate store for the current
user will be used when searching for the certificate. If this property is used to specify another user,
the process must have the appropriate permission to access the registry location that contains the
client certificate. On Windows Vista and later versions of the operating system, this requires that
the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Delimiter Property  

 

Returns the hierarchical path delimiter used for the current mailbox.

Syntax
object.Delimiter

Remarks
The Delimiter property returns a string which specifies the path delimiter used for the current
mailbox. If the IMAP server supports multiple levels of mailboxes, then a special character or
sequence of characters are used as delimiters between different levels of the mailbox hierarchy.
On most systems, including most UNIX and Windows platforms, the delimiter is the forward slash
"/" character.

It is possible that an IMAP server may only support a flat namespace, in which case this property
will return an empty string.

Data Type
String

See Also
MailboxName Property, CreateMailbox Method, DeleteMailbox Method, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HeaderField Property  

 

Gets and sets the current header field name.

Syntax
object.HeaderField [= header ]

Remarks
The HeaderField property returns the name of the current header field. Setting this property
causes the control to determine if that header field exists, and if it does, to update the
HeaderValue property with its value. This property can be used to obtain the value of any header
in the current message.

Data Type
String

See Also
HeaderValue Property, Message Property, MessageUID Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HeaderValue Property  

 

Return the value of the current header field.

Syntax
object.HeaderValue

Remarks
The HeaderValue property returns the value of the header field specified by the HeaderField
property. This property can be used to obtain the value of any header in the current message.

Data Type
String

See Also
HeaderField Property, Message Property, MessageUID Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of true if the control is connected with a
server, otherwise the property has a value of false.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsReadable Property  

 

Return if data can be read from the server without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the server without blocking. For
non-blocking connections, this property can be checked before the application attempts to read
the data, preventing an error.

Data Type
Boolean

See Also
IsConnected Property, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Return if data can be sent to the server without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written without blocking. For non-blocking
connections, this property can be checked before the application attempts to send data to the
server, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
send data without an error. The next operation may result in an stErrorOperationWouldBlock or
stErrorOperationInProgress error. The application must treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
IsReadable Property, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Mailbox Property  

 

Returns the name of the specified mailbox from a list of mailboxes on the server.

Syntax
object.Mailbox( Index )

Remarks
The Mailbox property array is used to enumerate the available mailboxes on the IMAP server.
This is a zero-based array, which means that the index value for the first mailbox is zero. The total
number of mailboxes that are available on the server is returned by the Mailboxes property.

Data Type
String

Example
The following example demonstrates how to use the Mailbox property array to populate a listbox
that contains the names of the available mailboxes:

For nIndex = 0 To ImapClient1.Mailboxes - 1
  List1.AddItem ImapClient1.Mailbox(nIndex)
Next

See Also
Mailboxes Property, MailboxFlags Property, MailboxName Property, MailboxUID Property,
ReadOnly Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Mailboxes Property  

 

Returns the number of mailboxes available on the server.

Syntax
object.Mailboxes

Remarks
The Mailboxes property returns the total number of mailboxes available to the current account
on the server. This property can be used in conjunction with the Mailbox property array to
enumerate the names of all of the mailboxes which can be selected by the client.

Data Type
Integer (Int32)

Example
The following example demonstrates how to use the Mailboxes property to populate a listbox
that contains the names of the available mailboxes:

For nIndex = 0 To ImapClient1.Mailboxes - 1
  List1.AddItem ImapClient1.Mailbox(nIndex)
Next

See Also
Mailbox Property, MailboxFlags Property, MailboxName Property, MailboxUID Property, ReadOnly
Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxFlags Property  

 

Returns one or more flags which identify characteristics of the current mailbox.

Syntax
object.MailboxFlags

Remarks
The MailboxFlags property returns information about the currently selected mailbox. The value
returned is one or more of the following bit flags:

Constant Description

imapFlagNoInferiors The mailbox does not contain any child mailboxes. In the IMAP
protocol, these are referred to as inferior hierarchical mailbox
names.

imapFlagMarked The mailbox is marked as being of interest to a client. If this flag
is used, it typically means that the mailbox contains messages.
An application should not depend on this flag being present for
any given mailbox. Some IMAP servers do not support marked
or unmarked flags for mailboxes.

imapFlagUnmarked The mailbox is marked as not being of interest to a client. If this
flag is used, it typically means that the mailbox does not contain
any messages. An application should not depend on this flag
being present for any given mailbox. Some IMAP servers do not
support marked or unmarked flags for mailboxes.

Data Type
Integer (Int32)

Example
The following example demonstrates how to check the MailboxFlags property to see if the
mailbox contains any child mailboxes:

If (ImapClient1.MailboxFlags And imapFlagNoInferiors) <> 0 Then
    MsgBox "This mailbox does not contain any child mailboxes"
End If

See Also
Mailbox Property, Mailboxes Property, MailboxName Property, MailboxUID Property, ReadOnly
Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxMask Property  

 

Gets and sets the current mailbox wildcard mask.

Syntax
object.MailboxMask [= mask ]

Remarks
The MailboxMask property returns the current mailbox wildcard mask. If no wildcard mask has
been specified by the client, this property will return an empty string.

Setting the MailboxMask property will determine which mailboxes are returned by the Mailbox
property array. Wildcards may include the asterisk (which matches any mailbox as well as any child
mailboxes) and the percent sign (which matches any mailbox, but does not match any child
mailboxes). This property may be used in conjunction with the MailboxPath property to further
qualify which mailboxes are returned.

Data Type
String

See Also
Mailbox Property, Mailboxes Property, MailboxPath Property, SelectMailbox Method,
UnselectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxName Property  

 

Gets and sets the name of the current mailbox.

Syntax
object.MailboxName [= mailbox ]

Remarks
The MailboxName property returns the name of the currently selected mailbox. If no mailbox has
been selected by the client, this property will return an empty string.

Setting the MailboxName property will select a new mailbox in read-write mode. If the client has
a different mailbox currently selected, that mailbox will be closed and any messages marked for
deletion will be expunged. To prevent deleted messages from being removed from the previous
mailbox, call the UnselectMailbox method prior to selecting the new mailbox. Setting the
MailboxName property to an empty string will cause the current mailbox to be unselected, and a
new mailbox will not be selected. Before the application can access any messages, it must select a
new mailbox.

Selecting a new mailbox will automatically update those properties which provide information
about the current mailbox, such as the MailboxFlags and MailboxUID properties. If an
application wishes to update the information for the current mailbox, simply set the
MailboxName property again with the same mailbox name. Note that this will not cause any
messages marked for deletion to be expunged.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names
may or may not be case-sensitive depending on the IMAP server's operating system and
implementation.

If the mailbox name contains international characters then it is automatically encoded using a
modified version of UTF-7 encoding. For example, if a mailbox is named "Håndskrift", the mailbox
name created on the server will be the string "H&AOU-ndskrift". The control will automatically
decode UTF-7 encoded mailbox names, making the conversion transparent to the application.

Data Type
String

See Also
Mailbox Property, Mailboxes Property, MailboxFlags Property, MailboxUID Property, ReadOnly
Property, SelectMailbox Method, UnselectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxPath Property  

 

Gets and sets the current mailbox reference path.

Syntax
object.MailboxPath [= path ]

Remarks
The MailboxPath property returns the current mailbox reference path. If no path has been
specified by the client, this property will return an empty string.

Setting the MailboxPath property will determine which mailboxes are returned by the Mailbox
property array. Typically this is used to specify a subdirectory where mail folders are stored for the
current user. Note that some mail servers may not permit absolute reference paths, and in most
cases the path should include a trailing slash. This property may be used in conjunction with the
MailboxMask property to further qualify which mailboxes are returned.

Data Type
String

See Also
Mailbox Property, Mailboxes Property, MailboxMask Property, SelectMailbox Method,
UnselectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxSize Property  

 

Return the size of the current mailbox.

Syntax
object.MailboxSize

Remarks
The MailboxSize property returns the combined size of all messages in the current mailbox.
Reading this property may require a significant amount of time to calculate the mailbox size if
there are a large number of messages in the mailbox. Because it can potentially result in long
delays, it is not recommended that an application calculate the mailbox size unless it is absolutely
necessary.

Data Type
Integer (Int32)

See Also
Message Property, MessageCount Property, MessageSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxUID Property  

 

Returns the unique identifier for the current mailbox.

Syntax
object.MailboxUID

Remarks
The MailboxUID property returns an integer value which uniquely identifies the mailbox and
corresponds to the UIDVALIDITY value returned by the IMAP server. The actual value is
determined by the server and should be considered opaque. The protocol specification requires
that a mailbox's UID must not change unless the mailbox contents are modified or existing
messages in the mailbox have been assigned new UIDs.

An application can use the MailboxUID property value in combination with the MessageUID
property in order to uniquely identify a message on the server. However, the application must take
into consideration that the IMAP server can reassign new message UIDs when the mailbox is
modified. If the mailbox and message UIDs are being stored on the local system to track what
messages have been retrieved from the server, the application must check the UID of the mailbox
whenever it is selected. If the mailbox UID has changed, this means that the UIDs for the messages
in that mailbox may have changed. The client should resynchronize with the server, and update it's
local copy of that mailbox.

Data Type
Integer (Int32)

See Also
Mailbox Property, Mailboxes Property, MailboxFlags Property, MailboxName Property, ReadOnly
Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Message Property  

 

Gets and sets the current message number.

Syntax
object.Message [= value ]

Remarks
The Message property sets or returns the message number for the currently selected mailbox.
Message numbers range from 1 through the number of messages available on the server, as
returned by the MessageCount property. Setting the Message property to an invalid message
number will generate an error.

Data Type
Integer (Int32)

See Also
MessageCount Property, MessageSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageCount Property  

 

Return the number of messages available in the current mailbox.

Syntax
object.MessageCount

Remarks
The MessageCount property returns the number of messages available to be retrieved from the
currently selected mailbox.

Data Type
Integer (Int32)

See Also
Message Property, MessageFlags Property, MessagePart Property, MessageParts Property,
MessageSize Property, MessageUID Property, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageFlags Property  

 

Returns one or more flags which identify characteristics of the current message.

Syntax
object.MessageFlags [= flags ]

Remarks
The MessageFlags property returns information about the currently selected message specified
by the Message property. The value returned is one or more of the following bit flags:

Value Constant Description

0 imapFlagNone No flags have been set for the current message

1 imapFlagAnswered The message has been answered

2 imapFlagDraft The message is a draft copy and has not been delivered

4 imapFlagUrgent The message has been flagged for urgent or special
attention

8 imapFlagSeen The message has been read

256 imapFlagRecent The message has been added to the mailbox recently

512 imapFlagDeleted The message has been marked for deletion

Setting the MessageFlags property changes the flags for the currently selected message. Multiple
bit flags can be combined using the bitwise Or operator. An application can test if a flag is set by
using the bitwise And operator.

Data Type
Integer (Int32)

Example
The following example demonstrates how to check the MessageFlags property to see if the
message has been marked for deletion, and if it has, to clear the flag so that it will not be deleted
when the mailbox is unselected:

If (ImapClient1.MessageFlags And imapFlagDeleted) <> 0 Then
    ImapClient1.MessageFlags = ImapClient1.MessageFlags And Not imapFlagDeleted
End If

See Also
Message Property, MessageCount Property, MessagePart Property, MessageParts Property,
MessageSize Property, MessageUID Property, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessagePart Property  

 

Return the contents of the specified part in a multipart message.

Syntax
object.MessagePart( PartNumber )

Remarks
The MessagePart property returns the contents of the specified message part. All messages have
at least one part, which consists of one or more header fields, followed by the body of the
message. The default part, part 1, refers to the main message header and body. If the message
contains multiple parts (as with a message that contains one or more attached files), the
MessagePart property can be set to refer to that specific part of the message.

Messages with file attachments typically consist of a message part which describes the contents of
the attachment, followed by the attachment itself. For a message with one attached file, there
would be a total of three parts. Part 1 would refer to the main message part, which contains the
headers such as From, To, Subject, Date and so on. For multipart messages, part 1 typically does
not have a message body, since any text is usually created as a separate part (for those messages
that do not contain multiple parts, the part 1 body contains the text message). Part 2 would
contain the text describing the attachment, and part 3 would contain the attachment itself. If the
attached file is binary, then the transfer encoding type would usually be base64.

It is important to note that an IMAP server considers the first part of a multipart message to be
part 1, so the MessagePart property array is one-based. This is different than the SocketTools
MIME control, which considers the first part of a mulitpart message to be zero.

Data Type
Integer (Int32)

See Also
Message Property, MessageParts Property, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageParts Property  

 

Return the number of parts in the current message.

Syntax
object.MessageParts

Remarks
The MessageParts property returns the number of parts in the current message. All messages
have at least one part, referenced as part 1. Multipart messages will consist of additional parts
which may be accessed by reading the MessagePart property array or calling the GetMessage
method.

Data Type
Integer (Int32)

See Also
Message Property, MessagePart Property, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageSize Property  

 

Return the size of the current message in bytes.

Syntax
object.MessageSize

Remarks
The MessageSize property returns the size of the current message in bytes. The size includes the
header and body portion of the message.

Data Type
Integer (Int32)

See Also
Message Property, MessageCount Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageUID Property  

 

Return the UID for the current message on the mail server.

Syntax
object.MessageUID

Remarks
The MessageUID property returns an integer value which specifies a unique identifier for this
message. The actual value is determined by the server and should be considered opaque. If the
client application stores the message UID on the local system, it should also store the UID for the
mailbox that contains the message. If the mailbox UID changes, the message UID may no longer
be valid.

An application can use the MessageUID property value in combination with the MailboxUID
property in order to uniquely identify a message on the server. However, the application must take
into consideration that the IMAP server can reassign new message UIDs when the mailbox is
modified. If the mailbox and message UIDs are being stored on the local system to track what
messages have been retrieved from the server, the application must check the UID of the mailbox
whenever it is selected. If the mailbox UID has changed, this means that the UIDs for the messages
in that mailbox may have changed. The client should resynchronize with the server, and update it's
local copy of that mailbox.

Data Type
Integer (Int32)

See Also
MailboxUID Property, Message Property, MessageFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NewMessages Property  

 

Return the number of new messages available in the current mailbox.

Syntax
object.NewMessages

Remarks
The NewMessages property returns the number of new, unread messages available to be
retrieved from the currently selected mailbox. To determine the total number of unread messages
in the mailbox, regardless of when they were added to the mailbox, use the UnreadMessages
property.

Data Type
Integer (Int32)

See Also
MessageCount Property, RecentMessages Property, UnreadMessages Property, CheckMailbox
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Options Property  

 

Gets and sets the options that are used in establishing a connection.

Syntax
object.Options [= value ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when connecting to the server. The property
value is created by using a bitwise operator with one or more of the following values:

Value Constant Description

0 imapOptionNone No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used.

1 imapOptionIdentify This option specifies the client should identify
itself to the server. If enabled, the client will
send the ID command to the server as defined
in RFC 2971. This option has no effect if the
server does not support the ID command.

&H400 imapOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 imapOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This
option only affects connections using either
the SSL or TLS protocols.

&H1000 imapOptionSecureExplicit This option specifies that a secure connection
should be established with the server and
requires that the server support either the SSL
or TLS protocol. This option initiates the secure
session using the STARTTLS command.

&H2000 imapOptionSecureImplicit This option specifies the client should attempt
to establish a secure connection with the
server. The server must support secure
connections using either the SSL or TLS
protocol, and the secure session must be
negotiated immediately after the connection
has been established.

&H8000 imapOptionSecureFallback This option specifies the client should permit

 



the use of less secure cipher suites for
compatibility with legacy servers. If this option
is specified, the client will allow connections
using TLS 1.0 and cipher suites that use RC4,
MD5 and SHA1.

&H40000 imapOptionPreferIPv6 This option specifies the client should prefer
the use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address.
This option is ignored if the local system does
not have IPv6 enabled, or when the hostname
can only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this
option has been specified.

Data Type
Integer (Int32)

See Also
Secure Property, Connect Method



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password used to authenticate the user. This property is
used as the default value for the Connect method if no password is specified as an argument.

Refer to the AuthType property for more information on the available authentication methods. If
you are using the OAuth 2.0 authentication method, this property should not be set to the user's
password. Instead, you should set the BearerToken property to the OAuth 2.0 bearer token
issued by the mail service provider. Note that these access tokens can be much larger than your
typical password and are only valid for a limited period of time.

You can use the Password property to specify an OAuth 2.0 bearer token. However, it is
recommended that you use the BearerToken property instead of assigning it to this property. It
will ensure compatibility with future versions of the control and make it clear in your code you are
using an OAuth 2.0 bearer token and not a password. If the AuthType property specifies one of
the OAuth 2.0 authentication methods, this property will return the bearer token.

Data Type
String

See Also
AuthType Property, BearerToken Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadOnly Property  

 

Determine if the mailbox can be modified.

Syntax
object.ReadOnly

Remarks
The ReadOnly property returns True if the currently selected mailbox cannot be modified by the
client. A value of false means that the mailbox can be modified.

Data Type
Boolean

See Also
Mailbox Property, Mailboxes Property, MailboxFlags Property, MailboxName Property, MailboxUID
Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RecentMessages Property  

 

Returns the number of messages which have recently arrived in the mailbox.

Syntax
object.RecentMessages

Remarks
The RecentMessages property returns the number of messages which have been recently added
to the currently selected mailbox. This property is particularly useful when the INBOX mailbox is
selected because it enables the application to check if any new messages have arrived. To
determine the total number of unread messages in the mailbox, use the UnreadMessages
property.

Data Type
Integer (Int32)

See Also
MessageCount Property, NewMessages Property, UnreadMessages Property, CheckMailbox
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultCode Property  

 

Return the result code of the previous action.

Syntax
object.ResultCode

Remarks
The ResultCode read-only property returns the result code of the last action performed by the
client. This property should be checked after the Command method is used to execute a
command on the server to determine if the operation was successful. One of the following result
codes may be returned:

Constant Description

imapResultUnknown An unknown result code was returned by the server.

imapResultOk The previous command completed successfully. The result string
contains information about the results of the command.

imapResultNo The previous command could not be completed. The result
string contains information about why the command failed.

imapResultBad The previous command could not be completed, the command
may be invalid or not supported on the server. The result string
contains information about why the command failed.

imapResultContinue The command has executed and is waiting for additional data
from the client.

Data Type
Integer (Int32)

See Also
ResultString Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultString Property  

 

Return a string describing the results of the previous action.

Syntax
object.ResultString

Remarks
The ResultString read-only property returns the result string from the last action taken by the
client. This string is generated by the server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition
that caused the error.

Data Type
String

See Also
ResultCode Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if a connection to the server is secure.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application must set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may request files or
submit queries to the server as with standard connections.

It is strongly recommended that any application that sets this property True use error handling to
trap an errors that may occur. If the control is unable to initialize the security libraries, or otherwise
cannot create a secure session for the client, an error will be generated when this property value is
set.

Data Type
Boolean

Example
The following example establishes a secure connection to a server:

ImapClient1.HostName = strHostName
ImapClient1.Secure = True

nError = ImapClient1.Connect()
If nError > 0 Then
    MsgBox "Unable to connect to server " & strHostName, vbExclamation
    Exit Sub
End If

If ImapClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          ImapClient1.Disconnect
          Exit Sub
     End If
End If

See Also
CertificateStatus Property, Connect Method

 



 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 stCipherNone No cipher has been selected. This is not a secure connection
with the server.

1 stCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

2 stCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

4 stCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 stCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 stCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 stCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 stCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 stCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 stCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Value Constant Description

1 stHashMD5 The MD5 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

2 stHashSHA1 The SHA-1 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

4 stHashSHA256 The SHA-256 algorithm has been selected.

8 stHashSHA384 The SHA-384 algorithm has been selected.

16 stHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 stKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 stKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 stKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 stKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 stKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange algorithm
was selected. This is a variant of the Diffie-Hellman
algorithm which uses elliptic curve cryptography. This
key exchange algorithm is only supported on Windows
XP SP3 and later versions of the operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

 



established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Subscribed Property  

 

Determines if the user has subscribed to the currently selected mailbox.

Syntax
object.Subscribed [= { True | False } ]

Remarks
The Subscribed property is used to determine if the current mailbox has been subscribed to by
the user. If the property returns False, the server has indicated that the user has not subscribed to
the mailbox. If the property returns True, the current mailbox is in the user's subscription list.

Setting the Subscribed property changes the subscription status of the current mailbox. Setting
the property to True adds the mailbox to the user's list of subscribed mailboxes, while setting it to
False removes the mailbox from the subscription list.

Data Type
Boolean

See Also
MailboxName Property, SubscribeMailbox Method, UnsubscribeMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

ImapClient1.ThrowError = False
nError = ImapClient1.Connect(strHostName)

If nError > 0 Then
    MsgBox ImapClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

ImapClient1.ThrowError = True
ImapClient1.Connect strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= flags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 imapTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 imapTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 imapTraceWarning Only those function calls which fail, or return values
which indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 imapTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UnreadMessages Property  

 

Returns the number of unread messages in the current mailbox.

Syntax
object.UnreadMessages

Remarks
The UnreadMessages property returns the number of messages which do not have the SEEN flag
in the current mailbox. This value is not the same as the number of recent messages in a mailbox,
which is based on when the message was stored in the mailbox. To obtain a list of messages that
have not been read, use the SearchMailbox method with UNSEEN as the search criteria.

It is possible that a message may be flagged as seen if it has been previously accessed by a
different mail client. For example, a client may retrieve a message from an INBOX mailbox using
the POP3 protocol, which would cause that message to be flagged as seen. This behavior is server
dependent, and is most commonly found where the mail server supports both the POP3 and
IMAP4 protocols.

Data Type
Integer (Int32)

See Also
MessageCount Property, NewMessages Property, RecentMessages Property, SearchMailbox
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= username ]

Remarks
The UserName property specifies the user that is logging in to the server, and is required for
authentication purposes. This property is used as the default value for the Connect method if no
password is specified as an argument.

Data Type
String

See Also
AuthType Property, BearerToken Property, Password Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Message Access Protocol Control Methods  

 

Method Description

Cancel Cancels the current blocking network operation

CheckMailbox Create a checkpoint of the currently selected mailbox

CloseMessage Closes the current message

Command Send a custom command to the server

Connect Establish a connection with a server

CopyMessage Copy a message from the current mailbox to another mailbox

CreateMailbox Creates a new mailbox on the server

CreateMessage Create a new message

DeleteMailbox Deletes a mailbox from the server

DeleteMessage Marks a message for deletion from the current mailbox

Disconnect Terminate the connection with a server

ExamineMailbox Selects the specified mailbox for read-only access

GetHeader Returns the value of a header field from the specified message part

GetHeaders Retrieves the headers for the specified message from the server

GetMessage Retrieve a message from the server

Idle Enables mailbox status monitoring for the client session

Initialize Initialize the control and validate the runtime license key

OpenMessage Open a message on the server

Read Return data read from the server

Refresh Updates the list of available mailboxes

RenameMailbox Change the name of a mailbox

ReselectMailbox Reselects the current mailbox

Reset Reset the internal state of the control

SearchMailbox Search the current mailbox for messages that match the specified criteria

SelectMailbox Selects the specified mailbox for read-write access

StoreMessage Retrieve a message from the current mailbox and store it in a local file

SubscribeMailbox Subscribes the user to the specified mailbox

UndeleteMessage Removes the deletion flag for the specified message

Uninitialize Uninitialize the control and release any system resources that were allocated

UnselectMailbox Unselects the current mailbox

UnsubscribeMailbox Unsubscribes the user from the specified mailbox

Write Write data to the server

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Disconnect Method, Reset Method, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CheckMailbox Method  

 

Create a checkpoint of the currently selected mailbox.

Syntax
object.CheckMailbox

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CheckMailbox method requests that the server create a checkpoint of the currently selected
mailbox, and updates the current number of new, unread messages available to the client.

When the client requests a checkpoint, the server may perform implementation-dependent
housekeeping for that mailbox, such updating the mailbox on disk with the current state of the
mailbox in memory. On some systems this command has no effect other than to update the client
with the current number of messages in the mailbox.

This function actually sends two IMAP commands. The first is the CHECK command, followed by
the NOOP command to poll for any new messages that have arrived. In addition to polling the
server for new messages, this command can also be used to ensure the idle timer on the server
does not expire and force a disconnect from the client.

See Also
MessageCount Property, NewMessages Property, RecentMessages Property, Command Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CloseMessage Method  

 

Closes the current message.

Syntax
object.CloseMessage

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CloseMessage method closes the current message. If there is any remaining data left to be
read from the message, it will be read and discarded.

See Also
OpenMessage Method, Read Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Command Method  

 

Send a custom command to the server.

Syntax
object.Command( Command, [Parameters], [Options] )

Parameters
Command

A string which specifies the command to send. Valid commands vary based on the Internet
protocol and the type of server that the client is connected to. Consult the protocol standard
and/or the technical reference documentation for the server to determine what commands may
be issued by a client application.

Parameters

An optional string which specifies one or more parameters to be sent along with the command.
If more than one parameter is required, most Internet protocols require that they be separated
by a single space character. Consult the protocol standard and/or technical reference
documentation for the server to determine what parameters should be provided when issuing a
specific command. If no parameters are required for the command, this argument may be
omitted.

Options

A numeric value which specifies one or more options. Currently this argument is reserved and
should either be omitted, or a value of zero should always be used.

Return Value
A value of zero is returned if the command was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure. To determine the result code returned by the
server in response to the command, read the value of the ResultCode property.

Remarks
The Command method sends a command to the server and processes the result code sent back
in response to that command. This method can be used to send custom commands to a server to
take advantage of features or capabilities that may not be supported internally by the control.

See Also
ResultCode Property, ResultString Property, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

Establish a connection with a server.

Syntax
object.Connect( [RemoteHost], [RemotePort], [UserName], [Password], [Timeout], [Options] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero indicates that the default
port number for this service should be used to establish the connection. If the secure port
number is specified, an implicit SSL/TLS connection will be established by default.

UserName

A string which specifies the name of the user used to authenticate access to the server. If this
argument is not specified, it defaults to the value of the UserName property.

Password

A string which specifies the password used to authenticate the user. If you are using an OAuth
2.0 authentication method, this property should specify the access token provided by the mail
service and not the user password. Refer to the AuthType property for more information about
the supported authentication methods. If this argument is not specified, it defaults to the value
of the BearerToken or Password property, depending on the authentication method specified.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

A numeric value which specifies one or more options. If this argument is omitted or a value of
zero is specified, a default connection will be established. This argument is constructed by using
a bitwise operator with any of the following values:

Value Constant Description

0 imapOptionNone No connection options specified. A standard
connection to the server will be established
using the specified host name and port
number.

1 imapOptionIdentify This option specifies the client should identify
itself to the server. If enabled, the client will
send the ID command to the server as defined
in RFC 2971. This option has no effect if the
server does not support the ID command.

&H400 imapOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being



 used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 imapOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This
option only affects connections using either
the SSL or TLS protocols.

&H1000 imapOptionSecureExplicit This option specifies that a secure connection
should be established with the server and
requires that the server support either the SSL
or TLS protocol. This option initiates the secure
session using the STARTTLS command.

&H2000 imapOptionSecureImplicit This option specifies the client should attempt
to establish a secure connection with the
server. The server must support secure
connections using either the SSL or TLS
protocol, and the secure session must be
negotiated immediately after the connection
has been established.

&H8000 imapOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option
is specified, the client will allow connections
using TLS 1.0 and cipher suites that use RC4,
MD5 and SHA1.

&H40000 imapOptionPreferIPv6 This option specifies the client should prefer
the use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address.
This option is ignored if the local system does
not have IPv6 enabled, or when the hostname
can only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this
option has been specified.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

See Also
AuthType Property, BearerToken Property, HostAddress Property, HostName Property, Options
Property, RemotePort Property, Disconnect Method, OnConnect Event

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CopyMessage Method  

 

Copy a message from the current mailbox to another mailbox.

Syntax
object.CopyMessage( MessageNumber, MailboxName, [Options] )

Parameters
MessageNumber

The message identifier which specifies which message is to be copied to the mailbox. This value
must be greater than zero and specify a valid message number.

MailboxName

A string which specifies the name of the mailbox that the message will be copied to. The
mailbox must already exist, and the client must have the appropriate access rights to modify the
mailbox.

Options

An optional parameter reserved for future use. This argument should either be omitted, or
always be zero.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CopyMessage method copies a message from the current mailbox to the specified mailbox.
The message is appended to the mailbox, and the message flags and internal date are preserved.
If the mailbox does not exist, the function will fail. To create a new mailbox, use the
CreateMailbox method. A message can be copied within the same mailbox, in which case the
server may flag it as a new message.

See Also
CreateMailbox Method, CreateMessage Method, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreateMailbox Method  

 

Creates a new mailbox on the server.

Syntax
object.CreateMailbox( MailboxName )

Parameters
MailboxName

A string which specifies the name of the new mailbox to be created.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
If the mailbox name is suffixed with the server's hierarchy delimiter, this indicates to the server that
the client intends to create mailbox names under the specified name in the hierarchy. If superior
hierarchical names are specified in the mailbox name, then the server may automatically create
them as needed. For example, if the mailbox name "Mail/Office/Projects" is specified and
"Mail/Office" does not exist, it may be automatically created by the server.

The special mailbox name INBOX is reserved, and cannot be created. It is recommended that
mailbox names only consist of printable ASCII characters, and the special characters "*" and "%"
should be avoided.

See Also
CheckMailbox Method, DeleteMailbox Method, ExamineMailbox Method, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreateMessage Method  

 

Create a new message.

Syntax
object.CreateMessage( MessageData, [MessageFlags], [MailboxName] )

Parameters
MessageData

The contents of the message to be created. This may either be specified as a string or as an
array of bytes.

MessageFlags

An optional integer value which specifies one or more message flags. This parameter is
constructed by using a bitwise operator with any of the following values:

Value Constant Description

0 imapFlagNone No value.

1 imapFlagAnswered The message has been answered.

2 imapFlagDraft The message is not completed and is marked as a draft
copy.

4 imapFlagUrgent The message is flagged for urgent or special attention.

8 imapFlagSeen The message has been read.

MailboxName

An optional string argument which specifies the name of the mailbox that the message will be
created in. If this argument is omitted, the message will be created in the currently selected
mailbox.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the
specified mailbox. This method will cause the current thread to block until the message transfer
completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event
will fire periodically, enabling the application to update any user interface objects such as a
progress bar.

See Also
GetMessage Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteMailbox Method  

 

Deletes a mailbox from the server.

Syntax
object.DeleteMailbox( MailboxName )

Parameters
MailboxName

A string which specifies the name of the mailbox to be deleted.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
A mailbox cannot be deleted if it contains inferior hierarchical names and has the
imapFlagNoSelect attribute. On most systems this is the case when the mailbox name references
a directory on the server, and that directory contains other subdirectories or mailboxes. To remove
the mailbox, you must first delete any child mailboxes that exist.

If the mailbox that is deleted is the currently selected mailbox, it will be automatically unselected
and any messages marked for deletion will be expunged before the mailbox is removed. If the
delete operation fails, the client will remain in an unselected state until either the
ExamineMailbox or SelectMailbox method is called.

The special mailbox name INBOX is reserved, and cannot be deleted.

See Also
CheckMailbox Method, CreateMailbox Method, ExamineMailbox Method, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteMessage Method  

 

Marks a message for deletion from the current mailbox.

Syntax
object.DeleteMessage( MessageNumber )

Parameters
MessageNumber

Number of message to delete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The DeleteMessage method only flags the message for deletion. The message is not actually
deleted until the mailbox is expunged or another mailbox is selected. This function will return an
error if the current mailbox is in read-only mode, such as if it was selected using the
ExamineMailbox method.

It is important to note that unlike the POP3 protocol, a message that is marked for deletion is still
accessible on the IMAP server until the mailbox is expunged. This means, for example, that a
deleted message can still be retrieved using the GetMessage method.

To determine if a message has been marked for deletion, set the Message property to the
message number and then check the value of the MessageFlags property to determine if the
imapFlagDeleted bit flag has been set.

To remove the deletion flag from the message, use the UndeleteMessage method. To prevent all
messages in the current mailbox from being expunged, use the ReselectMailbox function to
reset the current mailbox state. Calling the Reset method will also unselect the current mailbox
without expunging deleted messages.

See Also
MessageFlags Property, CopyMessage Method, CreateMessage Method, ExamineMailbox Method,
ReselectMailbox Method, Reset Method, UndeleteMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
IsConnected Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExamineMailbox Method  

 

Selects the specified mailbox for read-only access.

Syntax
object.ExamineMailbox( MailboxName )

Parameters
MailboxName

A string argument which specifies the name of the mailbox to be examined.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ExamineMailbox method is used to select a mailbox in read-only mode. Messages can be
read, but they cannot be modified or deleted from the mailbox and new messages will not lose
their status as new messages if they are accessed.

If the client has a different mailbox currently selected, that mailbox will be closed and any
messages marked for deletion will be expunged. To prevent deleted messages from being
removed from the previous mailbox, use the UnselectMailbox method prior to examining the
new mailbox.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names
may or may not be case-sensitive depending on the IMAP server's operating system and
implementation.

To access a mailbox in read-write mode, use the SelectMailbox method.

See Also
MailboxName Property, CheckMailbox Method, ReselectMailbox Method, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetHeader Method  

 

Returns the value of a header field from the specified message part.

Syntax
object.GetHeader( MessageNumber, MessagePart, HeaderField, HeaderValue )

Parameters
MessageNumber

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

MessagePart

The message part that the header value will be be retrieved from. Message parts start with a
value of one. A value of zero specifies that the RFC822 header field for the message will be
used.

HeaderField

A string which specifies the message header to retrieve. The colon should not be included in
this string.

HeaderValue

A string variable which will contain the value of the specified message header if the method is
successful.

Return Value
A value of true is returned if the header was present and could be retrieved, otherwise a value of
false is returned.

Remarks
The GetHeader method returns the value of a header field from the specified message part. This
allows an application to be able to easily determine the value of a header such as the sender, or
the subject of the message. Any header field, including non-standard extensions, may be returned
by this method.

See Also
HeaderField Property, HeaderValue Property, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetHeaders Method  

 

Retrieves the headers for the specified message from the server.

Syntax
object.GetHeaders( MessageNumber, Headers )

Parameters
MessageNumber

Number of article to retrieve from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Headers

A string or byte array which will contain the data transferred from the server when the method
returns.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The GetHeaders method is used to retrieve the message headers from the server and copy it into
a local buffer. This method will cause the current thread to block until the article transfer
completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event
will fire periodically, enabling the application to update any user interface objects such as a
progress bar.

Note that the header data will be from the first part of the message, not from any additional
sections of a multipart message. In other words, the headers such as From, To, Subject and Date
will be returned in the buffer. To retrieve the headers from a specific section of a multipart
message, you can use the GetMessage method and specify the imapSectionHeader option.

See Also
MessageCount Property, CreateMessage Method, GetMessage Method, OpenMessage Method,
OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetMessage Method  

 

Retrieve a message from the server.

Syntax
object.GetMessage( MessageNumber, MessagePart, MessageData, [Options] )

Parameters
MessageNumber

Number of message to retrieve from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

MessagePart

The message part that will be retrieved. A value of zero specifies that the complete message
should be returned. If the message is a multipart MIME message, message parts start with a
value of one.

MessageData

A string or byte array which will contain the data transferred from the server when the method
returns.

Options

An optional integer value which specifies one or more options. This argument is constructed by
using a bitwise operator with any of the following values:

Value Constant Description

0 imapSectionDefault All headers and the complete body of the specified
message or message part are to be retrieved. The
client application is responsible for parsing the
header block. If the message is a MIME multipart
message and the complete message is returned,
the application is responsible for parsing the
individual message parts if necessary.

1 imapSectionHeader All headers for the specified message or message
part are to be retrieved. The client application is
responsible for parsing the header block.

2 imapSectionMimeHeader The MIME headers for the specified message or
message are to be retrieved. Only those header
fields which are used in MIME messages, such as
Content-Type will be returned to the client. This is
typically useful when processing the header for a
multipart message which contains file attachments.
The client application is responsible for parsing the
header block.

4 imapSectionBody The body of the specified message or message part
is to be retrieved. For a MIME formatted message,
this may include data that is uuencoded or base64
encoded. The application is responsible for
decoding this data.

 



4096 imapSectionPreview The message header or body is being previewed
and should not be marked as read by the server.
This prevents the message from having the
imapFlagSeen flag from being automatically set
when the message data is retrieved.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local
buffer. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire
periodically, enabling the application to update any user interface objects such as a progress bar.

See Also
CopyMessage Method, CreateMessage Method, DeleteMessage Method, OpenMessage Method,
OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Idle Method  

 

Enables mailbox status monitoring for the client session.

Syntax
object.Idle( [Options], [Timeout] )

Parameters
Options

An optional integer value which specifies how the Idle method will function. If this argument is
omitted, the method will return immediately to the caller without causing the current thread to
block.

Value Constant Description

0 imapIdleNoWait The method should return immediately after idle processing
has been enabled. When this option is used, the application
may continue to perform other functions while the client
session is monitored for status updates sent by the server.
The client will continue to monitor status changes until an
IMAP command issued or the client disconnects from the
server. This is the default option.

1 imapIdleWait The method should wait until the server sends a status
update, or until the timeout period is reached. The client will
stop monitoring status changes when the function returns. If
this option is used in a single-threaded application, normal
message processing can be impeded, causing the application
to appear non-responsive until the timeout period is
reached. It is strongly recommended that single-threaded
applications with a user interface specify the
imapIdleNoWait option instead.

Timeout

Specifies the timeout period in seconds to wait for a notification from the server. This parameter
is only used when the imapIdleWait option has been specified.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Idle method enables mailbox status monitoring for the client session, allowing the client to
receive notifications from the server whenever a new message arrives or a message is expunged
from the currently selected mailbox. This is typically used as an alternative to the client periodically
polling the server for status information.

Many IMAP servers support the ability to asynchronously send status updates to the client, rather
than have the client periodically poll the server. The client enables this feature by calling the Idle
method and implementing an event handler for the OnUpdate event. Typically these events
inform the client that a new message has arrived or that a message has been expunged from the
mailbox.

 



The Idle method can operate in two modes, based on the options specified by the caller. If the
option imapIdleNoWait is specified, the method begins monitoring the client session
asynchronously and returns control immediately to the caller. If the server sends a update
notification to the client, the OnUpdate event will fire with information about the status change. If
the option imapIdleWait is specified, the method will block waiting for the server to send a
notification message to the client. The method will return when either a message is received or the
timeout period is exceeded.

Sending an IMAP command to the server will cause the client to stop monitoring the session for
status changes. To explicitly stop monitoring the session, use the Cancel method.

This method works by sending the IDLE command to the server and starting a worker thread
which monitors the connection and looks for untagged responses issued by the server. Events will
be generated for EXISTS, EXPUNGE and RECENT messages. Note that some servers may
periodically send untagged OK messages to the client, indicating that the connection is still active;
these messages are explicitly ignored.

An application should never make an assumption about how a particular server may send update
notifications to the client. Servers can be configured to use different intervals at which notifications
are sent. For example, a server may send new message notifications immediately, but may
periodically notify the client when a message has been expunged. Alternatively, a server may only
send notifications at fixed intervals, in which case the client would not be notified of any new
messages until the interval period is reached. It is not possible for a client to know what a
particular server's update interval is. Applications that require that degree of control should not
use the Idle method and should poll the server instead.

See Also
OnUpdate Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set imapClient = CreateObject("SocketTools.ImapClient.11")

nError = imapClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OpenMessage Method  

 

Open a message on the server.

Syntax
object.OpenMessage( [MessageNumber], [MessagePart], [Offset], [Length], [Options] )

Parameters
MessageNumber

Number of message to retrieve. This value must be greater than zero. The first message in the
mailbox is message number one. If this argument is omitted, the current message selected by
the Message property will be opened.

MessagePart

The message part that will be retrieved. A value of zero specifies that the complete message
should be returned. If the message is a multipart MIME message, message parts start with a
value of one. If this argument is omitted, the complete contents of the message will be
accessible.

Offset

The byte offset into the message. This parameter can be used in conjunction with the Length
argument to return a specific part of a message. If this argument is omitted or a value of zero is
specified, the server will return data from the beginning of the message.

Length

An optional integer value which specifies the maximum number of bytes the client wishes to
read. To specify the entire message, from the offset specified by the Offset argument to the end
of the message, use a value of -1. If this argument is omitted, the entire contents of the
message will be returned, starting at the byte offset specified by the Offset argument. If both
the Offset and Length arguments are omitted, the entire contents of the message will be
returned.

Options

An optional integer value which specifies one or more options. This argument is constructed by
using a bitwise operator with any of the following values:

Value Constant Description

0 imapSectionDefault All headers and the complete body of the specified
message or message part are to be retrieved. The
client application is responsible for parsing the
header block. If the message is a MIME multipart
message and the complete message is returned,
the application is responsible for parsing the
individual message parts if necessary.

1 imapSectionHeader All headers for the specified message or message
part are to be retrieved. The client application is
responsible for parsing the header block.

2 imapSectionMimeHeader The MIME headers for the specified message or
message are to be retrieved. Only those header
fields which are used in MIME messages, such as

 



Content-Type will be returned to the client. This is
typically useful when processing the header for a
multipart message which contains file attachments.
The client application is responsible for parsing the
header block.

4 imapSectionBody The body of the specified message or message part
is to be retrieved. For a MIME formatted message,
this may include data that is uuencoded or base64
encoded. The application is responsible for
decoding this data.

4096 imapSectionPreview The message header or body is being previewed
and should not be marked as read by the server.
This prevents the message from having the
imapFlagSeen flag from being automatically set
when the message data is retrieved.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The OpenMessage method opens a message or a specific part of a multipart message in the
current mailbox. The message data may also be limited a specific byte offset and length, which
can be useful for previewing the contents. The client can then read the contents of the message
using the Read method, and once all of the data has been read, the message should be closed by
calling the CloseMessage method.

See Also
CloseMessage Method, GetMessage Method, Read Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Read Method  

 

Return data read from the server.

Syntax
object.Read( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. If the data returned by the server contains UTF-8 encoded text, it will
automatically be converted to standard UTF-16 Unicode text. If you wish to read the data
without conversion, provide a Byte array as the buffer.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the server is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will wait until data is returned by the server
or the connection is closed.

See Also
IsConnected Property, IsReadable Property, Write Method, OnRead Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Refresh Method  

 

Updates the list of available mailboxes.

Syntax
object.Refresh

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Refresh method updates the list of mailboxes that may be selected by the client. The
available mailboxes may be enumerated using the Mailbox property array, with the Mailboxes
property returning the total number of mailboxes.

See Also
Mailbox Property, Mailboxes Property, MailboxName Property, ExamineMailbox Method,
RenameMailbox Method, ReselectMailbox Method, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RenameMailbox Method  

 

Change the name of a mailbox.

Syntax
object.RenameMailbox( OldName, NewName )

Parameters
OldName

A string that specifies the name of the mailbox to be renamed on the server. The mailbox must
exist on the server, otherwise an error will be returned.

NewName

A string that specifies the new name for the mailbox. An error will be returned if a mailbox with
that name already exists.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
If the existing mailbox name contains inferior hierarchical names (mailboxes under the specified
mailbox) then those mailboxes will also be renamed. For example, if the mailbox "Mail/Pictures"
contains two mailboxes, "Personal" and "Work" and it is renamed to "Mail/Images" then the two
mailboxes under it would be automatically renamed to "Mail/Images/Personal" and
"Mail/Images/Work".

If the mailbox being renamed is the currently selected mailbox, the current mailbox will be
unselected and any messages marked for deletion will be expunged. The new mailbox name will
then automatically be re-selected. To prevent deleted messages from being removed from the
mailbox prior to being renamed, use the UnselectMailbox method to unselect the current
mailbox before calling RenameMailbox. Note that if the rename operation fails, the client may be
left in an unselected state.

It is permitted to rename the special mailbox INBOX. In this case, the messages will be moved
from the INBOX mailbox to the new mailbox. If the INBOX mailbox is currently selected, the new
mailbox will not automatically be selected. INBOX will remain the selected mailbox.

See Also
Mailbox Property, Mailboxes Property, MailboxName Property, ExamineMailbox Method,
ReselectMailbox Method, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReselectMailbox Method  

 

Reselects the current mailbox.

Syntax
object.ReselectMailbox

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ReselectMailbox method forces the current mailbox to be reselected and updates those
properties which return information about the mailbox, such as the MailboxFlags property.
Deleted messages are not expunged from the mailbox and remain marked for deletion.

See Also
MailboxName Property, MailboxFlags Property, MailboxUID Property, ExamineMailbox Method,
SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SearchMailbox Method  

Search the current mailbox for messages that match the specified criteria.

Syntax
object.SearchMailbox( Criteria, Messages, [CharacterSet] )

Parameters
Criteria

A string which consists of one or more keywords which are used to define the search criteria.
The following keywords are recognized:

Keyword Description

ANSWERED Match those messages which have the imapFlagAnswered flag set.

BCC address Match those messages which contain the specified address in the BCC
header field.

BEFORE date Match those messages which were added to the mailbox prior to the
specified date.

BODY string Match those messages where the body contains the specified string.

CC address Match those messages which contain the specified address in the CC
header field.

DELETED Match those messages which have the imapFlagDeleted flag set.

DRAFT Match those messages which have the imapFlagDraft flag set.

FLAGGED Match those messages which have the imapFlagUrgent flag set.

FROM address Match those messages which contain the specified address in the
FROM header field.

HEADER field
string

Match those messages which contain the string in the specified
header field. If no string is specified, then all messages which contain
the header will be matched.

LARGER size Match those messages which are larger than the specified size in
bytes.

NEW Match those messages which have the imapFlagRecent flag set, but
not the imapFlagSeen flag.

OLD Match those messages which do not have the imapFlagRecent flag
set.

ON date Match those messages which were added on the specified date.

RECENT Match those messages which have the imapFlagRecent flag set.

SEEN Match those messages which have the imapFlagSeen flag set.

SENTBEFORE
date

Match those messages whose Date header value is earlier than the
specified date.

SENTON date Match those messages whose Date header value is the same as the
specified date.



 

SENTSINCE
date

Match those messages whose Date header value is later than the
specified date.

SINCE date Match those messages added to the mailbox after the specified date.

SMALLER size Match those messages which are smaller than the specified size in
bytes.

SUBJECT
string

Match those messages whose Subject header contains the specified
string.

TEXT string Match those messages whose headers or body contains the specified
string.

TO address Match those messages which contain the specified address in the TO
header field.

UID sequence Match those messages with unique identifiers in the sequence set.

UNANSWERED Match those messages which do not have the imapFlagAnswered
flag set.

UNDELETED Match those messages which do not have the imapFlagDeleted flag
set.

UNDRAFT Match those messages which do not have the imapFlagDraft flag
set.

UNFLAGGED Match those messages which do not have the imapFlagUrgent flag
set.

UNSEEN Match those messages which do not have the imapFlagSeen flag set.

Messages

This argument must be passed as an array of integers which will contain the message numbers
of those messages which match the search criteria. The size of the array determines the
maximum number of matches that will be returned by the method. Note that the array must
specify 32-bit integers. In Visual Basic, this means that the array would be typed as Long. In
Visual Basic.NET, the array would be typed as Integer.

CharacterSet

An optional string which specifies the character set to use when searching the mailbox. If this
argument is omitted, the default UTF-8 character set will be used. Note that not all servers
support searches using anything but the default character set.

Return Value
This method will return the number of messages which were found to match the search criteria. If
no messages match the criteria, then the return value will be zero. A return value of -1 indicates
an error, and the specific error code can be determined by checking the LastError property.

Remarks
The SearchMailbox method is used to search a mailbox for messages which match a given
criteria and return a list of the matching message numbers. The search criteria is composed of one
or more search keywords and and optional value to match against. String searches are not case
sensitive and partial matches in the message are returned. The message numbers returned by this
method are only valid until the mailbox is expunged or another mailbox is selected.

 



In addition to the listed keywords, the keyword NOT may prefix a keyword to return those
messages which do not match the search criteria. For example, "NOT TO user@domain.com"
would return those messages which were not addressed to user@domain.com.

If multiple search keywords are specified, the result is the intersection of all those messages which
meet the search criteria. For example, a search criteria of "DELETED SINCE 1-Jan-2010" would
return all those messages which are marked for deletion and were added to the mailbox after 1
January 2010.

Those search keywords which expect dates must be specified in format dd-mmm-yyyy where the
month is the three letter abbreviation for the month name. Note that the internal date the
message was added to the mailbox is not the same as the value of the Date header field in the
message.

If the search keyword expects a string value and the string contains one or more spaces, you need
to enclose the search string in quotes as part of the criteria string. For example, in Visual Basic you
could use code like this:

strCriteria = "SUBJECT " + Chr(34) + "search string" + Chr(34)

The quotes around the search string prevents the server from interpreting it as a multiple search
criteria to be evaluated. If you are using a search string provided by a user, it is recommended that
you always enclose it in quotes to prevent any potential ambiguity in the search. Even if the search
string does not contain any spaces, it is always safe to enclose it in quotes.

The UID keyword expects a one or more unique message identifiers. These values may provided
as comma separated list, or a range delimited by a colon. For example, "UID 23000:24000" would
return all those messages who have UIDs ranging from 23000 through to 24000.

See Also
MailboxName Property, ExamineMailbox Method, SelectMailbox Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SelectMailbox Method  

 

Selects the specified mailbox for read-write access.

Syntax
object.SelectMailbox( MailboxName )

Parameters
MailboxName

A string argument which specifies the name of the mailbox to be selected.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The SelectMailbox method is used to select a mailbox in read-write mode. If the client has a
different mailbox currently selected, that mailbox will be closed and any messages marked for
deletion will be expunged. To prevent deleted messages from being removed from the previous
mailbox, use the UnselectMailbox method prior to selecting the new mailbox.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names
may or may not be case-sensitive depending on the IMAP server's operating system and
implementation.

To access a mailbox in read-only mode, use the ExamineMailbox method.

See Also
MailboxName Property, CheckMailbox Method, ExamineMailbox Method, ReselectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StoreMessage Method  

 

Retrieve a message from the current mailbox and store it in a local file.

Syntax
object.StoreMessage( MessageNumber, FileName )

Parameters
MessageNumber

Number of message to retrieve. This value must be greater than zero. The first message in the
mailbox is message number one.

FileName

A string which specifies the file that the message will be stored in. If the file does not exist, it will
be created. If the file does exist, it will be overwritten with the contents of the message.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The StoreMessage method retrieves a message from the server and stores it in a file on the local
system. The contents of the message is stored as a text file, using the specified file name. This
method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
GetMessage Method, OpenMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SubscribeMailbox Method  

 

Subscribes the user to the specified mailbox.

Syntax
object.SubscribeMailbox( MailboxName )

Parameters
MailboxName

A string which specifies the name of the mailbox to subscribe to.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The SubscribeMailbox method adds the specified mailbox to the current user's list of active or
subscribed mailboxes. The user will remain subscribed to the mailbox across multiple sessions,
until the UnsubscribeMailbox method is called to remove the mailbox from the subscription list.

Note that if a user subscribes to a mailbox and that mailbox is later renamed or deleted, the
mailbox will not be automatically removed from the user's subscription list. To determine if the
current mailbox is in the user's subscription list, check the Subscribed property.

See Also
MailboxName Property, Subscribed Property, UnsubscribeMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UndeleteMessage Method  

 

Removes the deletion flag for the specified message.

Syntax
object.UndeleteMessage( MessageNumber )

Parameters
MessageNumber

Number of message to undelete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The UndeleteMessage method removes the deletion flag for the specified message in the
current mailbox. To determine if a message has been marked for deletion, set the Message
property to the message number and then check the value of the MessageFlags property to
determine if the imapFlagDeleted bit flag has been set.

See Also
MessageFlags Property, DeleteMessage Method, ReselectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UnselectMailbox Method  

 

Unselects the current mailbox.

Syntax
object.UnselectMailbox( [Expunge] )

Parameters
Expunge

An optional boolean argument which determines if deleted messages will be expunged from
the mailbox. A value of true specifies that messages that have been marked for deletion will be
removed from the mailbox. A value of False specifies that no messages will be removed from
the mailbox. If this argument is omitted, the default action is to expunge deleted messages from
the mailbox.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The UnselectMailbox method unselects the current mailbox. Once the mailbox has been
unselected, no messages in that mailbox can be accessed, and by default any messages which
have been marked for deletion are removed.

See Also
MailboxName Property, ExamineMailbox Method, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UnsubscribeMailbox Method  

 

Unsubscribes the user from the specified mailbox.

Syntax
object.UnsubscribeMailbox( MailboxName )

Parameters
MailboxName

A string which specifies the name of the mailbox to unsubscribe from.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The UnsubscribeMailbox method removes the specified mailbox from the current user's list of
active or subscribed mailboxes. To determine if the current mailbox is in the user's subscription list,
check the Subscribed property.

See Also
MailboxName Property, Subscribed Property, SubscribeMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the server.

Syntax
object.Write( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use because the server expects text data that consists of printable characters. If the
string contains Unicode characters, it will be automatically converted to use standard UTF-8
encoding prior to being sent. If you wish to send the data without conversion, use a Byte array
as the buffer instead of a String variable.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the server, or -1 if an error was
encountered.

Remarks
The Write method sends the data in buffer to the server. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is blocking, the application will wait until the data can be sent. If the control
is non-blocking and the write fails because it could not send all of the data to the server, the
OnWrite event will be fired when the server can accept data again.

See Also
IsConnected Property, IsWritable Property, Timeout Property, Read Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Message Access Protocol Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnProgress This event is generated during data transfer

OnRead This event is generated when data is available to be read

OnTimeout This event is generated when a blocking operation times out

OnUpdate This event is generated when the server sends a mailbox update notification to the client

OnWrite This event is generated when data can be written to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCommand Event  

 

The OnCommand event is generated when the client sends a command to the server and
receives a reply indicating the results of that command.

Syntax
Sub object_OnCommand( [Index As Integer], ByVal ResultCode As Variant, ByVal ResultString
As Variant )

Remarks
The OnCommand event is generated when the client receives a reply from the server after some
action has been taken. The ResultCode argument contains the numeric result code returned by
the server. The result codes returned from the server fall into one of the following categories:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being
initiated, and the client should expect another reply from the server before
proceeding.

200-
299

Positive completion result. This indicates that the server has successfully
completed the requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot
complete until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action
did not take place, but the error condition is temporary and may be attempted
again.

500-
599

Permanent negative completion result. This indicates that the requested action
did not take place.

The ResultString argument contains the descriptive string returned by the server which describes
the result. The string contents may vary depending on the type of server.

See Also
ResultCode Property, ResultString Property, Command Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a server as a result of a
Connect method call. This event is only triggered when the Blocking property is set to False.

See Also
Blocking Property, Connect Method, OnDisconnect Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server. This
event is only triggered when the Blocking property is set to False.

When the OnDisconnect event fires, it is possible that there may still be buffered data available to
read from the server. Before disconnecting from the server, the application should attempt to read
any remaining data until the Read method returns a value of zero, or returns an error indicating
that the operation would block.

See Also
Blocking Property, IsConnected Property, IsReadable Property, Connect Method, Disconnect
Method, Read Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnProgress Event  

 

The OnProgress event is generated during data transfer.

Syntax
Sub object_OnProgress ( [Index As Integer], ByVal MessageNumber As Variant, ByVal
MessageSize As Variant, ByVal MessageCopied As Variant, ByVal Percent As Variant )

Remarks
The OnProgress event is generated during the transfer of data between the client and server,
indicating the amount of data exchanged. For transfers of large amounts of data, this event can be
used to update a progress bar or other user-interface control to provide the user with some visual
feedback. The arguments to this event are:

MessageNumber

The number of the message that is being retrieved. If a message is being created, this argument
will have a value of zero.

MessageSize

The size of the message being transferred in bytes. This value may be zero if the control cannot
obtain the size of the message from the server.

MessageCopied

The number of bytes that have been transferred between the client and server.

Percent

The percentage of data that's been transferred, expressed as an integer value between 0 and
100, inclusive. If the size of the message on the server cannot be determined, this value will
always be 100.

Note that this event is only generated when message data is transferred using the
CreateMessage, GetHeaders or GetMessage methods. If the client is reading or writing the file
data directly to the server using the Read or Write methods then the application is responsible for
calculating the completion percentage and updating any user interface controls.

See Also
Message Property, MessagePart Property, CreateMessage Method, GetHeaders Method,
GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ([Index As Integer] )

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only triggered when the Blocking
property is set to False.

See Also
IsReadable Property, Read Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property. This event is only triggered when the Blocking property is
set to True.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnUpdate Event  

 

The OnUpdate event is generated when the server sends a mailbox update notification to the
client.

Syntax
Sub object_OnUpdate ( [Index As Integer], ByVal UpdateType As Variant, ByVal
MessageNumber As Variant )

Remarks
The OnUpdate event is generated when the server sends a notification to the client that a new
message has been stored in the mailbox, or when a message has been expunged from the
mailbox. The arguments to this event are:

UpdateType

An integer value which specifies the type of update notification that has been sent by the server.
It may be one of the following values:

Value Constant Description

0 imapUpdateUnknown The server has sent an unrecognized notification
message. The value of the MessageNumber argument
is undefined for this type of notification. This does not
necessarily reflect an error condition, as some servers
may send additional notification messages beyond the
standard EXISTS, EXPUNGE and RECENT messages.
Most applications should ignore this type of
notification.

1 imapUpdateMessage The server has sent notification message to the client
indicating that a new message has arrived. The
MessageNumber argument will contain the message
number for the new message. Typically this update
notification occurs shortly after the new message has
been stored in the current mailbox.

2 imapUpdateExpunge The server has sent a notification message to the client
indicating that a message has been removed from the
current mailbox. The MessageNumber argument will
contain the message number for the message that has
been removed. It is recommended that the application
re-examine the mailbox when this notification is
received. Typically this notification is only sent
periodically by the server, and may not be sent
immediately after a message has been expunged from
the mailbox.

3 imapUpdateMailbox The server has sent notification message to the client
indicating that the state of the mailbox has changed.
The MessageNumber argument is not used with this
notification. This message is sent periodically by the
server and may not be sent immediately after a new
message arrives or a message is flagged as unread. It is

 



recommended that the application re-examine the
mailbox when this notification is received.

MessageNumber

An integer value which specifies the message number associated with the status change. Note
that this argument is not used with the imapUpdateMailbox notification and will contain a
value of zero.

This event is only generated when the Idle method has been used to enable mailbox status
monitoring.

See Also
Idle Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ( [Index As Integer] )

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
triggered when the Blocking property is set to False.

See Also
IsWritable Property, Read Method, Write Method, OnConnect Event, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Internet Mail Control

Compose, send and retrieve messages using standard Internet email protocols.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name InternetMailCtl.InternetMail

File Name CSIMCX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.InternetMail.11

ClassID CA8D0AAF-27EA-4367-A43F-CCD18BAE026B

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 821, RFC 822, RFC 1034, RFC 1425, RFC 1869, RFC 1939
RFC 2045, RFC 2046, RFC 2047, RFC 2048, RFC 2821, RFC 3501

Overview
The Internet Mail ActiveX control had a comprehensive interface that provides everything required
to incorporate email functionality in an application. The control implements the Simple Mail
Transfer Protocol (SMTP) for sending messages, the Post Office Protocol (POP3) and Internet
Message Access Protocol (IMAP) for retrieving messages from a mail serve. The Multipurpose
Internet Mail Extensions (MIME) standard is implemented for composing and processing
messages.

Many of the control's properties control the contents of a message, such as the list of recipients,
the subject of the message and the message body. Methods are used to compose new messages,
retrieve messages from a mail server and deliver messages to one or more recipients. Messages
can also be managed on the mail server, or downloaded to the local system and stored in a file or
a database record. The application has complete access to all of the headers in the message, and
can create custom application-specific header fields if needed. Event notifications enable the
application to provide the user with feedback, such as the progress of sending or retrieving a
message. Additional features such as delivery status notification, support for relay servers and
secure encrypted connections are easily implemented by setting a property or specifying an
option when calling a method.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is



recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Mail Control Properties  

 

Property Description

AllHeaders Returns the complete RFC 822 header values for the current message

AllRecipients Returns a comma-separated list of all message recipients

Attachment Return the name of the attached file in the current message part

Bcc Gets and sets the list of addresses that should receive a blind copy of the current message

BearerToken Gets and sets the OAuth 2.0 bearer token used for authentication

Cc Gets and sets the list of addresses that should receive a copy of the current message

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the client certificate

CertificatePassword Gets and sets the password associated with the client certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the client certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was issued

CertificateUser Gets and sets the user that owns the client certificate

CipherStrength Return the length of the key used by the encryption algorithm

ContentID Gets and sets the content identifier for the selected message part

ContentLength Returns the size of the data stored in the selected message part

ContentType Gets and sets the content type of the selected message part

Date Gets and sets the date for the current message

Domain Gets and sets the local domain name

Encoding Gets and sets the content encoding for the current message part

From Gets and sets the address of the person who sent the message

HashStrength Return the length of the message digest that was selected

IsBlocked Determine if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsInitialized Determine if the control has been initialized

LastError Gets and sets the last error code

LastErrorString Return a description of the last error that occurred

LastMessage Return the number of the last message available on the server

Localize Enable or disable message localization

Mailbox Returns the name of the specified mailbox from a list of mailboxes on the server

Mailboxes Returns the number of mailboxes available on the server

MailboxFlags Returns one or more flags which identify characteristics of the current mailbox

MailboxName Gets and sets the name of the current mailbox

MailboxSize Return the size of the current mailbox in bytes

MailboxUID Returns the unique identifier for the current mailbox

Mailer Gets and sets the name of the mailer application

Message Gets and sets the current message headers and text

MessageCount Return the number of messages available on the server

 



MessageFlags Returns one or more flags which identify characteristics of the current message

MessageID Return a unique identifier for the current message

MessageIndex Gets and sets the current message number on the server

MessagePart Gets and sets the current part in a multipart message

MessageParts Return the number of parts in the current message

MessageSize Return the size of the current message in bytes

MessageText Return or change the text in the current message part

MessageUID Return the UID for the current message on the mail server

NameServer Gets and sets the Internet address for a nameserver

NewMessages Return the number of new messages available in the current mailbox

Organization Return or change the name of the organization that created the message

Password Gets and sets the password for the current user

Priority Gets and sets the current message priority

RecentMessages Returns the number of messages which have recently arrived in the mailbox

Recipient Return the address of a message recipient

Recipients Return the number of recipients for the current message

RelayServer Gets and sets the host name or address of a relay server

RelayPort Gets and sets the port number for the specified relay server

ReplyTo Gets and sets the address of the person who should receive replies to this message

ReturnReceipt Gets and sets the address of the person who should receive a message indicating that the message has been read

Secure Specify if a connection to the server is secure

SecureCipher Return the encryption algorithm used to establish the secure connection with the server

SecureHash Return the message digest selected when establishing the secure connection with the server

SecureKeyExchange Return the key exchange algorithm used to establish the secure connection with the server

SecureProtocol Gets and sets the security protocol used to establish the secure connection with the server

ServerName Gets and sets the host name of the current mail server

ServerPort Gets and sets the port number for the current mail server

Subject Gets and sets the subject of the current message

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking network operation is aborted

TimeZone Gets and sets the current timezone offset in seconds

To Gets and sets the recipient of the current message

Trace Enable or disable network function level tracing

TraceFile Return or specify the network function trace output file

TraceFlags Gets and sets the current network function tracing flags

UnreadMessages Returns the number of unread messages in the current mailbox

UserName Gets and sets the current user name

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AllHeaders Property  

 

Returns the complete RFC 822 header values for the current message.

Syntax
object.AllHeaders

Remarks
The AllHeaders property will return all of the RFC 822 header values in a string. This includes the
message headers that are most commonly referred to, such as the To, From and Subject headers.
Each header and its value are separated by a colon, and terminated with a carriage return and
linefeed (CRLF) pair.

The headers and their values returned by this property will not be identical to the header block in
the original message. If a header value is split across multiple lines, the text returned by this
property will be folded, with the complete header value on a single line of text and removing any
extraneous whitespace. If the header value has been encoded by the mail client, this property will
return the decoded value, not the original encoded value.

Data Type
String

See Also
GetHeader, SetHeader

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AllRecipients Property  

 

Returns a comma-separated list of all message recipients.

Syntax
object.AllRecipients

Remarks
The AllRecipients property returns a string value that contains a comma-separated list of all
message recipients. To individually enumerate through each of the recipient addresses, you can
use the Recipient property array and Recipients property.

The string returned by this property will include those addresses specified by the Bcc property,
even though they are not included in the message header.

Data Type
String

See Also
Bcc Property, Cc Property, Recipient Property, Recipients Property, To Property, ComposeMessage
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Attachment Property  

 

Return the name of the attached file in the current message part.

Syntax
object.Attachment

Remarks
The Attachment property returns the name of the file attachment in the current part of a
multipart message. When a new part is selected that contains an attached file, the Attachment
property is updated to reflect the attached file's name. If the current message part does not
contain a file attachment, this property will return an empty string.

Data Type
String

See Also
AttachData Method, AttachFile Method, ExtractFile Method, FindAttachment Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Bcc Property  

 

Gets and sets the list of addresses that should receive a blind copy of the current message.

Syntax
object.Bcc [= value ]

Remarks
The Bcc property is used to specify one or more addresses that a copy of the message will be
delivered to. Note that these addresses are not included in the message header and cannot be
viewed by the recipient.

Multiple addresses may be specified by separating them with a comma. Each address must
conform to the standard Internet address format.

Data Type
String

See Also
Cc Property, From Property, ReplyTo Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 BearerToken Property  

 

Gets and sets the OAuth 2.0 bearer token for the current user.

Syntax
object.BearerToken [= token ]

Remarks
The BearerToken property specifies the OAuth 2.0 bearer token used to authenticate the user.
Assigning a value to this property will change the current authentication method to use OAuth 2.0.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an bearer token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the token using the appropriate scope for the service. Obtaining
the initial token will typically involve interactive confirmation on the part of the user, requiring they
grant permission to your application to access their mail account.

Your application should not store an OAuth 2.0 bearer token for later use. They have a relatively
short lifespan, typically about an hour, and are designed to be used with that session. You should
specify offline access as part of the OAuth 2.0 scope if necessary and store the refresh token
provided by the service. The refresh token has a much longer validity period and can be used to
obtain a new bearer token when needed.

If the current authentication method does not use OAuth 2.0, this property will return an empty
string and you should check the value of the Password property to obtain the current user's
password.

Data Type
String

See Also
Password Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cc Property  

 

Gets and sets the list of addresses that should receive a copy of the current message.

Syntax
object.Cc [= value ]

Remarks
The Cc property returns the list of addresses that received a copy of the current message. If there
is no current message, or the Cc header field is not defined, then this property will return an
empty string.

Setting the Cc property creates or changes the value of the Cc header field in the message and
specifies additional recipients of the message. Multiple addresses may be specified by separating
them with a comma. Each address must conform to the standard Internet address format.

Data Type
String

See Also
Bcc Property, From Property, ReplyTo Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateExpires Property  

 

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssued Property  

 

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssuer Property  

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site the
certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Long
     Dim cchFieldName As Long
     Dim nOffset As Long

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function
     End If

     nOffset = InStr(strValue, strFieldName & "=")



 
     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the name of the company who issued the server
certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = InternetMail1.CertificateIssuer
If Len(strIssuer) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strCompanyName = GetCertNameValue(strIssuer, "O")
     MsgBox "This certificate was issued by " & strCompanyName
End If

Data Type
String

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject

 



Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the client certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the certificate that should be used to
establish the connection with the server. It is only required that you set this property value if the
server requires a client certificate for authentication. If this property is not set, a client certificate
will not be provided to the server. If a certificate name is specified, the certificate must have a
private key associated with it, otherwise the connection attempt will fail because the control will be
unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the client certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStatus Property  

 

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property may return one of the following values:

Value Constant Description

0 mailCertificateNone No certificate information is available. A secure connection
was not established with the server.

1 mailCertificateValid The certificate is valid.

2 mailCertificateNoMatch The certificate is valid, however the domain name specified in
the certificate does not match the domain name of the site
that the client has connected to. This is typically the case if the
ServerName property is set to an IP address rather than a
host name. It is recommended that the client examine the
CertificateSubject property to determine the domain name
of the site that the certificate was issued for.

3 mailCertificateExpired The certificate has expired and is no longer valid. The client
can examine the CertificateExpires property to determine
when the certificate expired.

4 mailCertificateRevoked The certificate has been revoked and is no longer valid. It is
recommended that the client application immediately
terminate the connection if this status is returned.

5 mailCertificateUntrusted The certificate has not been issued by a trusted authority, or
the certificate is not trusted on the local host. It is
recommended that the client application immediately
terminate the connection if this status is returned.

6 mailCertificateInvalid The certificate is invalid. This typically indicates that the
internal structure of the certificate is damaged. It is
recommended that the client application immediately
terminate the connection if this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
String

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the client certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the client certificate that should
be used when establishing a secure connection with the server. The certificate may either be
stored in the registry or in a file. If the certificate is stored in the registry, then this property should
be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateSubject Property  

 

Returns information about the organization that the server certificate was issued to.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site the
certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the client certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the client certificate that will be used to establish
a secure connection with the server. If this property is not set, the certificate store for the current
user will be used when searching for the certificate. If this property is used to specify another user,
the process must have the appropriate permission to access the registry location that contains the
client certificate. On Windows Vista and later versions of the operating system, this requires that
the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ContentID Property  

 

Gets and sets the content identifier for the selected message part.

Syntax
object.ContentID [= value ]

Remarks
The ContentID property returns the unique content identifier string for the current message part.
This multipart header field is not commonly used, and if undefined, will return an empty string. If
set, this will change the value of the Content-ID header field in the current message part.

Data Type
String

See Also
ContentLength Property, ContentType Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ContentLength Property  

 

Returns the size of the data stored in the selected message part.

Syntax
object.ContentLength

Remarks
The ContentLength property returns the size of the current message part in bytes. This property
is read-only, and is automatically updated when the current message part changes.

Data Type
Integer (Int32)

See Also
ContentID Property, ContentType Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ContentType Property  

 

Gets and sets the content type of the selected message part.

Syntax
object.ContentType [= value ]

Remarks
The ContentType property returns the MIME type for the currently selected message part. The
type string consists of a primary type and secondary sub-type separated by a slash, followed by
one or more optional parameters delimited by semi-colons. For example, this is a common
content type for text messages:

text/plain; charset=utf-8

The text designation indicates that this message part contains readable text, and the plain sub-
type indicates that the text does not contain any special encoding. The optional parameter which
follows the content type provides additional information about the content. In this example, it
specifies which character set should be used to display the text. The two common character sets
used are UTF-8 and US-ASCII.

There are seven predefined, standard content types, each with their own sub-types. The following
table lists these types, along with some common sub-types that are found in messages:

Type Sub-Types Description

text plain,
richtext,
html

Indicates that the message part contains text. This is the most
common type found in mail messages; if no content type is explicitly
defined, then it is assumed to be plain text.

image gif, jpeg Indicates that the message part contains a graphics image.

audio basic, aiff,
wav

Indicates that the message part contains audio data; the basic sub-
type is 8-bit PCM encoded audio (commonly found with the .au
filename extension).

video mpeg, avi Indicates that the message part contains a video clip in the specified
format.

application octet-
stream

Indicates that the message part contains application specific data,
typically used with the octet-stream sub-type to indicate binary file
attachments for executable programs, compressed file archives, etc.

message rfc822 Indicates that the message part contains a complete RFC 822
compliant message, complete with headers.

multipart mixed,
alternative

Indicates that this is part of a message that contains multiple parts
with different content types.

The three most common content types that are used in applications are text/plain for the mail
message body, application/octet-stream for binary file attachments and multipart/mixed for
messages that contain both text and attached files. For more information about the different
content types, refer to the Multipurpose Internet Mail Extensions (MIME) standards document RFC
1521.

Data Type

 



String

See Also
ContentID Property, ContentLength Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Date Property  

 

Gets and sets the date for the current message.

Syntax
object.Date [= value ]

Remarks
The Date property returns the value of the Date header field in the current message. Setting this
property causes the Date field to be updated with the specified value. When setting the date, any
one of the following formats may be used:

Format Example

mm/dd/yy[yy] hh:mm[:ss] 03/01/98 12:00

yy[yy]/mm/dd hh:mm[:ss] 98/03/01 12:00

dd mmm yy[yy] hh:mm[:ss] 01 Mar 1998 12:00:00

mmm dd yy[yy] hh:mm[:ss] Mar 01 1998 12:00:00

Any extraneous information that may be included in the date string, such as the day of the week,
is ignored. In addition to the date and time, the string may also include a time zone specification
at the end. If no time zone is specified, the current time zone is used.

When specifying a time zone, the value should either be prefixed by a plus sign (+) to indicate that
the time zone is to the east of GMT, or a minus sign (-) to indicates that it's to the west. Four digits
follow, with the first two indicating the number of hours east or west of GMT, and the last two
digits indicating the number of minutes. Therefore, a value of -0800 means that the time zone is
eight hours to the west of GMT, or in other words, the Pacific time zone. Regardless of the format
of the string assigned to the property, it always returns the date in the same standard format.

Note that the Localize property affects how dates are processed by the control. If enabled, dates
are automatically adjusted for the local time zone. By default, localization is disabled.

Data Type
String

See Also
Localize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Domain Property  

 

Gets and sets the local domain name.

Syntax
object.Domain [= value ]

Remarks
The Domain property specifies the domain name of the local host, and is used to identify the
current system when sending messages. If this property is not defined, then the local host name
will be used.

Note that explicitly setting the Domain property to a value that does not match your local host
name may cause some mail servers to reject any messages that you attempt to send.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Encoding Property  

 

Gets and sets the content encoding for the current message part.

Syntax
object.Encoding [= value ]

Remarks
The Encoding property returns a string which specifies the method used for encoding the current
message part. Setting this property causes the Content-Transfer-Encoding header value to be
updated. The following values are commonly used:

Type Description

7bit The default transfer encoding type, which consists of printable ASCII characters.

8bit Printable ASCII characters, including those characters with the high-bit set (as is
common with the ISO Latin-1 character set); this encoding type is not commonly
used.

base64 The transfer encoding type commonly used to convert binary data into 7-bit ASCII
characters so that it may be transported safely through the mail system.

binary All characters; binary transfer encoding is rarely used.

quoted-
printable

Printable ASCII characters, with non-printable or extended characters represented
using their hexadecimal equivalents.

x-
uuencode

A transfer encoding type similar in function to the base64 encoding method.

Note that setting this property only updates the Content-Transfer-Encoding header value. To
control the actual encoding method used when attaching a file, see the AttachFile method.

Data Type
String

See Also
ContentLength Property, ContentType Property, ExtractFile Method, AttachFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 From Property  

 

Gets and sets the address of the person who sent the message.

Syntax
object.From [= value ]

Remarks
The From property returns the address of the person who sent the message. Setting the property
causes the From header field in the current message to be updated with the new value.

Data Type
String

See Also
Bcc Property, Cc Property, ReplyTo Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Determine if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property can be used to ensure that another blocking operation is not in progress at the time.

If this property returns False, this means there are no blocking operations on the current thread at
that time. If the property returns True, this tells you that you the control is already performing a
blocking operation.

Data Type
Boolean

See Also
LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of True if the control is connected with a
remote host, otherwise the property has a value of false.

Data Type
Boolean

See Also
Connect Method, Disconnect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error code.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this instance of
the object. If a value is assigned to this property, it must either be zero (to clear the error) or a
valid error code.

Data Type
Integer (Int32)

See Also
OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error that occurred.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a string that contains a description of the last error that
occurred.

Data Type
String

See Also
LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastMessage Property  

 

Return the number of the last message available on the server.

Syntax
object.LastMessage

Remarks
The LastMessage property returns the last message available on the server. Note that unlike the
MessageCount property, this value remains constant even when a message is deleted.

Data Type
Integer (Int32)

See Also
Message Property, MessageCount Property, MessageSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalAddress Property  

 

Return the Internet address of the local host.

Syntax
object.LocalAddress

Remarks
The LocalAddress property returns the Internet address of the local host as a string in dotted
notation. If there is an active connection to a server, then the return value will depend on the
network interface that was used to establish the connection. If there isn't a connection, then the
default address for the local host will be returned.

Data Type
Integer (Int32)

See Also
LocalName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Localize Property  

 

Enable or disable message localization.

Syntax
object.Localize [= { True | False } ]

Remarks
The Localize property is used to enable or disable localization features of the object. Currently this
only affects the way in which dates are processed. If set to True, the date and time will be adjusted
for the local time zone when setting and reading the Date property. The default value for this
property is False.

Data Type
Boolean

See Also
Date Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalName Property  

 

Return the Internet domain name of the local host.

Syntax
object.LocalName

Remarks
The LocalName property returns the Internet domain name for the local host. If there is an active
connection to a server, then the domain name will depend on the network interface that was used
to establish the connection. If there isn't a connection, then the default domain name for the local
host will be returned.

Data Type
String

See Also
LocalAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Mailbox Property  

 

Returns the name of the specified mailbox from a list of mailboxes on the server.

Syntax
object.Mailbox( Index )

Remarks
The Mailbox property array is used to enumerate the available mailboxes on the IMAP server.
This is a zero-based array, which means that the index value for the first mailbox is zero. The total
number of mailboxes that are available on the server is returned by the Mailboxes property.

This property should only be referenced when connected to an IMAP server.

Data Type
String

Example
The following example demonstrates how to use the Mailbox property array to populate a listbox
that contains the names of the available mailboxes:

For nIndex = 0 To InternetMail.Mailboxes - 1
  List1.AddItem InternetMail.Mailbox(nIndex)
Next

See Also
Mailboxes Property, MailboxFlags Property, MailboxName Property, MailboxUID Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Mailboxes Property  

 

Returns the number of mailboxes available on the server.

Syntax
object.Mailboxes

Remarks
The Mailboxes property returns the total number of mailboxes available to the current account
on the server. This property can be used in conjunction with the Mailbox property array to
enumerate the names of all of the mailboxes which can be selected by the client.

This property should only be referenced when connected to an IMAP server.

Data Type
Integer (Int32)

Example
The following example demonstrates how to use the Mailboxes property to populate a listbox
that contains the names of the available mailboxes:

For nIndex = 0 To InternetMail.Mailboxes - 1
  List1.AddItem InternetMail.Mailbox(nIndex)
Next

See Also
Mailbox Property, MailboxFlags Property, MailboxName Property, MailboxUID Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxFlags Property  

 

Returns one or more flags which identify characteristics of the current mailbox.

Syntax
object.MailboxFlags

Remarks
The MailboxFlags property returns information about the currently selected mailbox. The value
returned is one or more of the following bit flags:

Value Constant Description

&H10000 mailFlagNoInferiors The mailbox does not contain any child mailboxes. In
the IMAP protocol, these are referred to as inferior
hierarchical mailbox names.

&H40000 mailFlagMarked The mailbox is marked as being of interest to a client.
If this flag is used, it typically means that the mailbox
contains messages. An application should not depend
on this flag being present for any given mailbox.
Some IMAP servers do not support marked or
unmarked flags for mailboxes.

&H80000 mailFlagUnmarked The mailbox is marked as not being of interest to a
client. If this flag is used, it typically means that the
mailbox does not contain any messages. An
application should not depend on this flag being
present for any given mailbox. Some IMAP servers do
not support marked or unmarked flags for mailboxes.

Note that this property should only be used when connected to a mail server using the IMAP4
protocol.

Data Type
Integer (Int32)

Example
The following example demonstrates how to check the MailboxFlags property to see if the
mailbox contains any child mailboxes:

If (InternetMail.MailboxFlags And mailFlagNoInferiors) <> 0 Then
    MsgBox "This mailbox does not contain any child mailboxes"
End If

See Also
Mailbox Property, Mailboxes Property, MailboxName Property, MailboxUID Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxName Property  

 

Gets and sets the name of the current mailbox.

Syntax
object.MailboxName [= mailbox ]

Remarks
The MailboxName property returns the name of the currently selected mailbox. If no mailbox has
been selected by the client, this property will return an empty string. This property is only valid
when connected to an IMAP server.

Setting the MailboxName property will select a new mailbox in read-write mode. If the client has
a different mailbox currently selected, that mailbox will be closed and any messages marked for
deletion will be expunged. To prevent deleted messages from being removed from the previous
mailbox, call the UnselectMailbox method prior to selecting the new mailbox. Setting the
MailboxName property to an empty string will cause the current mailbox to be unselected, and a
new mailbox will not be selected. Before the application can access any messages, it must select a
new mailbox.

Selecting a new mailbox will automatically update those properties which provide information
about the current mailbox, such as the MailboxFlags and MailboxUID properties. If an
application wishes to update the information for the current mailbox, simply set the
MailboxName property again with the same mailbox name. Note that this will not cause any
messages marked for deletion to be expunged.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names
may or may not be case-sensitive depending on the IMAP server's operating system and
implementation.

If the mailbox name contains international characters then it is automatically encoded using a
modified version of UTF-7 encoding. For example, if a mailbox is named "Håndskrift", the mailbox
name created on the server will be the string "H&AOU-ndskrift". The control will automatically
decode UTF-7 encoded mailbox names, making the conversion transparent to the application.

Data Type
String

See Also
Mailbox Property, Mailboxes Property, MailboxFlags Property, MailboxUID Property, SelectMailbox
Method, UnselectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxSize Property  

 

Return the size of the current mailbox in bytes.

Syntax
object.MailboxSize

Remarks
The MailboxSize property returns the combined size of all of the available messages in the
current mailbox.

Reading this property may require a significant amount of time to calculate the mailbox size if
there are a large number of messages in the mailbox. Because it can potentially result in long
delays, it is not recommended that an application calculate the mailbox size unless it is absolutely
necessary.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxUID Property  

 

Returns the unique identifier for the current mailbox.

Syntax
object.MailboxUID

Remarks
The MailboxUID property returns an integer value which uniquely identifies the mailbox and
corresponds to the UIDVALIDITY value returned by the IMAP server. The actual value is
determined by the server and should be considered opaque. The protocol specification requires
that a mailbox's UID must not change unless the mailbox contents are modified or existing
messages in the mailbox have been assigned new UIDs.

An application can use the MailboxUID property value in combination with the MessageUID
property in order to uniquely identify a message on the server. However, the application must take
into consideration that the IMAP server can reassign new message UIDs when the mailbox is
modified. If the mailbox and message UIDs are being stored on the local system to track what
messages have been retrieved from the server, the application must check the UID of the mailbox
whenever it is selected. If the mailbox UID has changed, this means that the UIDs for the messages
in that mailbox may have changed. The client should resynchronize with the server, and update it's
local copy of that mailbox.

Data Type
Integer (Int32)

See Also
Mailbox Property, Mailboxes Property, MailboxFlags Property, MailboxName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Mailer Property  

 

Gets and sets the name of the mailer application.

Syntax
object.Mailer [= value ]

Remarks
The Mailer property returns the value of the X-Mailer header field in the current message. This is
typically used to identify the application that created the message, however it is not required that
this be specified. If the header field is not present in the message, this property will return an
empty string. Setting this property will change the value of the X-Mailer header. If the property is
set to an empty string, the header will be removed from the message.

Data Type
String

See Also
GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Message Property  

 

Gets and sets the current message headers and text.

Syntax
object.Message [= value ]

Remarks
The Message property returns the current message, including the headers and all message parts,
as a string. Setting this property will cause the current message to be cleared and replaced by the
new value. The string contents must follow the standard specifications for a message. If the
property is set to an empty string, the current message is cleared.

Note that setting the Message property will cause the value of the Bcc property to be reset to an
empty string.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageCount Property  

 

Return the number of messages available on the server.

Syntax
object.MessageCount

Remarks
The MessageCount property returns the number of messages available to be retrieved from the
mail server. When a message is deleted from the mailbox, this value will decrease. To determine
the highest valid message number, regardless of any deleted messages, use the LastMessage
property.

Data Type
Integer (Int32)

See Also
LastMessage Property, Message Property, MessageSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageFlags Property  

 

Returns one or more flags which identify characteristics of the current message.

Syntax
object.MessageFlags [= flags ]

Remarks
The MessageFlags property returns information about the currently selected message specified
by the MessageIndex property. The value returned is one or more of the following bit flags:

Value Constant Description

0 mailFlagNone No flags have been set for the current message

1 mailFlagAnswered The message has been answered

2 mailFlagDraft The message is a draft copy and has not been delivered

4 mailFlagUrgent The message has been flagged for urgent or special
attention

8 mailFlagSeen The message has been read

256 mailFlagRecent The message has been added to the mailbox recently

512 mailFlagDeleted The message has been marked for deletion

Setting the MessageFlags property changes the flags for the currently selected message. Multiple
bit flags can be combined using the bitwise Or operator. An application can test if a flag is set by
using the bitwise And operator.

Note that this property should only be used when connected to a mail server using the IMAP4
protocol.

Data Type
Integer (Int32)

Example
The following example demonstrates how to check the MessageFlags property to see if the
message has been marked for deletion, and if it has, to clear the flag so that it will not be deleted
when the mailbox is unselected:

If (InternetMail.MessageFlags And mailFlagDeleted) <> 0 Then
    InternetMail.MessageFlags = InternetMail.MessageFlags And Not 
mailFlagDeleted
End If

See Also
MessageCount Property, MessageIndex Property, MessagePart Property, MessageParts Property,
MessageSize Property, MessageUID Property, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageID Property  

 

Return a unique identifier for the current message.

Syntax
object.MessageID

Remarks
The MessageID property returns the value of the Message-ID header field, a string which is
assigned by the mail server to uniquely identify the current message.

Data Type
String

See Also
GetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageIndex Property  

 

Gets and sets the current message number on the server.

Syntax
object.MessageIndex [= value ]

Remarks
The MessageIndex property sets or returns the current message number on the server. Message
numbers range from 1 through the number of messages available on the server, as returned by
the LastMessage property. Setting the MessageIndex property to an invalid message number
will generate an error.

Data Type
Integer (Int32)

See Also
MessageCount Property, MessageFlags Property, MessageSize Property, MessageUID Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessagePart Property  

 

Gets and sets the current part in a multipart message.

Syntax
object.MessagePart [= part ]

Remarks
The MessagePart property returns the current message part index. All messages have at least
one part, which consists of one or more header fields, followed by the body of the message. The
default part, part 0, refers to the main message header and body. If the message contains multiple
parts (as with a message that contains one or more attached files), the MessagePart property can
be set to refer to that specific part of the message.

Messages with file attachments typically consist of a message part which describes the contents of
the attachment, followed by the attachment itself. For a message with one attached file, there
would be a total of three parts. Part 0 would refer to the main message part, which contains the
headers such as From, To, Subject, Date and so on. For multipart messages, part 0 typically does
not have a message body, since any text is usually created as a separate part (for those messages
that do not contain multiple parts, the part 0 body contains the text message). Part 1 would
contain the text describing the attachment, and part 2 would contain the attachment itself. If the
attached file is binary, then the transfer encoding type would usually be base64.

Data Type
Integer (Int32)

See Also
ContentType Property, ContentLength Property, Encoding Property, MessageParts Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageParts Property  

 

Return the number of parts in the current message.

Syntax
object.MessageParts

Remarks
The MessageParts property returns the number of parts in the current message. All messages
have at least one part, referenced as part 0. Multipart messages will consist of additional parts
which may be accessed by setting the MessageParts property.

Data Type
Integer (Int32)

See Also
MessagePart Property, AttachFile Method, ExtractFile Method, ExportMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageSize Property  

 

Return the size of the current message in bytes.

Syntax
object.MessageSize

Remarks
The MessageSize property returns the size of the current message in bytes. The size includes the
header and body portion of the message.

Data Type
Integer (Int32)

See Also
Message Property, MessageCount Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageText Property  

 

Return or change the text in the current message part.

Syntax
object.MessageText [= value ]

Remarks
The MessageText property returns the body of the current message part. Setting this property
replaces the entire message body with the new text. Note that setting the property to an empty
string deletes the body of the current message part, but does not delete the message part itself.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageUID Property  

 

Return the UID for the current message on the mail server.

Syntax
object.MessageUID

Remarks
The MessageUID property returns a string which uniquely identifies the message on the server.
The identifier is assigned by the mail server, and retains the same value across multiple client
sessions. This value is typically used when the client wants to leave a message on the mail server,
but does not wish to retrieve the message contents multiple times. For example, the client can
store the UID for each message that it retrieves, but does not delete from the server. The next
time that it connects to the mail server, it compares the UID of a message against the stored
values. If there is a match, the client knows that the message has already been retrieved, and does
not need to do so again.

This property requires that the mail server support the optional UIDL command. If the command is
not supported, this property will always return an empty string. Note that the UID for the message
comes from the mail server and is not the same as the Message-ID header field in the message
itself.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NameServer Property  

 

Gets and sets the Internet address for a nameserver.

Syntax
object.NameServer(index) [= value ]

Remarks
The NameServer property array is used to specify one or more nameservers. The address value
must be an Internet address in dot notation. The index specifies which nameserver to set or return
a value for. There may be up to four nameservers defined for any single instance of the object.

A nameserver is a computer which converts a domain name, such as microsoft.com, into an IP
address which can be used to establish a connection to a server. In addition to mapping domain
names, nameservers also can return information about what servers are responsible for handling
mail messages for a given domain. These servers are called "mail exchanges" and there may be
more than one mail exchange for a domain, each with its own assigned priority. This information is
used by the SendMessage method to determine the address of the appropriate SMTP server in
order to deliver the message to the specified recipient.

If no nameservers are specified, then the default nameservers for the local host will be used. For
those systems which use dial-up connections to the Internet, this requires that the system have an
active connection established before this object is initialized.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NewMessages Property  

 

Return the number of new messages available in the current mailbox.

Syntax
object.NewMessages

Remarks
The NewMessages property returns the number of new, unread messages available to be
retrieved from the currently selected mailbox.

This property value is only meaningful when connected to an IMAP server. If the control is
connected to a POP3 server, this property will always return the same value as the
MessageCount property.

Data Type
Integer (Int32)

See Also
MessageCount Property, RecentMessages Property, UnreadMessages Property, CheckMailbox
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Organization Property  

 

Return or change the name of the organization that created the message.

Syntax
object.Organization [= name ]

Remarks
The Organization property returns the name of the organization that sent the current message.
Setting this property updates the specified header value. Note that many mailers do not generate
an Organization header field, in which case the property value will be an empty string.

Data Type
String

See Also
GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= value ]

Remarks
The Password property specifies the password used to authenticate the user. If the property is not
explicitly set, then an application must provide the password to the Connect method. Once the
connection has been established, this property will be updated with the appropriate value.

If you have assigned a value to the BearerToken property, this property will return an empty
string. If a value is assigned to this property, the BearerToken property will be cleared and
standard password authentication will be used when connecting to the mail server.

Data Type
String

See Also
BearerToken Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Priority Property  

 

Gets and sets the current message priority.

Syntax
object.Priority [= name ]

Remarks
The Priority property returns the current priority for the message. Setting this property value
causes the X-Priority header to be updated with the specified value.

There is no strict standard for specifying message priority. The convention is to use a number from
1-5, with 1 indicating the highest priority, 3 as normal priority and 5 as the lowest priority. Some
mailers follow the number with a space and then text that describes the priority level.

Data Type
String

See Also
GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RecentMessages Property  

 

Returns the number of messages which have recently arrived in the mailbox.

Syntax
object.RecentMessages

Remarks
The RecentMessages property returns the number of messages which have been recently added
to the currently selected mailbox. This property is particularly useful when the INBOX mailbox is
selected, since it enables the application to check if any new messages have arrived.

This property value is only meaningful when connected to an IMAP server. If the control is
connected to a POP3 server, this property will always return the same value as the
MessageCount property.

Data Type
Integer (Int32)

See Also
Mailbox Property, Mailboxes Property, MailboxFlags Property, MessageCount Property,
UnreadMessages Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Recipient Property  

 

Return the address of a message recipient.

Syntax
object.Recipient(index)

Remarks
The Recipient property array returns the email address of one of the recipients of the current
message, as specified by the index argument. This property enables an application to enumerate
all of the recipient addresses for the current message without having to parse the individual To, Cc
and Bcc property values. Note that this property array is read-only; to change the recipients for
the current message you must set the To, Cc or Bcc properties.

The index argument specifies which address to return, with a base value of zero up to the number
of recipients.

The string returned by the Recipient property contains only the actual email address and does
not include the name of the recipient or any comments that may have been included with the
address. For example, if the To property is set to "John Doe <jdoe@company.com>" then the
Recipient property would return a value of "jdoe@company.com" for that address.

Data Type
String

Example
The following example enumerates all of the recipients for the current message and adds them to
a listbox:

    For nIndex = 0 To InternetMail1.Recipients
        List1.AddItem InternetMail1.Recipient(nIndex)
    Next

See Also
Bcc Property, Cc Property, Recipients Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Recipients Property  

 

Return the number of recipients for the current message.

Syntax
object.Recipients

Remarks
The Recipients property returns the number of recipients for the current message. This value can
be used in conjunction with the Recipient property array to enumerate the recipient email
addresses for the current message.

Example
The following example enumerates all of the recipients for the current message and adds them to
a listbox:

    For nIndex = 0 To InternetMail1.Recipients
        List1.AddItem InternetMail1.Recipient(nIndex)
    Next

Data Type
Integer (Int32)

See Also
Recipient Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RelayServer Property  

 

Gets and sets the host name or address of a relay server.

Syntax
object.RelayServer [= value ]

Remarks
The RelayServer property is used to specify an alternate mail server which will deliver messages
for the current user.

Normally, when the SendMessage method is used, the recipient address is used to determine
what mail server is responsible for accepting messages for that user. However, under some
circumstances this may not be desirable or even possible. For example, many Internet Service
Providers (ISPs) require that customers send all messages through their servers and block any
attempt to establish a direct connection with another mail server. Setting the RelayServer
property to the host name or address of the ISP mail server will cause all messages to be relayed
through that server rather than directly to the recipient.

Note that using a mail server as a relay without the permission of the organization or individual
who owns that server may violate Acceptable Use Policies and/or Terms of Service agreements
with your service provider.

Data Type
String

See Also
ServerName Property, ServerPort Property, RelayPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RelayPort Property  

 

Gets and sets the port number for the specified relay server.

Syntax
object.RelayPort [= value ]

Remarks
The RelayPort property defines the port number which is used to establish a connection with the
mail server. This property is used in conjunction with the RelayServer property to specify an
alternate mail server which is responsible for delivering messages for the current user.

If this property is not set, the default SMTP port will be used when connecting to a relay mail
server.

Data Type
Integer (Int32)

See Also
RelayServer Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReplyTo Property  

 

Gets and sets the address of the person who should receive replies to this message.

Syntax
object.ReplyTo [= value ]

Remarks
The ReplyTo property returns the address of the user who should receive replies to the current
message. Setting this property updates the Reply-To header field with the specified value.

Data Type
String

See Also
Bcc Property, Cc Property, From Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReturnReceipt Property  

 

Gets and sets the address of the person who should receive a message indicating that the
message has been read.

Syntax
object.ReturnReceipt [= value ]

Remarks
The ReturnReceipt property returns the address of the person who should receive a message
indicating that the current message has been read. Setting this property updates the Disposition-
Notification-To header field with the specified value.

Setting the ReturnReceipt property does not automatically cause an acknowledgement to be
returned to the sender. An application is responsible for checking to make sure the header field
contains a valid address and then generating the return receipt message.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Specify if a connection to the server is secure.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application must set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may retrieve
messages from the server as with standard connections.

It is strongly recommended that any application that sets this property to True use error handling
to trap any errors that may occur. If the control is unable to initialize the security libraries, or
otherwise cannot create a secure session for the client, an error will be generated when this
property value is set.

Data Type
Boolean

Example
The following example establishes a secure connection to a server and retrieves a message:

InternetMail1.ServerType = mailServerPop3
InternetMail1.ServerName = strServerName
InternetMail1.UserName = strUserName
InternetMail1.Password = strPassword
InternetMail1.Secure = True

nError = InternetMail1.Connect()
If nError > 0 Then
    MsgBox "Unable to connect to server " & strServerName, vbExclamation
    Exit Sub
End If
  
If InternetMail1.CertificateStatus <> mailCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)
  
     If nResult = vbNo Then
          InternetMail1.Disconnect
          Exit Sub
     End If
End If

nError = InternetMail1.GetMessage(1)
If nError > 0 Then
     InternetMail1.Disconnect
     MsgBox "Unable to retrieve message from server " & strServerName
     Exit Sub
End If
  
InternetMail1.Disconnect

 



See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus
Property, CertificateSubject Property, CipherStrength Property, HashStrength Property,
SecureCipher Property, SecureHash Property, SecureKeyExchange Property, SecureProtocol
Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 stCipherNone No cipher has been selected. This is not a secure connection
with the server.

1 stCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

2 stCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

4 stCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 stCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 stCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 stCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 stCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 stCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 stCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Value Constant Description

1 mailHashMD5 The MD5 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be cryptographically
secure.

2 mailHashSHA1 The SHA-1 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be cryptographically
secure.

4 mailHashSHA256 The SHA-256 algorithm has been selected.

8 mailHashSHA384 The SHA-384 algorithm has been selected.

16 mailHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 stKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 stKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 stKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 stKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 stKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange algorithm
was selected. This is a variant of the Diffie-Hellman
algorithm which uses elliptic curve cryptography. This
key exchange algorithm is only supported on Windows
XP SP3 and later versions of the operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

 



established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerName Property  

 

Gets and sets the host name of the current mail server.

Syntax
object.ServerName [= value ]

Remarks
The ServerName property returns the name of the mail server that the client is connected to.
Setting this property specifies the host name or Internet address for a subsequent connection.

If the ServerName property is not explicitly set, then an application must provide the host name
or address to the Connect method. Once the connection has been established, this property will
be updated with the appropriate value. If the server uses a non-standard port number, it can be
specified using the ServerPort property.

The mail server must support Post Office Protocol v3 (POP3) to retrieve messages. Setting this
property does not affect what server is used to deliver messages. See the RelayServer and
RelayPort properties to specify a mail server that is responsible for relaying messages.

Data Type
String

See Also
RelayPort Property, RelayServer Property, ServerPort Property, ServerType Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerPort Property  

 

Gets and sets the port number for the current mail server.

Syntax
object.ServerPort [= value ]

Remarks
The ServerPort property returns the port number that was used to establish a connection with the
mail server. Setting this property specifies an alternate port number to use for a subsequent
connection. A value of zero specifies that the default port should be used for the connection.

The mail server must support Post Office Protocol v3 (POP3) to retrieve messages. Setting this
property does not affect what server is used to deliver messages. See the RelayServer and
RelayPort properties to specify a mail server that is responsible for relaying messages.

Data Type
Integer (Int32)

See Also
RelayPort Property, RelayServer Property, ServerName Property, ServerType Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerType Property  

 

Gets and sets the type of mail server the client is connecting to.

Syntax
object.ServerType [= servertype ]

Remarks
The ServerType property may be used to specify the mail server type before establishing a
connection. If this property is not explicitly set in code, then the control will attempt to
automatically determine which protocol should be used based on the value of the ServerPort
property. By default, the control will attempt to use the POP3 protocol.

This property may return one of the following values:

Value Constant Description

0 mailServerDefault The default server type is determined by the value of the ServerPort
property. If that property has not been set, then the control will use
the Post Office Protocol (POP3) as the default protocol when
establishing the connection.

1 mailServerPop3 The mail server is using the Post Office Protocol (POP3)

2 mailServerImap4 The mail server is using the Internet Message Access Protocol
(IMAP4)

It is important to note that certain properties and methods in the control are specific to the IMAP4
protocol, such as those that are used to select and enumerate mailboxes. If you are unsure which
protocol your mail server supports, contact the system administrator.

Data Type
Integer (Int32)

See Also
Secure Property, ServerName Property, ServerPort Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Subject Property  

 

Gets and sets the subject of the current message.

Syntax
object.Subject [= value ]

Remarks
The Subject property returns the subject of the current message. Setting this property updates
the Subject header with the specified value. Note that not all messages have subjects, in which
case this property will return an empty string.

Data Type
String

See Also
GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError [= { True | False } ]

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, methods will not raise an exception if an error occurs.
Instead, the application should check the return value of the method and report any errors based
on that value. It is the responsibility of the application to interpret the error code and take an
appropriate action. This is the default value for the property.

If the ThrowError property is set to True, any method which generates an error will cause the
component to raise an exception which must be handled or the application will terminate.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of this property. This property only controls how errors are handled when
calling methods.

Data Type
Boolean

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking network operation is aborted.

Syntax
object.Timeout [= value ]

Remarks
The Timeout property controls the amount of time that the component will wait for a network
operation to complete before aborting the operation and returning an error. The default value for
this property is 20 seconds. It may be required to increase this value if a slow or unreliable network
connection is being used.

Data Type
Integer (Int32)

See Also
Connect Method, SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TimeZone Property  

 

Gets and sets the current timezone offset in seconds.

Syntax
object.TimeZone [= value ]

Remarks
The TimeZone property returns the current offset from UTC in seconds. Setting the property
changes the current timezone offset to the specified value. The value of this property is initially
determined by the date and time settings on the local system.

The TimeZone property value is used in conjunction with the Localize property to control how
message date and time localization is handled.

Data Type
Integer (Int32)

Example
The following code enables localization and changes the current timezone to Eastern Standard,
which is five hours (18,000 seconds) west of UTC:

InternetMail1.Localize = True 
InternetMail1.TimeZone = (5 * 60 * 60)

See Also
Localize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 To Property  

 

Gets and sets the recipient of the current message.

Syntax
object.To [= value ]

Remarks
The To property returns the list of addresses that received a copy of the current message. If there
is no current message, or the To header field is not defined, then this property will return an
empty string.

Setting the To property creates or changes the value of the To header field in the message and
specifies additional recipients of the message. Multiple addresses may be specified by separating
them with a comma. Each address must conform to the standard Internet address format.

Data Type
String

See Also
Bcc Property, Cc Property, From Property, ReplyTo Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable network function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the tracing of network function calls and is
primarily used as a debugging tool. When enabled, each function call is logged to a file, including
the function parameters, return value and error code if applicable. This facility can be enabled and
disabled at run time, and the trace log file can be specified by setting the TraceFile property. All
function calls that are being logged are appended to the trace file, if it exists. If no trace file exists
when tracing is enabled, the trace file is created.

The tracing facility is enabled or disabled for an entire process. This means that once tracing is
enabled for a given instance of the object, all of the function calls made by the process will be
logged.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Return or specify the network function trace output file.

Syntax
object.TraceFile [= value ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network
function tracing is enabled. If this property is set to an empty string, then a file named
CSTRACE.LOG is created in the system's temporary directory. If no temporary directory exists, then
the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since function
tracing is enabled per-process, the trace file is shared by all instances of the object being used.
Since trace files can grow very quickly, even with modest applications, it is recommended that you
delete the file when it is no longer needed.

The trace file has the following format:

VB6 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced; in this case, it is Visual Basic
6.0. The second column identifies if the trace record is reporting information, a warning, or an
error. What follows is the name of the function being called, the arguments passed to the function
and the function's return value. If a warning or error is reported, the error code is included in
brackets.

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a memory address, it is recorded as a hexadecimal value preceded with "0x". Those
functions which expect Internet addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFlags Property  

 

Gets and sets the current network function tracing flags.

Syntax
object.TraceFlags [= value ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
network function tracing is enabled. The following values may be used:

Value Constant Description

0 mailTraceInfo All function calls are written to the trace file. This is the default
value.

1 mailTraceError Only those function calls which fail are recorded in the trace file.

2 mailTraceWarning Only those function calls which fail, or return values which indicate
a warning, are recorded in the trace file.

4 mailTraceHexDump All function calls are written to the trace file, plus all the data that
is sent or received is logged, in both ASCII and hexadecimal
format.

Since network function tracing is enabled per-process, the trace flags are shared by all instances of
the object being used.

Warnings are generated when a non-fatal error is returned by a network function. For example, if
data is being sent to the server and the error 10035 is returned, a warning is generated since the
application simply needs to attempt to write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UnreadMessages Property  

 

Returns the number of unread messages in the current mailbox.

Syntax
object.UnreadMessages

Remarks
The UnreadMessages property returns the number of messages which do not have the SEEN flag
in the current mailbox. This value is not the same as the number of recent messages in a mailbox,
which is based on when the message was stored in the mailbox. To obtain a list of messages that
have not been read, use the SearchMailbox method with UNSEEN as the search criteria.

It is possible that a message may be flagged as seen if it has been previously accessed by a
different mail client. For example, a client may retrieve a message from an INBOX mailbox using
the POP3 protocol, which would cause that message to be flagged as seen. This behavior is server
dependent, and is most commonly found where the mail server supports both the POP3 and
IMAP4 protocols.

Data Type
Integer (Int32)

See Also
MessageCount Property, NewMessages Property, RecentMessages Property, SearchMailbox
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= value ]

Remarks
The UserName property specifies the name used to authenticate the user. If the property is not
explicitly set, then an application must provide the user name to the Connect method. Once the
connection has been established, this property will be updated with the appropriate value.

Data Type
String

See Also
BearerToken Property, Password Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Mail Control Methods  

 

Method Description

AppendMessage Append text to the current message part

AttachData Attach the contents of a buffer to the current message

AttachFile Attach the specified file to the current message

AttachImage Attach an inline image to the current message

Cancel Cancel the current operation

ChangePassword Change the mailbox password for the specified user

CheckMailbox Create a checkpoint of the currently selected mailbox

ComposeMessage Compose a new mail message

Connect Establish a connection with the specified mail server

ClearMessage Clear the current message

CopyMessage Copy a message from the current mailbox to another mailbox

CreateMailbox Creates a new mailbox on the server

CreateMessage Create a new message

CreatePart Create a new message part in a multipart message

DeleteHeader Delete a header field from the current message part

DeleteMailbox Deletes a mailbox from the server

DeleteMessage Delete the specified message from the mail server

DeletePart Delete the specified message part in the current message

Disconnect Disconnect from the mail server

ExportMessage Export the current message to a text file

ExtractAllFiles Extract all file attachments from the current message

ExtractFile Extract an attached file from the current message

FindAttachment Search the current message for a file attachment with the specified file name

GetFirstHeader Return the first header in the current message part

GetHeader Return the value for the specified header in the current message part

GetNextHeader Return the next header in the current message part

GetMessage Retrieve the specified message from the mail server

Idle Enables mailbox status monitoring for the client session

ImportMessage Import a new message from the specified text file

Initialize Initialize the component and load the networking library

ParseAddress Parse an Internet email address

 



ParseMessage Parse the specified string, adding the contents to the current message

Reset Reset the state of the component

RenameMailbox Change the name of a mailbox

SearchMailbox Search the current mailbox for messages that match the specified criteria

SelectMailbox Selects the specified mailbox for read-write access

SendMessage Send an email message to one or more recipients

SetHeader Set the value of a header field in the current message part

StoreMessage Store the specified message in a file

UndeleteMessage Removes the deletion flag for the specified message

Uninitialize Uninitialize the component and unload the networking library

UnselectMailbox Unselects the current mailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AppendMessage Method  

 

Append text to the current message part.

Syntax
object.AppendMessage( MessageText )

Parameters
MessageText

A string which specifies the text to append.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The AppendMessage method appends the specified string to the end of the body of text in the
current message part. Each line of text contained in the string should be terminated with a
carriage-return/linefeed (CRLF) pair, which is recognized as the end-of-line.

See Also
MessagePart Property, ComposeMessage Method, CreatePart Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AttachData Method  

 

Attach the contents of a buffer to the current message.

Syntax
object.AttachData( Buffer, [Length], [ContentName], [ContentType], [Options] )

Parameters
Buffer

A string or byte array which specifies the data to be attached to the message. If an empty string
is passed as the argument, no data is attached, but an additional empty message part will be
created.

Length

An integer value which specifies the number of bytes of data in the buffer. If this value is
omitted, the entire length of of the string or size of the byte array is used.

ContentName

An optional string argument which specifies a name for the data being attached to the
message. This typically is used as a file name by the mail client to store the data in. If this
parameter is omitted or passed as an empty string then no name is defined and the data is
attached as inline content. Note that if a file name is specified with a path, only the base name
will be used.

ContentType

An optional string argument which specifies the type of data being attached. The value must be
a valid MIME content type. If this parameter is omitted or passed as an empty string, then the
buffer will be examined to determine what kind of data it contains. If there is only text
characters, then the content type will be specified as "text/plain". If the buffer contains binary
data, then the content type will be specified as "application/octet-stream", which is appropriate
for any type of data.

Options

An optional integer value which specifies one or more options. This parameter is constructed by
using a bitwise operator with any of the following values:

Value Constant Description

0 mailAttachDefault The data encoding is based on the content type. Text data
is not encoded, and binary data is encoded using the
standard base64 encoding algorithm. If this argument is
omitted, this is the default value used.

1 mailAttachBase64 The data is always encoded using the standard base64
algorithm, even if the buffer only contains printable text
characters.

2 mailAttachUucode The data is always encoded using the uuencode algorithm,
even if the buffer only contains printable text characters.

3 mailAttachQuoted The data is always encoded using the quoted-printable
algorithm. This encoding should only be used if the data
contains 8-bit text characters.

 



Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The AttachData method attaches the contents of a string or byte buffer to the current message.

Example
The following example demonstrates how to use the AttachData method in Visual Basic:

Dim hFile As Integer
Dim lpBuffer() As Byte
Dim cbBuffer As Long

' Open a file for binary access and read it into a
' byte array that will be attached to the message

hFile = FreeFile()
Open strDataFile For Binary As hFile
cbBuffer = LOF(hFile)
ReDim lpBuffer(cbBuffer)
Get hFile, , lpBuffer
Close hFile

' Compose a new message and then attach the contents
' of the buffer

InternetMail1.ComposeMessage strFrom, _
                             strTo, _
                             strCc, _
                             strSubject, _
                             strMessage
                            
InternetMail1.AttachData lpBuffer, cbBuffer, strDataFile

See Also
Attachment Property, AttachFile Method, ExtractFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AttachFile Method  

 

Attach the specified file to the current message.

Syntax
object.AttachFile( FileName, [Options] )

Parameters
FileName

A string that specifies the name of the file to be attached to the message. If the string is empty
or the file does not exist, an error will be returned.

Options

An integer value that specifies the type of encoding that will be applied to the attachment. If this
argument is not specified, then text files will not be encoded and binary files will be encoded
using the standard base64 algorithm.

Value Constant Description

0 mailAttachDefault The file attachment encoding is based on the file content
type. Text files are not encoded, and binary files are
encoded using the standard base64 algorithm. This is the
default option for file attachments.

1 mailAttachBase64 The file attachment is always encoded using the standard
base64 algorithm, even if the attached file is a plain text
file.

2 mailAttachUucode The file attachment is always encoded using the standard
uuencode algorithm, even if the attached file is a plain text
file.

3 mailAttachQuoted The file attachment is always encoded using quoted-
printable encoding. Note that this encoding method is only
recommended for text content, typically either as HTML or
RTF.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The AttachFile method attaches the specified file to the current message. If the message already
contains one or more file attachments, then it is added to the end of the message. If the message
does not contain any attached files, then it is converted to a multipart message and the file is
appended to the message.

See Also
ContentType Property, AttachData Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AttachImage Method  

 

Attach an inline image to the current message.

Syntax
object.AttachImage( FileName, [ContentId] )

Parameters
FileName

A string that specifies the name of the file that contains the image which should be attached to
the message. If the string is empty or the file does not exist, an error will be returned.

ContentId

An optional string value which specifies the content ID that is associated with the inline image. If
this parameter is omitted or is an empty string, a random content ID string will be automatically
generated.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The AttachImage method attaches an inline image to the current message. Unlike a normal file
attachment, this method is designed to be used with HTML formatted email messages that display
images attached to the message. If the message already contains one or more images or file
attachments, then it is added to the end of the message. If the message does not contain any
attachments, then it is converted to a multipart message and the image is appended to the
message. To attach regular files to the message, use the AttachFile method.

See Also
ContentType Property, AttachData Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancel the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Reset Method, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ChangePassword Method  

 

Change the mailbox password for the specified user.

Syntax
object.ChangePassword( UserName, OldPassword, NewPassword )

Parameters
UserName

A string that specifies the username for the mailbox.

OldPassword

A string that specifies the current password for the user's mailbox. An error will be returned if
this is an empty string.

NewPassword

A string that specifies the new password for the user's mailbox. An error will be returned if this is
an empty string, or if the old and new password are the same value.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

The ChangePassword method changes the password that will be used to authenticate the
specified user. If the UserName parameter is the same value as the UserName property, then
successfully changing the password will cause the Password property to be updated with the new
password

Note that in order to change the user's mailbox password, the server must be running the
poppass service on port 106, on the same server. Because passwords are transmitted as clear text
(unencrypted), this service is not considered secure and may not be available.

See Also
Password Property, UserName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CheckMailbox Method  

 

Create a checkpoint of the currently selected mailbox.

Syntax
object.CheckMailbox

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CheckMailbox method requests that the server create a checkpoint of the currently selected
mailbox, and updates the current number of new, unread messages available to the client.

When the client requests a checkpoint, the server may perform implementation-dependent
housekeeping for that mailbox, such updating the mailbox on disk with the current state of the
mailbox in memory. On some systems this command has no effect other than to update the client
with the current number of messages in the mailbox.

This function actually sends two IMAP commands. The first is the CHECK command, followed by
the NOOP command to poll for any new messages that have arrived. In addition to polling the
server for new messages, this command can also be used to ensure the idle timer on the server
does not expire and force a disconnect from the client.

This method can only be used when connected to an IMAP server.

See Also
MailboxName Property, MessageCount Property, NewMessages Property, RecentMessages
Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ComposeMessage Method  

Compose a new mail message.

Syntax
object.ComposeMessage( From, To, [Cc], [Bcc], [Subject], [MessageText], [MessageHTML],
[CharacterSet], [EncodingType] )

Parameters
From

A string that specifies the sender's email address. Only a single address should be used. After
the message has been composed, the From property will be updated with this value.

To

A string that specifies one or more recipient email addresses. Multiple email addresses may be
specified by separating them with commas. After the message has been composed, the To
property will be updated with this value.

Cc

An optional string that specifies one or more additional recipient addresses that will receive a
copy of the message. If this argument is not specified, then no Cc header field will be created
for this message. After the message has been composed, the Cc property will be updated with
this value.

Bcc

An optional string that specifies one or more additional recipient addresses that will receive a
copy of the message. Unlike the cc argument, these recipients will not be included in the header
of the message. If this argument is not specified, then no blind carbon copies of the message
will be sent. After the message has been composed, the Bcc property will be updated with this
value.

Subject

An optional string that specifies the subject for the message. If the argument is not specified,
then no Subject header field will be created for this message. After the message has been
composed, the Subject property will be updated with this value.

MessageText

An optional string that contains the body of the message. Each line of text contained in the
string should be terminated with a carriage-return/linefeed (CRLF) pair, which is recognized as
the end-of-line. If this parameter is not specified, then the message will have an empty body
unless the MessageHTML parameter has been specified.

MessageHTML

An optional string that contains an alternate HTML formatted message. If the MessageText
parameter has been specified, then a multipart message will be created with both plain text and
HTML text as the alternative. This allows mail clients to select which message body they wish to
display. If the MessageText parameter is not specified or is an empty string, then the message
will only contain HTML. Although this is supported, it is not recommended because older mail
clients may be unable to display the message correctly.

CharacterSet

An optional integer value which specifies the character set for the message text. If this
parameter is omitted, the default is for the message to be composed using the standard UTF-8



 

character set.

EncodingType

An optional integer value which specifies the default encoding for the message. If this
parameter is omitted, the message will use standard 8-bit encoding. This parameter may be one
of the following values:

Value Constant Description

1 mailEncoding7Bit Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the first bit cleared.
This encoding is most commonly used with plain text
using the US-ASCII character set, where each character
is represented by a single byte in the range of 20h to
7Eh.

2 mailEncoding8Bit Each character is encoded in one or more bytes, with
each byte being 8 bits long and all bits are used. 8-bit
encoding is used with UTF-8 and other multi-byte
character sets.

3 mailEncodingBinary Binary encoding is essentially the absence of any
encoding performed on the message data, and there is
no presumption that the data contains textual
information. No character set localization or conversion
is performed on binary encoded data. This encoding
type is not recommended. Instead, binary data should
be encoded using the standard base64 algorithm.

4 mailEncodingQuoted Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

5 mailEncodingBase64 Base64 encoding is designed to represent binary data in
a form that is not human readable but which can be
safely exchanged with servers that only accept 7-bit
data. Base64 encoding is typically used with file
attachments.

6 mailEncodingUucode Uuencoding and uudecoding is a legacy encoding
format that was used before the MIME standard was
established. This encoding method has largely been
replaced by base64 encoding, although it is still
commonly used for binary newsgroup postings on
USENET. Although this encoding format is supported, it
is not officially part of the MIME standard and its use in
email messages is discouraged.

 



Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ComposeMessage method will replace the current message if one already exists.

Example
The following example composes a message and sends it to the specified recipients:

    Dim nError As Long
    
    nError = InternetMail1.ComposeMessage(comboFrom.Text, _
                                          editTo.Text, _
                                          editCc.Text, _
                                          editBcc.Text, _
                                          editSubject.Text, _
                                          editMessage.Text)
    If nError > 0 Then
        MessageBox "Unable to compose message", vbExclamation
        Exit Sub
    End If

    nError = InternetMail1.SendMessage()

    If nError > 0 Then
        MsgBox "Unable to send message", vbExclamation
        Exit Sub
    End If

See Also
Bcc Property, Cc Property, Encoding Property, From Property, MessageText Property, Subject
Property, To Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

Establish a connection with the specified mail server.

Syntax
object.Connect( [ServerName], [ServerPort], [Username], [Password], [Timeout], [Options] )

Parameters
ServerName

A string which specifies the host name or IP address of the mail server.

ServerPort

A number which specifies the port number used to connect to the server. If this argument is not
specified, the value of the ServerType property will determine the default port number.

UserName

A string which specifies the name of the user used to authenticate access to the server. If this
argument is not specified, it defaults to the value of the UserName property.

Password

A string which specifies the password used to authenticate the user. If this argument is not
specified, it defaults to the value of the Password property. If the BearerToken property has
been assigned a value, this parameter will be ignored and OAuth 2.0 authentication will be used
instead of standard password authentication.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

A numeric value which specifies one or more options. If this argument is omitted or a value of
zero is specified, a default, standard connection will be established. This argument is
constructed by using a bitwise operator with any of the following values:

The settings for Options are:

Value Constant Description

1 mailOptionImplicitSSL This option specifies that an implicit SSL session should
be established with the mail server and prevents the
use of a command which is used to negotiate an
explicit SSL connection. This option should only be used
if it is required.

2 mailOptionAPOP Causes the APOP authentication method to be used
when connecting to a POP3 mail server. The default is
to use standard password authentication.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Connect method is used to establish a connection with the specified mail server. This is the



 

first method that must be called prior to the application retrieving mail messages using the
GetMessage method. If this method is called when a connection already exists, the current
connection will be closed. This has the side-effect of causing any messages which have been
marked for deletion to be removed by the mail server.

If the ServerType property has not been explicitly set by the application, and a standard port
number is specified, then the server type is automatically determined based on the value of the
ServerPort parameter. If a non-standard port number is specified, then you must set the
ServerType property to identify whether you are attempting to connect to a POP3 or IMAP4
server.

You should not call the Connect method when sending messages using SMTP. This method is
only used to establish a connection with a POP3 or IMAP4 server. For more information about
sending messages, see the SendMessage method and the RelayServer and RelayPort
properties.

Example
The following example connects to a mail server and retrieves each of the mail messages, storing
them in a file on the local system:

    Dim strFileName As String
    Dim nMessage As Long, nError As Long

    nError = InternetMail1.Connect(strServerName, , strUserName, strPassword)
    
    If nError > 0 Then
        MsgBox "Unable to connect to " & strServerName & vbCrLf & _
               InternetMail1.LastErrorString, vbExclamation
        Exit Sub
    End If
    
    If InternetMail1.LastMessage = 0 Then
        MsgBox "The mailbox is currently empty", vbInformation
        InternetMail1.Disconnect
        Exit Sub
    End If
    
    For nMessage = 1 To InternetMail1.LastMessage
        strFileName = "c:\temp\msg" & Format(nMessage, "00000") & ".txt"
        nError = InternetMail1.StoreMessage(nMessage, strFileName)
        If nError > 0 Then
            MsgBox "Unable to store message " & nMessage & vbCrLf & _
                   InternetMail1.LastErrorString, vbExclamation
            Exit For
        End If
    Next
    
    If nError = 0 Then
        MsgBox "Stored " & InternetMail1.LastMessage & " messages", 
vbInformation
    End If
    
    InternetMail1.Disconnect

See Also
BearerToken Property, Password Property, Secure Property, ServerName Property, ServerPort
Property, ServerType Property, UserName Property, Disconnect Method, GetMessage Method,

 



SendMessage Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CopyMessage Method  

 

Copy a message from the current mailbox to another mailbox.

Syntax
object.CopyMessage( MessageNumber, MailboxName, [Options] )

Parameters
MessageNumber

The message identifier which specifies which message is to be copied to the mailbox. This value
must be greater than zero and specify a valid message number.

MailboxName

A string which specifies the name of the mailbox that the message will be copied to. The
mailbox must already exist, and the client must have the appropriate access rights to modify the
mailbox.

Options

An optional parameter reserved for future use. This argument should either be omitted, or
always be zero.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CopyMessage method copies a message from the current mailbox to the specified mailbox.
The message is appended to the mailbox, and the message flags and internal date are preserved.
If the mailbox does not exist, the function will fail. To create a new mailbox, use the
CreateMailbox method. A message can be copied within the same mailbox, in which case the
server may flag it as a new message.

See Also
CreateMailbox Method, CreateMessage Method, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClearMessage Method  

 

Clear the current message.

Syntax
object.ClearMessage

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ClearMessage method clears the current message, releasing the memory allocated for the
message and any attachments. This will also reset the value of the Bcc property back to an empty
string.

See Also
ComposeMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreateMailbox Method  

 

Creates a new mailbox on the server.

Syntax
object.CreateMailbox( MailboxName )

Parameters
MailboxName

A string which specifies the name of the new mailbox to be created.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CreateMailbox method creates a new mailbox on the server. If the mailbox name is suffixed
with the server's hierarchy delimiter, this indicates to the server that the client intends to create
mailbox names under the specified name in the hierarchy. If superior hierarchical names are
specified in the mailbox name, then the server may automatically create them as needed. For
example, if the mailbox name "Mail/Office/Projects" is specified and "Mail/Office" does not exist, it
may be automatically created by the server.

The special mailbox name INBOX is reserved, and cannot be created. It is recommended that
mailbox names only consist of printable ASCII characters, and the special characters "*" and "%"
should be avoided.

See Also
CheckMailbox Method, DeleteMailbox Method, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreateMessage Method  

 

Create a new message.

Syntax
object.CreateMessage( MessageData, [MessageFlags], [MailboxName] )

Parameters
MessageData

The contents of the message to be created. This may either be specified as a string or as an
array of bytes.

MessageFlags

An optional integer value which specifies one or more message flags. This parameter is
constructed by using a bitwise operator with any of the following values:

Value Constant Description

0 mailFlagNone No value.

1 mailFlagAnswered The message has been answered.

2 mailFlagDraft The message is not completed and is marked as a draft
copy.

4 mailFlagUrgent The message is flagged for urgent or special attention.

8 mailFlagSeen The message has been read.

MailboxName

An optional string argument which specifies the name of the mailbox that the message will be
created in. If this argument is omitted, the message will be created in the currently selected
mailbox.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CreateMessage method creates a new message, appending it to the contents of the
specified mailbox. This method will cause the current thread to block until the message transfer
completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event
will fire periodically, enabling the application to update any user interface objects such as a
progress bar.

See Also
GetMessage Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreatePart Method  

Create a new message part in a multipart message.

Syntax
object.CreatePart( [MessageText], [CharacterSet], [EncodingType])

Parameters
MessageText

An optional string that specifies the body of the new message part. Each line of text contained
in the string should be terminated with a carriage-return/linefeed (CRLF) pair, which is
recognized as the end-of-line. If the parameter is not specified, then the message part will have
an empty body.

CharacterSet

An optional integer value that specifies the character set that will be used for this message part.
If this parameter is omitted, the message part will use the standard UTF-8 character set. This
parameter may be one of the following values:

Value Constant Description

1 mailCharsetUSASCII A character set using US-ASCII which defines 7-bit
printable characters with values ranging from 20h to
7Eh. An application that uses this character set has the
broadest compatibility with most mail servers (MTAs)
because it does not require the server to handle 8-bit
characters correctly when the message is delivered.
This is the most commonly used character set for plain
text email messages in the English language.

2 mailCharsetISO8859_1 An 8-bit character set for most western European
languages such as English, French, Spanish and
German. This character set is also commonly referred
to as Latin1. The Windows code page for this character
set is 28591, however Windows code page 1252
(Windows-1252) is typically used to represent this
character set in most applications.

3 mailCharsetISO8859_2 An 8-bit character set for most central and eastern
European languages such as Czech, Hungarian, Polish
and Romanian. This character set is also commonly
referred to as Latin2. This character set is similar to
Windows code page 1250, however the characters are
arranged differently.

4 mailCharsetISO8859_5 An 8-bit character set for Cyrillic languages such as
Russian, Bulgarian and Serbian. The Windows code
page for this character set is 28595. This character set
is not widely used and it is recommended that you use
UTF-8 instead.

5 mailCharsetISO8859_6 An 8-bit character set for Arabic languages. Note that
the application is responsible for displaying text that



 

uses this character set. In particular, any display engine
needs to be able to handle the reverse writing
direction and analyze the context of the message to
correctly combine the glyphs. This character set is not
widely used and it is recommended that you use UTF-
8 instead.

6 mailCharsetISO8859_7 An 8-bit character set for the Greek language. This
character set is also commonly referred to as
Latin/Greek. The Windows code page for this character
set is 28597.

7 mailCharsetISO8859_8 An 8-bit character set for the Hebrew language. Note
that similar to Arabic, Hebrew uses a reverse writing
direction. An application which displays this character
should be capable of processing bi-directional text
where a single message may include both right-to-left
and left-to-right languages, such as Hebrew and
English. The Windows code page for this character set
is 28598.

8 mailCharsetISO8859_9 An 8-bit character set for the Turkish language. This
character set is also commonly referred to as Latin5.
The Windows code page for this character set is
28599.

9 mailCharsetUTF7 A 7-bit Unicode Transformation Format that uses
variable-length character encoding to represent
Unicode text as a stream of ASCII characters that are
safe to transport between mail servers that only
support 7-bit printable characters. It is primarily used
as an alternative to UTF-8 which requires that the mail
server support 8-bit text or use quoted-printable
encoding.

10 mailCharsetUTF8 An 8-bit Unicode Transformation Format that uses
multi-byte character sequences to represent Unicode
text. It is backwards compatible with the ASCII
character set, however because it uses 8-bit text, it
should be encoded using either quoted-printable or
base64 encoding to ensure that mail servers that do
not support 8-bit characters.

EncodingType

An optional integer value which specifies the encoding for this message part. If this parameter is
omitted, the message part will use standard 7-bit encoding. This parameter may be one of the
following values:

Value Constant Description

1 mailEncoding7Bit Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the first bit cleared.
This encoding is most commonly used with plain text
using the US-ASCII character set, where each character

 



is represented by a single byte in the range of 20h to
7Eh.

2 mailEncoding8Bit Each character is encoded in one or more bytes, with
each byte being 8 bits long and all bits are used. 8-bit
encoding may be used with multi-byte character sets,
although this encoding type is uncommon in email
messages.

3 mailEncodingBinary Binary encoding is essentially the absence of any
encoding performed on the message data, and there is
no presumption that the data contains textual
information. No character set localization or conversion
is performed on binary encoded data. This encoding
type is not recommended. Instead, binary data should
be encoded using the standard base64 algorithm.

4 mailEncodingQuoted Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

5 mailEncodingBase64 Base64 encoding is designed to represent binary data in
a form that is not human readable but which can be
safely exchanged with servers that only accept 7-bit
data. Base64 encoding is typically used with file
attachments.

6 mailEncodingUucode Uuencoding and uudecoding is a legacy encoding
format that was used before the MIME standard was
established. This encoding method has largely been
replaced by base64 encoding, although it is still
commonly used for binary newsgroup postings on
USENET. Although this encoding format is supported, it
is not officially part of the MIME standard and its use in
email messages is discouraged.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CreatePart method creates a new message part. If the current message is a simple RFC822
message, then this method converts it to a MIME multipart message. The current message part will
be set to the new part that was just created.

See Also
AttachFile Method, DeletePart Method



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteHeader Method  

 

Delete a header field from the current message part.

Syntax
object.DeleteHeader( HeaderField )

Parameters
HeaderField

A string that specifies the name of the header field to be deleted from the current message
part.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The DeleteHeader method deletes the specified header field value from the current message
part.

See Also
ClearMesage Method, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteMessage Method  

 

Delete the specified message from the mail server.

Syntax
object.DeleteMessage( [MessageNumber] )

Parameters
MessageNumber

An optional integer value which specifies the message to delete. If this parameter is omitted, the
value of the MessageIndex property will be used.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The DeleteMessage method marks the specified message for deletion. If the optional message
number is not specified, then the current message is deleted. Once a message has been marked
as deleted, any attempt to access it will result in an error.

The message will not actually be removed from the server until the Disconnect method is called
or the control is unloaded. To prevent messages which have been marked for deletion from
actually being removed from the mailbox, call the Reset method.

See Also
MessageIndex Property, Disconnect Method, GetHeader Method, GetMessage Method, Reset
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteMailbox Method  

 

Deletes a mailbox from the server.

Syntax
object.DeleteMailbox( MailboxName )

Parameters
MailboxName

A string which specifies the name of the mailbox to be deleted.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The DeleteMailbox method deletes a mailbox from the server. A mailbox cannot be deleted if it
contains inferior hierarchical names and has the mailFlagNoSelect attribute. On most systems
this is the case when the mailbox name references a directory on the server, and that directory
contains other subdirectories or mailboxes. To remove the mailbox, you must first delete any child
mailboxes that exist.

If the mailbox that is deleted is the currently selected mailbox, it will be automatically unselected
and any messages marked for deletion will be expunged before the mailbox is removed. If the
delete operation fails, the client will remain in an unselected state until SelectMailbox method is
called.

The special mailbox name INBOX is reserved, and cannot be deleted.

See Also
MailboxName Property, CheckMailbox Method, CreateMailbox Method, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeletePart Method  

 

Delete the specified message part in the current message.

Syntax
object.DeletePart( [MessagePart] )

Parameters
MessagePart

An optional integer value that specifies the message part to delete from the current message.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The DeletePart method deletes the specified message part in the current message. If the optional
message part is not specified, then the current message part is deleted.

See Also
AttachFile Method, CreatePart Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Disconnect from the mail server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Disconnect method causes all messages that have marked for deletion to be removed by the
server and the network connection is closed.

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExportMessage Method  

 

Export the current message to a text file.

Syntax
object.ExportMessage( FileName, [Options] )

Parameters
FileName

A string which specifies the name of the file that will contain the message. If the file does not
exist, it will be created. If it does exist, it will be overwritten with the contents of the message.

Options

An optional integer value which specifies one or more options. If this argument is omitted, the
Options property value will be used as the default. The following values may be combined
using a bitwise Or operator:

Value Constant Description

&H100 mailOptionAllHeaders All headers, including the Bcc, Received, Return-Path,
Status and X400-Received header fields will be
exported. Normally these headers are not exported
because they are only used by the mail transport
system. This option can be useful when exporting a
message to be stored on the local system, but should
not be used when exporting a message to be
delivered to another user.

&H200 mailOptionKeepOrder The original order in which the message header fields
were set or imported are preserved when the
message is exported.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ExportMessage copies the current message to the specified file. If the file does not exist it will
be created, otherwise it will be overwritten with the contents of the message.

See Also
ExtractFile Method, ImportMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExtractAllFiles Method  

 

Extract all file attachments from the current message, storing them in the specified directory.

Syntax
object.ExtractAllFiles( [Directory] )

Parameters
Directory

An optional string that specifies the name of the directory where the file attachments should be
stored. If this parameter is omitted or points to an empty string, the attached files will be stored
in the current working directory on the local system.

Return Value
If the method succeeds, the return value is the number of file attachments which were extracted
from the current message. If the message does not contain any file attachments, this method will
return a value of zero. If the method fails, the return value is -1. To get extended error
information, check the value of the LastError property.

Remarks
This method will extract all of the files that are attached to the current message and store them in
the specified directory. The directory must exist and the current user must have the appropriate
permissions to create files there. If a file with the same name as the attachment already exists, it
will be overwritten with the contents of the attachment. If the file attachment was encoded using
base64 or uuencode, this method will automatically decode the contents of the attachment.

To store a file attachment on the local system using a name that is different than the file name of
the attachment, use the ExtractFile method.

See Also
Attachment Property, AttachData Method, AttachFile Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExtractFile Method  

 

Extract an attached file from the current message.

Syntax
object.ExtractFile( FileName, [MessagePart] )

Parameters
FileName

A string which specifies the name of the file that the attachment will be written to. If the file does
not exist, it will be created. If the file exists, it will be overwritten.

MessagePart

An optional integer value that specifies the message part that contains the file attachment.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ExtractFile method writes the contents of a message part, typically a file attachment, to a file
on the local system. This method will automatically decode any binary file attachments. If the
optional MessagePart argument is not specified, the current message part is used. To determine if
the current message part contains an attachment and to determine its file name, check the value
of the Attachment property. An error will be returned if the specified message part does not
contain a file attachment.

To search for a file attachment in the current message with a specific file name, use the
FindAttachment method.

See Also
Attachment Property, ExportMessage Method, ExtractAllFiles Method, FindAttachment Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FindAttachment Method  

 

Search the current message for a file attachment with the specified file name.

Syntax
object.FindAttachment( FileName )

Parameters
FileName

A string the specifies the name of the file attachment to search for. This parameter should only
specify a base file name; it should not include a file path and cannot be an empty string.

Return Value
If the method succeeds, the return value is the message part number that contains the file
attachment. If the message does not contain an attachment that matches the specified file name,
the return value is -1. To get extended error information, check the value of the LastError
property.

Remarks
The FindAttachment method will search the current message for a attachment that matches the
specified file name. The search is not case-sensitive, however it must match the attachment file
name completely. This method will not match partial file names or names that include wildcard
characters.

Example
nMessagePart = InternetMail1.FindAttachment(strFileName)

If nMessagePart > -1 Then
    InternetMail1.ExtractFile(strFileName, nMessagePart)
End If

See Also
Attachment Property, AttachFile Method, ExtractAllFiles Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFirstHeader Method  

 

Return the first header in the current message part.

Syntax
object.GetFirstHeader( HeaderField, HeaderValue )

HeaderField

A string which will contain the name of the first header field when the method returns. This
parameter must be passed by reference.

HeaderValue

A string which will contain the value of the first header field when the method returns. This
parameter must be passed by reference.

Return Value
A boolean value of True is returned if the method succeeds, otherwise a value of False is returned.
For more information about the cause of the failure, check the value of the LastError property.

Remarks
The GetFirstHeader method allows an application to enumerate all of the headers in the current
message. If the current message part does not contain any header fields, this method will return
False.

Example
The following example enumerates all of the headers in the main part of the current message and
adds them to a listbox:

    Dim strHeader As String, strValue As String
    Dim bResult As Boolean
    
    bResult = InternetMail1.GetFirstHeader(strHeader, strValue)
    Do While bResult
        List1.AddItem strHeader & ": " & strValue
        bResult = InternetMail1.GetNextHeader(strHeader, strValue)
    Loop

See Also
MessagePart Property, GetHeader Method, GetNextHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetHeader Method  

 

Return the value for the specified header in the current message part.

Syntax
object.GetHeader( HeaderField, HeaderValue )

Parameters
HeaderField

A string variable which will specifies the name of the header field to return the value of. Header
field names are not case sensitive.

HeaderValue

A string variable which will contain the value of the specified header field. This parameter must
be passed by reference.

Return Value
A boolean value of True is returned if the method succeeds, otherwise a value of False is returned.
For more information about the cause of the failure, check the value of the LastError property.

Remarks
The GetHeader method is used to retrieve the value for a specific header in the current message
part. If the header field exists, the method will return True and the HeaderValue parameter will
contain the header value. If the header does not exist, the method will return False.

If there are multiple headers with the same name, the first value will be returned. To enumerate all
of the headers in a message, including duplicate header fields, use the GetFirstHeader and
GetNextHeader methods.

See Also
MessagePart Property, GetFirstHeader Method, GetNextHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetNextHeader Method  

 

Return the next header in the current message part.

Syntax
object.GetNextHeader( HeaderField, HeaderValue )

Parameters
HeaderField

A string which will contain the name of the next header field when the method returns. This
parameter must be passed by reference.

HeaderValue

A string which will contain the value of the next header field when the method returns. This
parameter must be passed by reference.

Return Value
A boolean value of True is returned if the method succeeds, otherwise a value of False is returned.
For more information about the cause of the failure, check the value of the LastError property.

Remarks
The GetNextHeader method allows an application to enumerate all of the headers in the current
message. When all of the headers in the current message part have been returned, this method
will return False.

Example
The following example enumerates all of the headers in the main part of the current message and
adds them to a listbox:

 Dim strHeader As String, strValue As String
Dim bResult As Boolean
    
bResult = InternetMail1.GetFirstHeader(strHeader, strValue)
Do While bResult
    List1.AddItem strHeader & ": " & strValue
    bResult = InternetMail1.GetNextHeader(strHeader, strValue)
Loop

See Also
MessagePart Property, GetFirstHeader Method, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetMessage Method  

 

Retrieve the specified message from the mail server.

Syntax
object.GetMessage( [MessageNumber] )

Parameters
MessageNumber

An optional integer value that specifies the message number.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The GetMessage method retrieves the specified message from the mail server. This method will
cause the current message to be replaced with the new message, and the MessageIndex
property will be updated with the new message number. If the optional message MessageNumber
argument is not specified, then the value of the MessageIndex property is used instead.

Note that unlike setting the MessageIndex property, which only causes the headers for the
specified message to be retrieved, the GetMessage method downloads the complete message.
The OnProgress event will fire periodically as the message is retrieved, allowing an application to
update its user interface if desired.

Example
The following example connects to a mail server and retrieves the first message:

    Dim nError As Long
    
    nError = InternetMail1.Connect(strServerName, , strUserName, strPassword)
    
    If nError > 0 Then
        MsgBox "Unable to connect to " & strServerName & vbCrLf & _
               InternetMail1.LastErrorString, vbExclamation
        Exit Sub
    End If
    
    If InternetMail1.LastMessage = 0 Then
        MsgBox "The mailbox is currently empty", vbInformation
        InternetMail1.Disconnect
        Exit Sub
    End If
    
    nError = InternetMail1.GetMessage(1)

    If nError > 0 Then
        MsgBox "Unable to retrieve the message" & vbCrLf & _
               InternetMail1.LastErrorString, vbExclamation
    Next
    
    InternetMail1.Disconnect

See Also

 



MessageIndex Property, GetHeader Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Idle Method  

 

Enables mailbox status monitoring for the client session.

Syntax
object.Idle( [Options], [Timeout] )

Parameters
Options

An optional integer value which specifies how the Idle method will function. If this argument is
omitted, the method will return immediately to the caller without causing the current thread to
block.

Value Constant Description

0 mailIdleNoWait The method should return immediately after idle processing
has been enabled. When this option is used, the application
may continue to perform other functions while the client
session is monitored for status updates sent by the server. The
client will continue to monitor status changes until an IMAP
command issued or the client disconnects from the server.
This is the default option.

1 mailIdleWait The method should wait until the server sends a status
update, or until the timeout period is reached. The client will
stop monitoring status changes when the function returns. If
this option is used in a single-threaded application, normal
message processing can be impeded, causing the application
to appear non-responsive until the timeout period is reached.
It is strongly recommended that single-threaded applications
with a user interface specify the mailIdleNoWait option
instead.

Timeout

Specifies the timeout period in seconds to wait for a notification from the server. This parameter
is only used when the mailIdleWait option has been specified.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Idle method enables mailbox status monitoring for the client session, allowing the client to
receive notifications from the server whenever a new message arrives or a message is expunged
from the currently selected mailbox. This is typically used as an alternative to the client periodically
polling the server for status information.

Many IMAP servers support the ability to asynchronously send status updates to the client, rather
than have the client periodically poll the server. The client enables this feature by calling the Idle
method and implementing an event handler for the OnUpdate event. Typically these events
inform the client that a new message has arrived or that a message has been expunged from the
mailbox.

 



The Idle method can operate in two modes, based on the options specified by the caller. If the
option mailIdleNoWait is specified, the method begins monitoring the client session
asynchronously and returns control immediately to the caller. If the server sends a update
notification to the client, the OnUpdate event will fire with information about the status change. If
the option mailIdleWait is specified, the method will block waiting for the server to send a
notification message to the client. The method will return when either a message is received or the
timeout period is exceeded.

Sending an IMAP command to the server will cause the client to stop monitoring the session for
status changes. To explicitly stop monitoring the session, use the Cancel method.

This method works by sending the IDLE command to the server and starting a worker thread
which monitors the connection and looks for untagged responses issued by the server. Events will
be generated for EXISTS, EXPUNGE and RECENT messages. Note that some servers may
periodically send untagged OK messages to the client, indicating that the connection is still active;
these messages are explicitly ignored.

An application should never make an assumption about how a particular server may send update
notifications to the client. Servers can be configured to use different intervals at which notifications
are sent. For example, a server may send new message notifications immediately, but may
periodically notify the client when a message has been expunged. Alternatively, a server may only
send notifications at fixed intervals, in which case the client would not be notified of any new
messages until the interval period is reached. It is not possible for a client to know what a
particular server's update interval is. Applications that require that degree of control should not
use the Idle method and should poll the server instead.

This method should only be used when connected to an IMAP server. Attempting to use this
method when connected to a POP3 server will fail with an error message indicating that the
feature is not supported.

See Also
OnUpdate Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ImportMessage Method  

 

Import a new message from the specified text file.

Syntax
object.ImportMessage( FileName )

Parameters
FileName

A string that specifies the name of the file to import the message from.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ImportMessage method replaces the current message with the message contained in the
specified text file. Note that calling this method will result in the Bcc property value being cleared.

See Also
Bcc Property, AttachFile Method, ExportMessage Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set mailClient = CreateObject("SocketTools.InternetMail.11")

nError = mailClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ParseAddress Method  

 

Parse an Internet email address.

Syntax
object.ParseAddress( Address )

Parameters
Address

A string value that specifies the address to be parsed.

Return Value
A string that contains the email address or an empty string if the address could not be parsed.

Remarks
The ParseAddress method parses a string which contains an email address and returns only the
address portion, excluding any comments. An address may contain comments enclosed in
parenthesis, or may specify a name along with the address in which case the address is enclosed
in angle brackets. For example, consider the following header field value:

"User Name" <user@domain.com> (This is a comment)

The string "user@domain.com" would be returned if passed the above string, removing the name
and any comments.

Note that the ParseAddress method will only parse a single address. If multiple addresses are
specified, they must be comma delimited and split prior to calling this method.

Example
The following example parses all of the recipient email addresses in the current message, storing
them in the strAddresses string array.

Dim strAddresses() As String, strAddress As String
Dim nIndex As Integer, nAddresses As Integer
    
nAddresses = 0
strAddresses = Split(InternetMail1.To & "," & _
                     InternetMail1.Cc & "," & _
                     InternetMail1.Bcc, ",")

For nIndex = 0 To UBound(strAddresses)
    If Len(Trim(strAddresses(nIndex))) > 0 Then
        strAddress = InternetMail1.ParseAddress(strAddresses(nIndex))
        If Len(strAddress) > 0 Then
            strAddresses(nAddresses) = strAddress
            nAddresses = nAddresses + 1
        End If
    End If
Next

See Also
Recipient Property, Recipients Property, ParseMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ParseMessage Method  

 

Parse the specified string, adding the contents to the current message.

Syntax
object.ParseMessage( MessageText )

Parameters
MessageText

A string which specifies the message text to be parsed.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ParseMessage method parses a string which contains message data, adding it to the current
message. This method is useful when the application needs to parse an arbitrary block of text and
add it to the current message. If the string contains header fields, the values will be added to the
message header. Once the end of the header block is detected, all subsequent text is added to
the body of the message.

Note that unlike the ImportMessage method, the ParseMessage method does not clear the
contents of the current message and may be called multiple times. Use the ClearMessage
method to clear the current message before calling ParseMessage if necessary.

Example
The following example demonstrates the use of ParseMessage to parse multiple blocks of data
from a file. This example effectively does the same thing as calling the ImportMessage method:

InternetMail1.ClearMessage
    
hFile = FreeFile()
Open strFileName For Input As hFile
nFileLength = LOF(hFile)
    
Do While nFileLength > 0
    '
    ' Read the contents of the file in 1K blocks; note that
    ' this is intentionally inefficient to demonstrate
    ' multiple calls to the ParseMessage method.
    '
    cbBuffer = nFileLength: If cbBuffer > 1024 Then cbBuffer = 1024
    nFileLength = nFileLength - cbBuffer
    strBuffer = Input(cbBuffer, hFile)
    '
    ' Parse the string, adding to the current message
    '
    nError = InternetMail1.ParseMessage(strBuffer)
    If nError > 0 Then
        MsgBox InternetMail1.LastErrorString, vbExclamation
        Exit Do
    End If
Loop
    

 



Close hFile

See Also
ClearMessage Method, ImportMessage Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RenameMailbox Method  

 

Change the name of a mailbox.

Syntax
object.RenameMailbox( OldName, NewName )

Parameters
OldName

A string that specifies the name of the mailbox to be renamed on the server. The mailbox must
exist on the server, otherwise an error will be returned.

NewName

A string that specifies the new name for the mailbox. An error will be returned if a mailbox with
that name already exists.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
If the existing mailbox name contains inferior hierarchical names (mailboxes under the specified
mailbox) then those mailboxes will also be renamed. For example, if the mailbox "Mail/Pictures"
contains two mailboxes, "Personal" and "Work" and it is renamed to "Mail/Images" then the two
mailboxes under it would be automatically renamed to "Mail/Images/Personal" and
"Mail/Images/Work".

If the mailbox being renamed is the currently selected mailbox, the current mailbox will be
unselected and any messages marked for deletion will be expunged. The new mailbox name will
then automatically be re-selected. To prevent deleted messages from being removed from the
mailbox prior to being renamed, use the UnselectMailbox method to unselect the current
mailbox before calling RenameMailbox. Note that if the rename operation fails, the client may be
left in an unselected state.

It is permitted to rename the special mailbox INBOX. In this case, the messages will be moved
from the INBOX mailbox to the new mailbox. If the INBOX mailbox is currently selected, the new
mailbox will not automatically be selected. INBOX will remain the selected mailbox.

See Also
Mailbox Property, Mailboxes Property, MailboxName Property, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the state of the component.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the component, releasing any memory allocated for
messages and/or network connections. If the application is connected to a mail server, the
connection will be terminated. If any messages were marked for pending deletion, those messages
will not be deleted.

See Also
Cancel Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SearchMailbox Method  

Search the current mailbox for messages that match the specified criteria.

Syntax
object.SearchMailbox( Criteria, Messages, [CharacterSet] )

Parameters
Criteria

A string which consists of one or more keywords which are used to define the search criteria.
The following keywords are recognized:

Keyword Description

ANSWERED Match those messages which have the mailFlagAnswered flag set.

BCC address Match those messages which contain the specified address in the BCC
header field.

BEFORE date Match those messages which were added to the mailbox prior to the
specified date.

BODY string Match those messages where the body contains the specified string.

CC address Match those messages which contain the specified address in the CC
header field.

DELETED Match those messages which have the mailFlagDeleted flag set.

DRAFT Match those messages which have the mailFlagDraft flag set.

FLAGGED Match those messages which have the mailFlagUrgent flag set.

FROM address Match those messages which contain the specified address in the
FROM header field.

HEADER field
string

Match those messages which contain the string in the specified
header field. If no string is specified, then all messages which contain
the header will be matched.

LARGER size Match those messages which are larger than the specified size in
bytes.

NEW Match those messages which have the mailFlagRecent flag set, but
not the mailFlagSeen flag.

OLD Match those messages which do not have the mailFlagRecent flag
set.

ON date Match those messages which were added on the specified date.

RECENT Match those messages which have the mailFlagRecent flag set.

SEEN Match those messages which have the mailFlagSeen flag set.

SENTBEFORE
date

Match those messages whose Date header value is earlier than the
specified date.

SENTON date Match those messages whose Date header value is the same as the
specified date.



 

SENTSINCE
date

Match those messages whose Date header value is later than the
specified date.

SINCE date Match those messages added to the mailbox after the specified date.

SMALLER size Match those messages which are smaller than the specified size in
bytes.

SUBJECT
string

Match those messages whose Subject header contains the specified
string.

TEXT string Match those messages whose headers or body contains the specified
string.

TO address Match those messages which contain the specified address in the TO
header field.

UID sequence Match those messages with unique identifiers in the sequence set.

UNANSWERED Match those messages which do not have the mailFlagAnswered
flag set.

UNDELETED Match those messages which do not have the mailFlagDeleted flag
set.

UNDRAFT Match those messages which do not have the mailFlagDraft flag set.

UNFLAGGED Match those messages which do not have the mailFlagUrgent flag
set.

UNSEEN Match those messages which do not have the mailFlagSeen flag set.

Messages

This argument must be passed as an array of integers which will contain the message numbers
of those messages which match the search criteria. The size of the array determines the
maximum number of matches that will be returned by the method. Note that the array must
specify 32-bit integers. In Visual Basic, this means that the array would be typed as Long. In
Visual Basic.NET, the array would be typed as Integer.

CharacterSet

An optional string which specifies the character set to use when searching the mailbox. If this
argument is omitted, the default UTF-8 character set will be used. Note that not all servers
support searches using anything but the default character set.

Return Value
This method will return the number of messages which were found to match the search criteria. If
no messages match the criteria, then the return value will be zero. A return value of -1 indicates
an error, and the specific error code can be determined by checking the LastError property.

Remarks
The SearchMailbox method is used to search a mailbox for messages which match a given
criteria and return a list of the matching message numbers. The search criteria is composed of one
or more search keywords and and optional value to match against. String searches are not case
sensitive and partial matches in the message are returned. The message numbers returned by this
method are only valid until the mailbox is expunged or another mailbox is selected.

In addition to the listed keywords, the keyword NOT may prefix a keyword to return those

 



messages which do not match the search criteria. For example, "NOT TO user@domain.com"
would return those messages which were not addressed to user@domain.com.

If multiple search keywords are specified, the result is the intersection of all those messages which
meet the search criteria. For example, a search criteria of "DELETED SINCE 1-Jan-2010" would
return all those messages which are marked for deletion and were added to the mailbox after 1
January 2010.

Those search keywords which expect dates must be specified in format dd-mmm-yyyy where the
month is the three letter abbreviation for the month name. Note that the internal date the
message was added to the mailbox is not the same as the value of the Date header field in the
message.

If the search keyword expects a string value and the string contains one or more spaces, you need
to enclose the search string in quotes as part of the criteria string. For example, in Visual Basic you
could use code like this:

strCriteria = "SUBJECT " + Chr(34) + "search string" + Chr(34)

The quotes around the search string prevents the server from interpreting it as a multiple search
criteria to be evaluated. If you are using a search string provided by a user, it is recommended that
you always enclose it in quotes to prevent any potential ambiguity in the search. Even if the search
string does not contain any spaces, it is always safe to enclose it in quotes.

The UID keyword expects a one or more unique message identifiers. These values may provided
as comma separated list, or a range delimited by a colon. For example, "UID 23000:24000" would
return all those messages who have UIDs ranging from 23000 through to 24000.

See Also
MailboxName Property, SelectMailbox Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SelectMailbox Method  

 

Selects the specified mailbox for read-write access.

Syntax
object.SelectMailbox( MailboxName )

Parameters
MailboxName

A string argument which specifies the name of the mailbox to be selected.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The SelectMailbox method is used to select a mailbox in read-write mode. If the client has a
different mailbox currently selected, that mailbox will be closed and any messages marked for
deletion will be expunged. To prevent deleted messages from being removed from the previous
mailbox, use the UnselectMailbox method prior to selecting the new mailbox.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names
may or may not be case-sensitive depending on the IMAP server's operating system and
implementation.

See Also
MailboxName Property, CheckMailbox Method, UnselectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendMessage Method  

 

Send an email message to one or more recipients.

Syntax
object.SendMessage( [Sender], [Recipient], [Message], [Options] )

Parameters
Sender

 An optional string value that identifies the sender of the message and must be a standard
Internet email address. If this argument is omitted, then the address specified by the From
property will be used.

Recipient

An optional string value that specifies one or more recipients of the message. If this argument is
omitted, then the addresses listed in the Bcc, Cc and To properties will be combined to
determine the recipients of the message.

Message

An optional string value that contains a complete email message. This must be a properly
formatted message that conforms to the standards for Internet email. If this argument is
omitted, then the current message is sent.

Options

An optional integer value that specifies one or more options for sending the message. If this
argument is omitted, the value of the Options property will be used instead. One or more of
the following values may be used:

Value Constant Description

1 mailOptionImplicitSSL This option specifies that an implicit SSL session
should be established with the mail server and
prevents the use of a command which is used to
negotiate an explicit SSL connection.

4 mailOptionAuthLogin Specifies that the user must be authenticated to
the mail server before the message is delivered.
This option should only be used if a relay server
supports AUTH LOGIN and requires
authentication.

&HF0000 mailOptionNotify Notify the sender of the delivery status of the
message, if the server supports delivery status
notification. This option is a combination of the
mailNotifySuccess, mailNotifyFailure,
mailNotifyDelay and mailReturnHeaders options.

&H10000 mailNotifySuccess If the mail server supports delivery status
notification, this causes a message to be returned
to the sender once it has been successfully
delivered.

&H20000 mailNotifyFailure If the mail server supports delivery status
notification, this causes a message to be returned

 



to the sender if it could not be delivered.

&H40000 mailNotifyDelay If the mail server supports delivery status
notification, this causes a message to be returned
to the sender if delivery has been delayed.

&H80000 mailReturnHeaders If the mail server supports delivery status
notification, this causes a message to be returned
which contains the headers of the message that
was sent.

&H100000 mailReturnMessage If the mail server supports delivery status
notification, this causes a message to be returned
which contains the complete message that was
sent.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The SendMessage method sends the specified message to one or more recipients. This method
can be used in a number of different ways, depending on the arguments specified by the caller.

If the Message parameter is specified, but the sender and recipient properties are omitted, then
the message will be parsed and the addresses will be automatically determined by the values of
the From, Cc and To header fields. Note that specifying a message argument does not change the
current message.

For each recipient listed, either as an argument to the method or in the message itself, the
SendMessage method will determine the appropriate mail exchange server and deliver the
message to that user. If the RelayServer and RelayPort properties are defined, then all messages
will be relayed through that specific server, regardless of the recipient address. Note that the
Secure property and related options only affects connections to relay mail servers. See the
RelayServer and RelayPort properties for additional information.

If a relay server is being used, it may require authentication before accepting any messages for
delivery. To enable authentication, specify the mailOptionAuthLogin option, either as an
argument or by setting the Options property. Prior to calling the SendMessage method, the
UserName and Password properties should be set to the values that will be used to authenticate
the session. If the server does not support authentication, or the user name or password is invalid,
an error will be returned. Note that authentication is only performed if a relay server is used,
otherwise the option is ignored.

See Also
Bcc Property, Cc Property, From Property, RelayPort Property, RelayServer Property, Secure
Property, To Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SetHeader Method  

 

Set the value of a header field in the current message part.

Syntax
object.SetHeader( HeaderField, HeaderValue )

Parameters
HeaderField

A string which specifies the name of the header field to create or modify. If the header field
does not exist, then it will be created. If the header field does exist, the value will be overwritten.

HeaderValue

A string which specifies the value of the specified header field.

Return Value
A boolean value of True is returned if the method succeeds, otherwise a value of False is returned.
For more information about the cause of the failure, check the value of the LastError property.

Remarks
The SetHeader method creates or changes the value of the specified header field in the current
message part. If the header does not exist, it will be created with the new value. If the header does
exist, its current value will be replaced by the new value.

See Also
MessagePart Property, GetFirstHeader Method, GetHeader Method, GetNextHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StoreMessage Method  

 

Store the specified message in a file.

Syntax
object.StoreMessage( MessageNumber, FileName )

Parameters
MessageNumber

An integer value which specifies the message to store.

FileName

A string value that specifies the name of the file to store the message in.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The StoreMessage method retrieves the specified message from the mail server and stores it in a
file. The number argument specifies the message to retrieve and the filename argument specifies
the name of the file that the message will be stored in.

For applications which need to store messages on the local system, the StoreMessage method is
somewhat more efficient than using the GetMessage and ExportMessage methods to load and
store the message. StoreMessage does not attempt to analyze the message or change the
current message contents.

Example
The following example connects to a mail server and retrieves each of the mail messages, storing
them in a file on the local system:

Dim strFileName As String
Dim nMessage As Long, nError As Long

nError = InternetMail1.Connect(strServerName, , strUserName, strPassword)
    
If nError > 0 Then
    MsgBox "Unable to connect to " & strServerName & vbCrLf & _
           InternetMail1.LastErrorString, vbExclamation
    Exit Sub
End If
    
If InternetMail1.LastMessage = 0 Then
    MsgBox "The mailbox is currently empty", vbInformation
    InternetMail1.Disconnect
    Exit Sub
End If
    
For nMessage = 1 To InternetMail1.LastMessage
    strFileName = "c:\temp\msg" & Format(nMessage, "00000") & ".txt"
    nError = InternetMail1.StoreMessage(nMessage, strFileName)
    If nError > 0 Then
        MsgBox "Unable to store message " & nMessage & vbCrLf & _
               InternetMail1.LastErrorString, vbExclamation

 



        Exit For
    End If
Next
    
If nError = 0 Then
    MsgBox "Stored " & InternetMail1.LastMessage & " messages", vbInformation
End If
    
InternetMail1.Disconnect

See Also
GetMessage Method, ExportMessage Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UndeleteMessage Method  

 

Removes the deletion flag for the specified message.

Syntax
object.UndeleteMessage( MessageNumber )

Parameters
MessageNumber

Number of message to undelete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The UndeleteMessage method removes the deletion flag for the specified message in the
current mailbox. To determine if a message has been marked for deletion, set the MessageIndex
property to the message number and then check the value of the MessageFlags property to
determine if the mailFlagDeleted bit flag has been set.

This method can only be used when connected to an IMAP server.

See Also
MessageFlags Property, MessageIndex Property, DeleteMessage Method, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UnselectMailbox Method  

 

Unselects the current mailbox.

Syntax
object.UnselectMailbox( [Expunge] )

Parameters
Expunge

An optional boolean argument which determines if deleted messages will be expunged from
the mailbox. A value of true specifies that messages that have been marked for deletion will be
removed from the mailbox. A value of False specifies that no messages will be removed from
the mailbox. If this argument is omitted, the default action is to expunge deleted messages from
the mailbox.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The UnselectMailbox method unselects the current mailbox. Once the mailbox has been
unselected, no messages in that mailbox can be accessed, and by default any messages which
have been marked for deletion are removed.

See Also
MailboxName Property, SelectMailbox Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Mail Control Events  

 

Event Description

OnCancel This event is generated when an operation is canceled

OnDelivered This event is generated after a message has been delivered

OnError This event is generated when an error occurs

OnProgress This event is generated when retrieving or sending messages

OnRecipient This event is generated before a message is sent

OnTimeout This event is generated when an operation is canceled

OnUpdate This event is generated when the server sends a mailbox update notification to the client

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when an operation is canceled.

Syntax
Private Sub object_OnCancel ([Index As Integer])

Remarks
The OnCancel event is generated after an operation is canceled by calling the Cancel method.

See Also
OnError Event, Cancel Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDelivered Event  

 

The OnDelivered event is generated after a message has been delivered.

Syntax
Private Sub object_OnDelivered([Index As Integer,] ByVal Address As Variant, ByVal
MessageSize As Variant)

Remarks
The OnDelivered event is generated after a message has been successfully submitted to the mail
server for delivery. When used in conjunction with the OnRecipient and OnProgress events, this
event can be used to track the delivery of a message to multiple recipients. If the message was not
delivered, either because delivery was canceled in the OnRecipient event or because of an error,
the OnDelivered event will not fire.

The Address argument is a string which specifies the recipient email address.

The MessageSize argument is a long integer which specifies the size of the message that was
delivered.

Note that even though a message has been successfully delivered to the mail server, it may not
actually be delivered to the recipient. The server may accept the message and then subsequently
decide to reject or re-route the message based on its own internal configuration. To confirm
message delivery to the actual user, use the delivery status notification options and/or set the
ReturnReceipt property to an address which will be notified when the message has been read.

See Also
OnProgress Event, OnRecipient Event, ReturnReceipt Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when an error occurs.

Syntax
Private Sub object_OnError ([Index As Integer,] ByVal Error As Variant, ByVal Description As
Variant)

Remarks
The OnError event is generated when an error occurs while the component is performing an
operation. Visual Basic errors do not generate this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the component correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error. This corresponds to the
LastErrorString property.

See Also
LastError Property, LastErrorString Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnProgress Event  

 

The OnProgress event is generated when retrieving or sending messages.

Syntax
Private Sub object_OnProgress ([Index As Integer,] ByVal MessageSize As Variant, ByVal
MessageCopied As Variant, ByVal Percent As Variant)

Remarks
The OnProgress event is generated when a message is being retrieved or sent. This event can be
used to update the user interface, such as displaying a progress bar during the transaction. To
cancel the current operation, the application can call the Cancel method from within this event.

The MessageSize argument is a long integer which specifies the size of the message in bytes that
is currently being sent or received.

The MessageCopied argument is a long integer which specifies the number of bytes that have
been sent or received for the current message.

The Percent argument is an integer which specifies the completion percentage between a value of
0 and 100.

See Also
Cancel Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRecipient Event  

 

The OnRecipient event is generated before a message is sent.

Syntax
Private Sub object_OnRecipient ([Index As Integer,] ByVal Address As Variant, ByRef Cancel
As Variant)

Remarks
The OnRecipient event is generated immediately before a message is sent to a recipient. When
used in conjunction with the OnProgress event, this event can be used to track the delivery of a
message to multiple recipients. If an error occurs during the delivery of the message, the OnError
event will fire.

The Address argument is a string which specifies the recipient email address.

The Cancel argument determines whether or not the message delivery is canceled for the
specified recipient. Setting this argument to a value of true causes the SendMessage method to
not deliver the message and continue on to the next recipient. The default value for this argument
is False, which indicates that the message should be delivered.

Note that setting the Cancel argument to True is different from using the Cancel method, which
would cancel delivery of the message to all subsequent recipients as well as the current recipient
specified by the Address argument.

See Also
Cancel Method, OnProgress Event, OnError Event, SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is generated when an operation is canceled.

Syntax
Private Sub object_OnTimeout ([Index As Integer])

Remarks
The OnTimeout event is generated after an operation times out. The amount of time that the
component will wait for an operation to complete can be controlled by the Timeout property.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnUpdate Event  

 

The OnUpdate event is generated when the server sends a mailbox update notification to the
client.

Syntax
Sub object_OnUpdate ( [Index As Integer], ByVal UpdateType As Variant, ByVal
MessageNumber As Variant )

Remarks
The OnUpdate event is generated when the server sends a notification to the client that a new
message has been stored in the mailbox, or when a message has been expunged from the
mailbox. The arguments to this event are:

UpdateType

An integer value which specifies the type of update notification that has been sent by the server.
It may be one of the following values:

Value Constant Description

0 mailUpdateUnknown The server has sent an unrecognized notification
message. The value of the MessageNumber argument is
undefined for this type of notification. This does not
necessarily reflect an error condition, as some servers
may send additional notification messages beyond the
standard EXISTS, EXPUNGE and RECENT messages.
Most applications should ignore this type of notification.

1 mailUpdateMessage The server has sent notification message to the client
indicating that a new message has arrived. The
MessageNumber argument will contain the message
number for the new message. Typically this update
notification occurs shortly after the new message has
been stored in the current mailbox.

2 mailUpdateExpunge The server has sent a notification message to the client
indicating that a message has been removed from the
current mailbox. The MessageNumber argument will
contain the message number for the message that has
been removed. It is recommended that the application
re-examine the mailbox when this notification is
received. Typically this notification is only sent
periodically by the server, and may not be sent
immediately after a message has been expunged from
the mailbox.

3 mailUpdateMailbox The server has sent notification message to the client
indicating that the state of the mailbox has changed.
The MessageNumber argument is not used with this
notification. This message is sent periodically by the
server and may not be sent immediately after a new
message arrives or a message is flagged as unread. It is
recommended that the application re-examine the

 



mailbox when this notification is received.

MessageNumber

An integer value which specifies the message number associated with the status change. Note
that this argument is not used with the imapUpdateMailbox notification and will contain a
value of zero.

This event is only generated when the Idle method has been used to enable mailbox status
monitoring.

See Also
Idle Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Message Character Sets  

Constant Value Name Code Page Description

mimeCharsetUSASCII 1 us-ascii 20127 A character set which defines 7-bit
printable characters with values
ranging from 20h to 7Eh. An
application that uses this character
set has the broadest compatibility
with most mail servers (MTAs)
because it does not require the
server to handle 8-bit characters
correctly when the message is
delivered.

mimeCharsetISO8859_1 2 iso-
8859-1

28591 A character set for most western
European languages such as
English, French, Spanish and
German. This character set is also
commonly referred to as Latin-1.
This character set is similar to
Windows code page 1252
(Windows-1252), however there are
differences such as the Euro
symbol.

mimeCharsetISO8859_2 3 iso-
8859-2

28592 A character set for most central and
eastern European languages such
as Czech, Hungarian, Polish and
Romanian. This character set is also
commonly referred to as Latin-2.
This character set is similar to
Windows code page 1250, however
the characters are arranged
differently.

mimeCharsetISO8859_3 12 iso-
8859-3

28593 A character set for southern
European languages such as
Maltese and Esperanto. This
character set was also used with the
Turkish language, but it was
superseded by ISO 8859-9 which is
the preferred character set for
Turkish. This character set is not
widely used in mail messages and it
is recommended that you use UTF-
8 instead.

mimeCharsetISO8859_4 13 iso-
8859-4

28594 A character set for northern
European languages such as
Latvian, Lithuanian and
Greenlandic. This character set is



not widely used in mail messages
and it is recommended that you
use UTF-8 instead.

mimeCharsetISO8859_5 4 iso-
8859-5

28595 A character set for Cyrillic
languages such as Russian,
Bulgarian and Serbian. This
character set was never widely
adopted and most mail messages
use either KOI8 or UTF-8 encoding.

mimeCharsetISO8859_6 5 iso-
8859-6

28596 A character set for Arabic
languages. Note that the
application is responsible for
displaying text that uses this
character set. In particular, any
display engine needs to be able to
handle the reverse writing direction
and analyze the context of the
message to correctly combine the
glyphs.

mimeCharsetISO8859_7 6 iso-
8859-7

28597 A character set for the Greek
language. This character set is also
commonly referred to as
Latin/Greek. This character set is no
longer widely used and has largely
been replaced with UTF-8 which
provides more complete coverage
of the Greek alphabet.

mimeCharsetISO8859_8 7 iso-
8859-8

28598 A character set for the Hebrew
language. Note that similar to
Arabic, Hebrew uses a reverse
writing direction. An application
which displays this character should
be capable of processing bi-
directional text where a single
message may include both right-to-
left and left-to-right languages,
such as Hebrew and English. In
most cases it is recommended that
you use UTF-8 instead of this
character set.

mimeCharsetISO8859_9 8 iso-
8859-9

28599 A character set for the Turkish
language. This character set is also
commonly referred to as Latin-5.
This character set is nearly identical
to ISO 8859-1, except that it
replaces certain Icelandic characters
with Turkish characters.



 

mimeCharsetISO8859_10 14 iso-
8859-10

28600 A character set for the Danish,
Icelandic, Norwegian and Swedish
languages. This character set is also
commonly referred to as Latin-6
and is similar to ISO 8859-4.

mimeCharsetISO8859_13 15 iso-
8859-13

28603 A character set for Baltic languages.
This character set is also commonly
referred to as Latin-7. This
character set is similar to ISO 8859-
4, except it adds certain Polish
characters and does not support
Nordic languages.

mimeCharsetISO8859_14 16 iso-
8859-14

28604 A character set for Gaelic languages
such as Irish, Manx and Scottish
Gaelic. This character set is also
commonly referred to as Latin-8.
This character set replaced ISO
8859-12 which was never fully
implemented.

mimeCharsetISO8859_15 17 iso-
8859-15

28605 A character set for western
European languages. This character
set is also commonly referred to as
Latin-9 and is nearly identical to
ISO8859-1 except that it replaces
lesser-used symbols with the Euro
sign and some letters.

mimeCharsetISO2022_JP 18 iso-
2022-jp

50222 A multi-byte character encoding for
Japanese that is widely used with
mail messages. This is a 7-bit
encoding where all characters start
with ASCII and uses escape
sequences to switch to the double-
byte character sets.

mimeCharsetISO2022_KR 19 iso-
2022-kr

50225 A multi-byte character encoding for
Korean which encodes both ASCII
and Korean double-byte characters.
This is a 7-bit encoding which uses
the shift in and shift out control
characters to switch to the double-
byte character set.

mimeCharsetISO2022_CN 20 x-
cp50227

50227 A multi-byte character encoding for
Simplified Chinese which encodes
both ASCII and Chinese double-
byte characters. This is a 7-bit
encoding which uses the shift in
and shift out control characters to
switch to the double-byte character

 



set.

mimeCharsetKOI8R 21 koi8-r 20866 A character set for Russian using
the Cyrillic alphabet. This character
set also covers the Bulgarian
language. Most mail messages in
the Russian language use this
character set or UTF-8 instead of
ISO 8859-5, which was never widely
adopted.

mimeCharsetKOI8U 22 koi8-u 21866 A character set for Ukrainian using
the Cyrillic alphabet. This character
set is similar to the KOI8-R
character set, but replaces certain
symbols with Ukrainian letters. Most
mail messages in the Ukrainian
language use this character set or
UTF-8 instead of ISO 8859-5, which
was never widely adopted.

mimeCharsetGB2312 23 x-
cp20936

20936 A multi-byte character encoding
which can represent ASCII and
simplified Chinese characters. It has
been superseded by GB18030,
however it remains widely used in
China.

mimeCharsetGB18030 24 gb18030 54936 A Unicode transformation format
which can represent all Unicode
code points and supports both
simplified and traditional Chinese
characters. It is backwards
compatible with GB2312 and
supersedes that character set.

mimeCharsetBIG5 25 big5 950 A multi-byte character set that
supports both ASCII characters and
traditional Chinese characters. It is
widely used in Taiwan, Hong Kong
and Macau. It is no longer
commonly used in China, which has
developed GB18030 as a standard
encoding. Microsoft's
implementation of Big5 on
Windows does not support all of
the extensions and is missing
certain code points.

mimeCharsetUTF7 9 utf-7 65000 A Unicode transformation format
that uses variable-length character
encoding to represent Unicode text
as a stream of ASCII characters that



are safe to transport between mail
servers that only support 7-bit
printable characters. It is primarily
used as an alternative to UTF-8
when quoted-printable or base64
encoding is not desired.

mimeCharsetUTF8 10 utf-8 65001 A Unicode transformation format
that uses multi-byte character
sequences to represent Unicode
text. It is backwards compatible with
the ASCII character set, however
because it uses 8-bit text, it is
recommended that you use either
quoted-printable or base64
encoding to ensure compatibility
with mail servers that do not
support 8-bit characters.

mimeCharsetUTF16 11 utf-16le N/A A 16-bit Unicode format that
represents each character as a 16-
bit value in little endian byte order.
This character set is not widely used
in mail messages and it is
recommended that you use UTF-8
instead. UTF-16 characters in big
endian byte order are not
supported.

Remarks
When composing a new message, it is recommended that you always use UTF-8 as the character
set encoding which ensures broad compatibility with most applications. The other character sets
are primarily used when parsing messages generated by other applications. Internally, all message
headers and text are processed as UTF-8 and returned as Unicode strings.

In addition to the character sets listed above, the control will recognize additional character sets
which correspond to specific Windows code pages, as well several variants. These additional
character sets are included for compatibility with other applications; they are not defined because
they should not be used when composing new messages.

It is important to note that while certain Windows character sets are similar to standard ISO
character sets, they are not identical. For example, although the Windows-1252 character set is
nearly identical to ISO 8859-1, they are not interchangeable. Some legacy applications make the
error of representing Windows ANSI character sets as 8-bit ISO character sets, which can result in
errors when converting them to Unicode. This is something to be aware of when encoding and
decoding text generated by older applications. Before the widespread adoption of UTF-8, it was
particularly common for legacy Windows mail clients to default to using Windows-1252 for text
and label it as using ISO 8859-1.

Although the control supports UTF-16, it is recommended you use UTF-8 instead. Text which uses
UTF-16 will always be base64 encoded, and some mail clients may not recognize it as a valid
character set. If the message does not specify if big endian or little endian byte order is used, the
library will default to little endian. When UTF-16 is used when composing a new message, it will



always use little endian byte order.

If you are using this control with Visual Basic 6.0, be aware that the IDE does not provide complete
support for Unicode text. Although the control uses Unicode internally, if a header or message
body contains characters which cannot be displayed using the current system ANSI code page,
the text can appear to be corrupted when examining the string using the debugger. If a message
contains text which uses a character set other than the system default, you must use controls
which are Unicode aware to display the text, such as the Microsoft InkEdit control. The standard
TextBox and other common controls in Visual Basic do not support Unicode.

See Also
ComposeMessage Method, CreatePart Method, DecodeText Method, EncodeText Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/mail/control/method/decodetext.html
file:///C|/Projects/cstools11/pdf/mail/control/method/encodetext.html


 Internet Mail Control Error Codes  

Value Constant Description

10001 mailErrorNotHandleOwner Handle not owned by the current thread

10002 mailErrorFileNotFound The specified file or directory does not exist

10003 mailErrorFileNotCreated The specified file could not be created

10004 mailErrorOperationCanceled The blocking operation has been canceled

10005 mailErrorInvalidFileType The specified file is a block or character device, not a regular file

10006 mailErrorInvalidDevice The specified device or address does not exist

10007 mailErrorTooManyParameters The maximum number of function parameters has been exceeded

10008 mailErrorInvalidFileName The specified file name contains invalid characters or is too long

10009 mailErrorInvalidFileHandle Invalid file handle passed to function

10010 mailErrorFileReadFailed Unable to read data from the specified file

10011 mailErrorFileWriteFailed Unable to write data to the specified file

10012 mailErrorOutOfMemory Out of memory

10013 mailErrorAccessDenied Access denied

10014 mailErrorInvalidParameter Invalid argument passed to function

10015 mailErrorClipboardUnavailable The system clipboard is currently unavailable

10016 mailErrorClipboardEmpty The system clipboard is empty or does not contain any text data

10017 mailErrorFileEmpty The specified file does not contain any data

10018 mailErrorFileExists The specified file already exists

10019 mailErrorEndOfFile End of file

10020 mailErrorDeviceNotFound The specified device could not be found

10021 mailErrorDirectoryNotFound The specified directory could not be found

10022 mailErrorInvalidBuffer Invalid memory address passed to function

10024 mailErrorNoHandles No more handles available to this process

10035 mailErrorOperationWouldBlock The specified operation would block the current thread

10036 mailErrorOperationInProgress A blocking operation is currently in progress

10037 mailErrorAlreadyInProgress The specified operation is already in progress

10038 mailErrorInvalidHandle Invalid handle passed to function

10039 mailErrorInvalidAddress Invalid network address specified

10040 mailErrorInvalidSize Datagram is too large to fit in specified buffer

10041 mailErrorInvalidProtocol Invalid network protocol specified

10042 mailErrorProtocolNotAvailable The specified network protocol is not available

10043 mailErrorProtocolNotSupported The specified protocol is not supported

10044 mailErrorSocketNotSupported The specified socket type is not supported

10045 mailErrorInvalidOption The specified option is invalid

10046 mailErrorProtocolFamily The specified protocol family is not supported

10047 mailErrorProtocolAddress The specified address is invalid for this protocol family



10048 mailErrorAddressInUse The specified address is in use by another process

10049 mailErrorAddressUnavailable The specified address cannot be assigned

10050 mailErrorNetworkUnavailable The networking subsystem is unavailable

10051 mailErrorNetworkUnreachable The specified network is unreachable

10052 mailErrorNetworkReset Network dropped connection on reset

10053 mailErrorConnectionAborted Connection was aborted due to timeout or other failure

10054 mailErrorConnectionReset Connection was reset by remote network

10055 mailErrorOutOfBuffers No buffer space is available

10056 mailErrorAlreadyConnected Connection already established with server

10057 mailErrorNotConnected No connection established with server

10058 mailErrorConnectionShutdown Unable to send or receive data after connection shutdown

10060 mailErrorOperationTimeout The specified operation has timed out

10061 mailErrorConnectionRefused The connection has been refused by the server

10064 mailErrorHostUnavailable The specified host is unavailable

10065 mailErrorHostUnreachable The specified host is unreachable

10067 mailErrorTooManyProcesses Too many processes are using the networking subsystem

10091 mailErrorNetworkNotReady Network subsystem is not ready for communication

10092 mailErrorInvalidVersion This version of the operating system is not supported

10093 mailErrorNetworkNotInitialized The networking subsystem has not been initialized

10101 mailErrorRemoteShutdown The server has initiated a graceful shutdown sequence

11001 mailErrorInvalidHostName The specified hostname is invalid or could not be resolved

11002 mailErrorHostNameNotFound The specified hostname could not be found

11003 mailErrorHostNameRefused Unable to resolve hostname, request refused

11004 mailErrorHostNameNotResolved Unable to resolve hostname, no address for specified host

12001 mailErrorInvalidLicense The license for this product is invalid

12002 mailErrorProductNotLicensed This product is not licensed to perform this operation

12003 mailErrorNotImplemented This function has not been implemented on this platform

12004 mailErrorUnknownLocalHost Unable to determine local host name

12005 mailErrorInvalidHostAddress Invalid host address specified

12006 mailErrorInvalidServicePort Invalid service port number specified

12007 mailErrorInvalidServiceName Invalid or unknown service name specified

12008 mailErrorInvalidEventId Invalid event identifier specified

12009 mailErrorOperationNotBlocking No blocking operation in progress on this socket

12101 mailErrorSecurityNotInitialized Unable to initialize security interface for this process

12102 mailErrorSecurityContext Unable to establish security context for this session

12103 mailErrorSecurityCredentials Unable to open client certificate store or establish client credentials

12104 mailErrorSecurityCertificate Unable to validate the certificate chain for this session

12105 mailErrorSecurityDecryption Unable to decrypt data stream

12106 mailErrorSecurityEncryption Unable to encrypt data stream

12201 mailErrorOperationNotSupported The specified operation is not supported



 

12202 mailErrorInvalidProtocolVersion Invalid application protocol version specified

12203 mailErrorNoServerResponse No data returned from server

12204 mailErrorInvalidServerResponse Invalid data returned from server

12205 mailErrorUnexpectedServerResponse Unexpected response code returned from server

12206 mailErrorServerTransactionFailed Server transaction failed

12207 mailErrorServiceUnavailable The service is currently unavailable

12208 mailErrorServiceNotReady The service is not ready, try again later

12209 mailErrorServerResyncFailed Unable to resynchronize with server

12210 mailErrorInvalidProxyType Invalid proxy server type specified

12211 mailErrorProxyRequired Resource must be accessed through specified proxy

12212 mailErrorInvalidProxyLogin Unable to login to proxy server using specified credentials

12213 mailErrorProxyResyncFailed Unable to resynchronize with proxy server

12214 mailErrorInvalidCommand Invalid command specified

12215 mailErrorInvalidCommandParameter Invalid command parameter specified

12216 mailErrorInvalidCommandSequence Invalid command sequence specified

12217 mailErrorCommandNotImplemented Specified command not implemented on this server

12218 mailErrorCommandNotAuthorized Specified command not authorized for the current user

12219 mailErrorCommandAborted Specified command was aborted by the server

12220 mailErrorOptionNotSupported The specified option is not supported on this server

12221 mailErrorRequestNotCompleted The current client request has not been completed

12222 mailErrorInvalidUsername The specified username is invalid

12223 mailErrorInvalidPassword The specified password is invalid

12224 mailErrorInvalidAccount The specified account name is invalid

12225 mailErrorAccountRequired Account name has not been specified

12226 mailErrorInvalidAuthenticationType Invalid authentication protocol specified

12227 mailErrorAuthenticationRequired User authentication is required

12228 mailErrorProxyAuthenticationRequired Proxy authentication required

12229 mailErrorAlreadyAuthenticated User has already been authenticated

12230 mailErrorAuthenticationFailed Unable to authenticate the specified user

12251 mailErrorNetworkAdapter Unable to determine network adapter configuration

12252 mailErrorInvalidRecordType Invalid record type specified

12253 mailErrorInvalidRecordName Invalid record name specified

12254 mailErrorInvalidRecordData Invalid record data specified

12255 mailErrorConnectionOpen Data connection already established

12256 mailErrorConnectionClosed Server closed data connection

12257 mailErrorConnectionPassive Data connection is passive

12258 mailErrorConnectionFailed Unable to open data connection to server

12259 mailErrorInvalidSecurityLevel Data connection cannot be opened with this security setting

12260 mailErrorCachedTlsRequired Data connection requires cached tls session

12261 mailErrorDataReadOnly Data connection is read-only

 



12262 mailErrorDataWriteOnly Data connection is write-only

12263 mailErrorEndOfData End of data

12264 mailErrorRemoteFileUnavailable Remote file is unavailable

12265 mailErrorInsufficientStorage Insufficient storage on server

12266 mailErrorStorageAllocation File exceeded storage allocation on server

12267 mailErrorDirectoryExists The specified directory already exists

12268 mailErrorDirectoryEmpty No files returned by the server for the specified directory

12269 mailErrorEndOfDirectory End of directory listing

12270 mailErrorUnknownDirectoryFormat Unknown directory format

12271 mailErrorInvalidResource Invalid resource name specified

12272 mailErrorResourceRedirected The specified resource has been redirected

12273 mailErrorResourceRestricted Access to this resource has been restricted

12274 mailErrorResourceNotModified The specified resource has not been modified

12275 mailErrorResourceNotFound The specified resource cannot be found

12276 mailErrorResourceConflict Request could not be completed due to the current state of the resource

12277 mailErrorResourceRemoved The specified resource has been permanently removed from this server

12278 mailErrorContentLengthRequired Request must include the content length

12279 mailErrorRequestPrecondition Request could not be completed due to server precondition

12280 mailErrorUnsupportedMediaType Request specified an unsupported media type

12281 mailErrorInvalidContentRange Content range specified for this resource is invalid

12282 mailErrorInvalidMessagePart Message is not multipart or an invalid message part was specified

12283 mailErrorInvalidMessageHeader The specified message header is invalid or has not been defined

12284 mailErrorInvalidMessageBoundary The multipart message boundary has not been defined

12285 mailErrorNoFileAttachment The current message part does not contain a file attachment

12286 mailErrorUnknownFileType The specified file type could not be determined

12287 mailErrorDataNotEncoded The specified data block could not be encoded

12288 mailErrorDataNotDecoded The specified data block could not be decoded

12289 mailErrorFileNotEncoded The specified file could not be encoded

12290 mailErrorFileNotDecoded The specified file could not be decoded

12291 mailErrorNoMessageText No message text

12292 mailErrorInvalidCharacterSet Invalid character set specified

12293 mailErrorInvalidEncodingType Invalid encoding type specified

12294 mailErrorInvalidMessageNumber Invalid message number specified

12295 mailErrorNoReturnAddress No valid return address specified

12296 mailErrorNoValidRecipients No valid recipients specified

12297 mailErrorInvalidRecipient The specified recipient address is invalid

12298 mailErrorRelayNotAuthorized The specified domain is invalid or server will not relay messages

12299 mailErrorMailboxUnavailable Specified mailbox is currently unavailable

12300 mailErrorMailboxReadonly The selected mailbox cannot be modified



12301 mailErrorMailboxNotSelected No mailbox has been selected

12302 mailErrorInvalidMailbox Specified mailbox is invalid

12303 mailErrorInvalidDomain The specified domain name is invalid or not recognized

12304 mailErrorInvalidSender The specified sender address is invalid or not recognized

12305 mailErrorMessageNotDelivered Message not delivered to any of the specified recipients

12306 mailErrorEndOfMessageData No more message data available to be read

12307 mailErrorInvalidMessageSize The specified message size is invalid

12308 mailErrorMessageNotCreated The message could not be created in the specified mailbox

12309 mailErrorNoMoreMailboxes No more mailboxes exist on this server

12329 mailErrorInvalidDateFormat The specified date format is not recognized

12330 mailErrorFeatureNotSupported The specified feature is not supported on this server

12346 mailErrorNoMessageStore No message store has been specified

12347 mailErrorMessageStoreChanged The message store has changed since it was last accessed

12348 mailErrorMessageNotFound No message was found that matches the specified criteria

12349 mailErrorMessageDeleted The specified message has been deleted

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Internet Server Control

A general purpose TCP/IP networking component for developing server applications.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name InternetServerCtl.InternetServer

File Name CSWSVX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.InternetServer.11

ClassID 9F5674C0-43F2-4EFF-BB9F-2D9AAD54C187

Threading Model Apartment

Help File CSW11HLP.CHM

Dependencies None

Standards RFC 768, RFC 791, RFC 793

Overview
The Internet Server ActiveX control provides a simplified interface for creating event-driven,
multithreaded server applications using the TCP/IP protocol. The control interface is similar to the
SocketWrench ActiveX control, however it is designed specifically to make it easier to implement a
server application without requiring the need to manage multiple socket controls. In addition, the
Internet Server control supports secure communications using the Secure Sockets Layer (SSL) and
Transport Layer Security (TLS) protocols.

Each instance of the Internet Server control represents a server, and each active client connection
is managed internally and referenced by an integer value which uniquely identifies the client
session. All interaction with the server and the clients connected to it uses an event-driven model,
with the program written to respond to events such as OnConnect, OnRead and OnWrite.

Developers who have used the SocketWrench ActiveX control will find the Internet Server control
has a familiar interface, with a subset of properties and methods that are specific to creating a
server application. Each of the network events have an extra parameter which specifies the socket
handle which should be used when communicating with the client. This enables the application to
communicate with multiple clients without having to create multiple socket objects or use a control
array.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is



recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Server Control Properties  

 

Property Description

AdapterAddress Returns the IP address associated with the specified network adapter

AdapterCount Returns the number of available local and remote network adapters

Backlog Gets and sets the number of client connections that may be queued by the server

ByteOrder Gets and sets the byte order in which integer data will be written to and read from the socket

CertificateName Gets and sets the common name for the server certificate

CertificatePassword Gets and sets the password associated with the server certificate

CertificateStore Gets and sets the name of the server certificate store or file

CertificateUser Gets and sets the user that owns the server certificate

ClientAddress Return the address of the current client session

ClientCount Return the number of active client sessions connected to the server

ClientHandle Return the socket handle associated with a specific client session

ClientHost Return the hostname for the current client session

ClientId Return a unique identifier for the current client session

ClientName Gets and sets a unique string moniker that is associated with the current client session

ClientPort Return the port number used by the current client session

ClientThread Return the thread ID for the current client session

CodePage Gets and sets the code page used when reading and writing text

ExternalAddress Return the external IP address assigned to the local system

IsActive Determine if the server has been started

IsBlocked Determine if the control is blocked performing an operation

IsClosed Determine if the current client connection has been closed by the remote host

IsInitialized Determine if the control has been initialized

IsListening Determine if the server is listening for connections

IsReadable Return if data can be read from the current client socket without blocking

IsWritable Return if data can be written to the current client socket without blocking

KeepAlive Set or return if keep-alive packets are sent to connected clients

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error that occurred

MaxClients Gets and sets the maximum number of clients that can connect to the server

NoDelay Enable or disable the Nagle algorithm

Priority Gets and sets the priority assigned to the server

ReuseAddress Set or return if the server address can be reused

Secure Set or return if client connections are encrypted using the SSL or TLS security protocols.

SecureProtocol Gets and sets the security protocol used to establish a secure connection

 

file:///C|/Projects/cstools11/pdf/tcpsrv/control/property/isinitialized.html


ServerAddress Gets and sets the address that will be used by the server to listen for connections

ServerHandle Return the handle to the socket created to listen for client connections

ServerName Return the fully qualified domain name of the local system

ServerPort Gets and sets the port number that will be used by the server to listen for connections

ServerThread Return the thread ID for the server

StackSize Gets and sets the size of the stack allocated for threads created by the server

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AdapterAddress Property  

 

Returns the IP address associated with the specified network adapter.

Syntax
object.AdapterAddress(Index)

Remarks
The AdapterAddress property array returns the IP addresses that are associated with the local
network or remote dial-up network adapters configured on the system. The AdapterCount
property can be used to determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and
dial-up adapters will not be listed in a specific order. An application should not make the
assumption that the address returned by AdapterAddress(0) always refers to a local network
adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will return the IP address allocated for that
connection.

When using Visual Studio .NET, you must use the accessor method get_AdapterAddress instead
of the property name, otherwise an error will be returned indicating that it not a member of the
control class.

Data Type
String

See Also
AdapterCount Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AdapterCount Property  

 

Returns the number of available local and remote network adapters.

Syntax
object.AdapterCount

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress
property array to enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will returned IP address allocated for that
connection.

Data Type
Integer (Int32)

See Also
AdapterAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Backlog Property  

 

Gets and sets the number of client connections that may be queued by the server.

Syntax
object.Backlog [= backlog ]

Remarks
The Backlog property specifies the maximum size of the queue used to manage pending
connections to the service. If the property is set to value which exceeds the maximum size for the
underlying service provider, it will be silently adjusted to the nearest legal value. There is no
standard way to determine what the maximum backlog value is.

This property should be set to the desired value before the Start method is called. The default
backlog value is 5 on all Windows platforms. The Windows Server platforms support a maximum
backlog value of 200.

Note that this property does not specify the total number of connections that the server
application may accept. It only specifies the size of the backlog queue which is used to manage
pending client connections. Once the client connection has been accepted, it is removed from the
queue. Set the MaxClients property to specify the maximum number of clients that may connect
with the server.

Data Type
Integer (Int32)

See Also
IsListening Property, MaxClients Property, Start Method, Throttle Method, OnAccept Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ByteOrder Property  

 

Gets and sets the byte order in which integer data will be written to and read from the socket.

Syntax
object.ByteOrder [= 0 | 1]

Remarks
The ByteOrder property is used to specify how 16-bit (short) integer and 32-bit (long) integer
data is written to and read from the socket. The default value for this property is 0, which specifies
that integers should be written in the native byte order for the local machine. A value of 1
indicates that integers should be written in network byte order.

When applications write integer values on a socket (instead of string representations of those
values), they should typically be converted to network byte order before they are sent. Likewise,
when an integer value is read, it should then be converted from the network byte order back to
the byte order used by the local machine. The native byte order, also called the host byte order,
should only be used if it can be assured that both the sender and the receiver are running on an
identical or compatible machine architectures (for example, if both systems are Intel-based).

This property will affect how data is read by the Read method and by the Write method, if the
Variant data that is being read or written is recognized as integer data.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the server certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the certificate that should be used when
starting a secure server. If the Secure property is set to True, this property must be specify a valid
certificate name. The certificate must have a private key associated with it, otherwise client
connections will fail because the control will be unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the server certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the server certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the server certificate that should
be used when starting a server with security enabled. The certificate may either be stored in the
registry or in a file. If the certificate is stored in the registry, then this property should be set to one
of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the server certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the server certificate that will be used. If this
property is not set, the certificate store for the current user will be used when searching for the
certificate. If this property is used to specify another user, the server process must have the
appropriate permission to access the registry location that contains the client certificate. On
Windows Vista and later versions of the operating system, this requires that the process run with
elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientAddress Property  

 

Return the Internet address of the current client connection.

Syntax
object.ClientAddress

Remarks
The ClientAddress property returns the address of the current client session which has connected
to the server. This property only returns a meaningful value inside an event handler such as
OnAccept or OnConnect.

If this property is accessed inside an OnAccept event handler, it will return the address of the
client that is requesting the connection. The server application may use this information to
determine if it wishes to accept or reject the client connection.

Data Type
String

See Also
ClientHost Property, ClientPort Property, ServerAddress Property, OnAccept Event, OnConnect
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientCount Property  

 

Return the number of active client sessions connected to the server.

Syntax
object.ClientCount

Remarks
The ClientCount read-only property returns the number of active client sessions that have been
established with the server.

The value returned by this property does not include clients that are in the process of terminating.
For example, if the Suspend method is called to suspend the server and terminate all of the client
connections, each client is signaled to disconnect from the server and the active client count is
immediately set to zero. Once a client has been signaled to disconnect, it is no longer considered
to be an active client connection even if that session does not terminate immediately. This means
that you cannot use this property value to determine the number of clients in the process of
disconnecting from the server or when all clients have disconnected.

To determine when all clients have disconnected from the server after the Suspend or Restart
method has been called, you must implement an OnIdle event handler. This event occurs after
the last active client session has terminated.

Data Type
Integer (Int32)

See Also
ClientHandle Property, Restart Method, Suspend Method, OnDisconnect Event, OnIdle Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientHandle Property  

 

Return the socket handle associated with a specific client session.

Syntax
object.ClientHandle(Index)

Remarks
The ClientHandle property is read-only, zero-based property array that returns the socket handle
allocated for the client session specified by the Index parameter. An exception will be thrown if the
index value exceeds the maximum number of active client sessions. To determine the number of
clients that are currently connected to the server, use the ClientCount property.

You should always check the value of the ClientCount property prior to enumerating through the
client connections using the ClientHandle property array. Never assume that a particular client
session will always be found in the same position in the property array. The socket handles
returned by the property array can be used in conjunction with the Read and Write methods to
exchange data with a particular client session outside of an event handler.

Data Type
Integer (Int32)

See Also
ClientHandle Property, Disconnect Method, FindClient Method, Read Method, Write Method,
OnConnect Event, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientHost Property  

 

Return the hostname for the current client session.

Syntax
object.ClientHost

Remarks
The ClientHost property returns the hostname of the current client session which has established
a connection with the server. This property value is only meaningful when accessed within an
event handler, such as the OnConnect event.

Accessing this property causes the control to perform a blocking reverse DNS lookup, attempting
to match the client Internet address with a hostname. Not all addresses have a reverse DNS
record, in which case this property will return an empty string. It is recommended that most
applications use the value of the ClientAddress property rather than use the ClientHost property
to distinguish between client connections.

Data Type
String

See Also
ClientAddress Property, ClientPort Property, ServerAddress Property, OnAccept Event, OnConnect
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientId Property  

 

Return a unique identifier for the current client session.

Syntax
object.ClientId

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This
value can be used by the application to identify that client session, and is different than the socket
handle allocated for the client. While it is possible for a client socket handle to be reused by the
operating system, client IDs are unique throughout the life of the server session and are never
duplicated.

It is important to note that the actual value of the client ID should be considered opaque. It is only
guaranteed that the value will be greater than zero, and that it will be unique to the client session.

This property only returns a meaningful value when accessed from within an event handler, or a
function that has been called from within an event handler.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientHost Property, ClientName Property, ServerAddress Property,
ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientName Property  

 

Gets and sets a unique string moniker that is associated with the current client session.

Syntax
object.ClientName [= moniker ]

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. A moniker can be assigned to the client session by setting the ClientName
property from within a class event handler such as the OnConnect event.

Monikers are not case-sensitive, and they must be unique so that no client socket for a particular
server can have the same moniker. The maximum length for a moniker is 127 characters.

This property only returns a meaningful value when accessed from within an event handler, or a
function that has been called from within an event handler.

Data Type
String

See Also
ClientAddress Property, ClientId Property, ServerAddress Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientPort Property  

 

Return the port number of the current client connection.

Syntax
object.ClientPort

Remarks
The ClientPort property returns the port number that the current client has used when
establishing a connection with the server. This property value is only meaningful when accessed
within an event handler such as the OnConnect event.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientHost Property, ServerAddress Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClientThread Property  

 

Return the thread ID for the active client session.

Syntax
object.ClientThread

Remarks
The ClientThread property returns the thread ID for the current client session. Until the thread
terminates, the thread identifier uniquely identifies the thread throughout the system. This
property only returns a meaningful value when accessed from within an event handler, or a
function that has been called from within an event handler.

The thread ID can be used with Windows API functions such as OpenThread. Exercise caution
when using thread-related functions, interfering with the normal operation of the thread can have
unexpected results. You should never use this property value to obtain a thread handle and then
call the TerminateThread function to terminate a client session. This will prevent the thread from
releasing the resources that were allocated for the session and can leave the server in an unstable
state. To terminate a client session, use the Disconnect method.

Data Type
Integer (Int32)

See Also
ClientId Property, ServerThread Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CodePage Property  

 

Gets and sets the code page used when reading and writing text.

Syntax
object.CodePage [= value ]

Remarks
The CodePage property is an integer value which specifies how strings are encoded when data is
sent or received. Any valid code page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale. This is the default encoding type.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. It is not recommended that you use this code page unless
you know that the remote host is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available  code page identifiers can be found in Microsoft's documentation for
the Win32 API.

All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to
as "octets" in networking terminology. However, the internal string type used by ActiveX controls
are Unicode where each character is represented by 16 bits. To send and receive data using
strings, these Unicode strings are converted to a stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale,
mapping the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into

 

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers


a string buffer, the stream of bytes received from the remote host are converted to Unicode
before they are returned to your application.

If you are exchanging text with another system and it appears to corrupted or characters are
being replaced with question marks or other symbols, it is likely the system is sending text which is
using a different character encoding. Most services use UTF-8 encoding to represent non-ASCII
characters and selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a
string data type is not recommended when reading or writing binary data to a
socket. If possible, you should always use a byte array as the buffer parameter for the
Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, the control defaults to using the code page for the current locale.
This property value directly corresponds to Windows code page identifiers, and will accept any
valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Data Type
Integer (Int32)

See Also
Read Method, ReadLine Method, Write Method, WriteLine Method



 ExternalAddress Property  

 

Return the external IP address for the local system.

Syntax
object.ExternalAddress

Remarks
The ExternalAddress property returns the IP address assigned to the router that connects the
local host to the Internet. This is typically used by an application executing on a system in a local
network that uses a router which performs Network Address Translation (NAT). In that network
configuration, the LocalAddress property will only return the IP address for the local system on
the LAN side of the network unless a connection has already been established to a remote host.
The ExternalAddress property can be used to determine the IP address assigned to the router on
the Internet side of the connection and can be particularly useful for servers running on a system
behind a NAT router.

Using this property requires that you have an active connection to the Internet; checking the value
of this property on a system that uses dial-up networking may cause the operating system to
automatically connect to the Internet service provider. The control may be unable to determine
the external IP address for the local host for a number of reasons, particularly if the system is
behind a firewall or uses a proxy server that restricts access to external sites on the Internet. If the
external address for the local host cannot be determined, the property will return an empty string.

If the control is able to obtain a valid external address for the local host, that address will be
cached for sixty minutes. Because dial-up connections typically have different IP addresses
assigned to them each time the system is connected to the Internet, it is recommended that this
property only be used in conjunction with broadband connections using a NAT router. Checking
this property value may cause the thread to block until the external IP address can be resolved.

Data Type
String

See Also
ClientAddress Property, ServerAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsActive Property  

 

Determine if the server has been started.

Syntax
object.IsActive

Remarks
The IsActive property returns True if the server has been started using the Start method. If the
server has not been started, the property will return False.

To determine if the server is accepting client connections, use the IsListening property. This
property will only indicate if the server has been started. For example, if the server has been
suspended using the Suspend method, this property will return a value of True, while the
IsListening property will return a value of False.

An application should not depend on this property returning False immediately after the Stop
method has been called to shutdown the server. This property will continue to return True until all
clients have disconnected from the server and the server thread has terminated. To determine
when the server has stopped, implement a handler for the OnStop event.

Data Type
Boolean

See Also
IsListening Property, Start Method, Stop Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Determine if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the control is blocked performing an operation. If the
IsBlocked property returns False, this means there are no blocking operations on the current
thread at that time. If the property returns True, this tells you that you can't proceed with a socket
operation. However, if the property returns False this does not guarantee that the next socket
operation will not fail with a swErrorOperationWouldBlock or swErrorOperationInProgress
error. The application should treat these errors as recoverable, and should be prepared to retry
operations that result in them.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless of whether the control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsClosed Property  

 

Determine if the current client connection has been closed by the remote host.

Syntax
object.IsClosed

Remarks
The IsClosed property returns True if the current client connection has been closed by the remote
host. The value of this property is only meaningful inside an event handler such as OnRead.

Data Type
Boolean

See Also
IsReadable Property, IsWritable Property, OnConnect Event, OnRead Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsListening Property  

 

Determine if the server is listening for client connections.

Syntax
object.IsListening

Remarks
The IsListening property returns True if the server is listening for connections after the Start
method has been called. If the server has not been started, is not yet accepting client connections
or has been suspended, this property will return False.

When a server is started, the control starts a background thread which creates the listening socket
and begins waiting for incoming client connections. This property will only return True once the
server thread has started executing, so it may not return a value of True immediately after the
Start method has been called. To determine the status of the server at any time, check the value
of the State property.

Data Type
Boolean

See Also
IsActive Property, Start Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsLocked Property  

 

Determine if the server has been locked using the SyncLock method.

This property has been deprecated and may not be included in future versions of the control.

Syntax
object.IsLocked

Remarks
The IsLocked property returns True if the server has been locked using the SyncLock method.
When a server is locked, all background threads created by the server will block, waiting for the
lock to be released. If this property returns a value of True, no client connections can be accepted
by the server, and no network events will be generated.

The SyncLock method creates a critical section which prevents other threads from performing any
network operation. This is useful when the program needs to update global data and wants to
ensure that no network operations occur while the data is being modified. However, applications
must take care to release the lock as quickly as possible. If a function locks the server, it must make
sure that it releases the lock before exiting that function. Leaving the server locked across function
calls or event handlers can result in the server becoming non-responsive.

Data Type
Boolean

See Also
SyncLock Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/tcpsrv/control/method/synclock.html


 IsReadable Property  

 

Return if data can be read from the current client socket without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the current client socket without
blocking. This property can be checked before the application attempts to read the socket,
preventing an error. The value of this property is only meaningful inside an event handler such as
OnRead.

Data Type
Boolean

See Also
IsClosed Property, IsWritable Property, Peek Method, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Return if data can be written to the current client socket without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written to the current client socket without
blocking. If the IsWritable property returns False, this means that the application cannot write to
the socket at that time. However, if the property returns True, this does not guarantee that you will
be able to write to the socket without an error. The next socket operation may result in a
swErrorOperationWouldBlock or swErrorOperationInProgress error. The application should
treat these errors as recoverable, and should be prepared to retry operations that result in them.

The value of this property is only meaningful inside an event handler such as OnRead or
OnWrite.

Data Type
Boolean

See Also
IsClosed Property, IsReadable Property, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeepAlive Property  

 

Set or return if keep-alive packets are sent to connected clients.

Syntax
object.KeepAlive [= { True | False } ]

Remarks
Setting the KeepAlive property to a value of True indicates that packets are to be sent to
connected clients when no data is being exchanged to keep the connection active.

The default interval at which these packets are sent is typically two hours and cannot be modified
using the control. Consult the Windows system administration documentation for information on
how to change the default keep-alive interval.

Data Type
Boolean

See Also
NoDelay Property, ReuseAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= errorcode ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero (to clear the error) or a valid error code
for the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error that occurred.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a string that contains a description of the last error that
occurred.

Data Type
String

See Also
LastError Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MaxClients Property  

 

Gets and sets the maximum number of clients that can connect to the server.

Syntax
object.MaxClients [= clients ]

Remarks
The MaxClients property specifies the maximum number of client connections that will be
accepted by the server. Once the maximum number of connections has been established, the
server will reject any subsequent connections until the number of active client connections drops
below the specified value. A value of zero specifies that there should be no limit on the number of
clients.

Changing the value of this property while a server is actively listening for connections will modify
the maximum number of client connections permitted, but it will not affect connections that have
already been established.

By default, there are no limits on the number of client connections or the connection rate when a
server is started. Use the Throttle method to change the maximum number of client connections
per IP address or the overall connection rate threshold for the server.

It is important to note that regardless of the maximum number of clients specified by this
property, the actual number of client connections that can be managed by the server depends on
the number of sockets that can be allocated from the operating system. The amount of physical
memory installed on the system affects the number of connections that can be maintained
because each connection allocates memory for the socket context from the non-paged memory
pool.

Data Type
Integer (Int32)

See Also
Backlog Property, Timeout Property, Start Method, Throttle Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NoDelay Property  

 

Enable or disable the Nagle algorithm.

Syntax
object.NoDelay [= { True | False } ]

Remarks
The NoDelay property is used to enable or disable the Nagle algorithm, which buffers
unacknowledged data and ensures that a full-size packet can be sent to the remote host. By
default this property value is set to False, which enables the Nagle algorithm (in other words, the
data being written may not actually be sent until it is optimal to do so). Setting this property to
True disables the Nagle algorithm, minimizing the time delays between the data packets being
sent.

This property should be set to True only if it is absolutely required and the implications of doing so
are understood. Disabling the Nagle algorithm can have a significant negative impact on the
performance of the server.

Data Type
Boolean

See Also
KeepAlive Property, ReuseAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Priority Property  

 

Gets and sets the priority assigned to the server.

Syntax
object.Priority [= priority ]

Remarks
The Priority property can be used to control the processor usage, memory and network
bandwidth allocated by the server for client sessions. One of the following values may be
specified:

Value Constant Description

0 swPriorityBackground This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. Each client thread will be assigned a
lower scheduling priority and will be frequently forced
to yield execution to other threads.

1 swPriorityLow This priority lowers the overall resource utilization for
the client session and meters the processor utilization
for the client session. Each client thread will be assigned
a lower scheduling priority and will occasionally be
forced to yield execution to other threads.

2 swPriorityNormal The default priority which balances resource and
processor utilization. It is recommended that most
applications use this priority.

3 swPriorityHigh This priority increases the overall resource utilization for
each client session and their threads will be given
higher scheduling priority. It is not recommended that
this priority be used on a system with a single
processor.

4 swPriorityCritical This priority can significantly increase processor,
memory and network utilization. Each client thread will
be given higher scheduling priority and will be more
responsive to network events. It is not recommended
that this priority be used on a system with a single
processor.

The swPriorityNormal priority balances resource and network bandwidth utilization while
ensuring that a single-threaded server application remains responsive to the user. Lower priorities
reduce the overall resource utilization of the server at the expense of throughput.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

 



Data Type
Integer (Int32)

See Also
Start Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReuseAddress Property  

 

Set or return if the local address can be reused by the server.

Syntax
object.ReuseAddress [= { True | False } ]

Remarks
The ReuseAddress property is used to determine if the local address and port number can be
reused when starting a new instance of the server. Setting this property to True enables a server
application to listen for connections using the specified address and port number even if they
were in use recently. This is typically used to enable the server to close the listening socket and
immediately reopen it without getting an error that the address is in use.

When a listening socket closed, the socket will normally go into a TIME-WAIT state where the local
address and port number cannot be immediately reused. A consequence of this is that calling the
Stop method immediately followed by the Start method using the same address and port
number values may result in an error indicating that the specified address is already in use. By
setting this property to True, that error is avoided and the listening socket can be created
immediately without waiting for the TIME-WAIT period to elapse. Note that calling the Restart
method allows the local address and port number to be reused, regardless of this property value.

If you wish to determine if a local port number is already in use by another application, set this
property to false and attempt to start a server using that port number. If another application is
already using that port number, an error will be generated indicating that the address is in use and
the server could not be started.

Data Type
Boolean

See Also
ServerAddress Property, ServerPort Property, Restart Method, Start Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if client connections are encrypted using the TLS protocol.

Syntax
object.Secure [={ True | False } ]

Remarks
The Secure property determines if client connections are encrypted using the Transport Layer
Security (TLS) protocol. The default value for this property is False, which specifies that clients will
use a standard, unencrypted connection to the server. To enable secure connections, the
application should set this property value to True prior to calling the Start method.

When secure connections are enabled, the server will accept the client connection and then wait
for the client to initiate the handshake where both the client and server negotiate the various
encryption options available. This process is handled automatically by the server, and all that is
required is that the application specify the server certificate which should be used. This is done by
setting the CertificateName property, and optionally the CertificateStore property if required.

It is recommended that the application use exception handling to catch any errors that may occur
when changing the value of this property. If the control is unable to initialize the Windows security
libraries, an exception will be thrown when this property value is modified.

Data Type
Boolean

See Also
CertificateName Property, CertificateStore Property, SecureProtocol Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish a secure connection.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
accepting a secure connection with a client. By default, the control will attempt to use TLS 1.2
when accepting the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate
protocol is automatically selected based on the capabilities of both the client and server. It is
recommended that you only change this property value if you fully understand the implications of
doing so. Assigning a value to this property will override the default and force the control to
attempt to use only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator.
Attempting to set this property after the server has been started will result in an exception being
thrown. This property should only be set after setting the Secure property to True and before

 



calling the Start method.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform.

Data Type
Integer (Int32)

See Also
CertificateName Property, CertificateStore Property, Secure Property, Start Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerAddress Property  

 

Gets and sets the address that will be used by the server to listen for connections.

Syntax
object.ServerAddress [= address ]

Remarks
The ServerAddress property is used to specify the default address that the server will use when
listening for connections. Setting this property to the value 0.0.0.0 or an empty string indicates that
the server should listen for client connections using any valid network interface. If an address is
specified, it must be a valid Internet address that is bound to a network adapter configured on the
local system. Clients will only be able to connect to the server using that specific address.

It is common to set this property to the value 127.0.0.1 for testing purposes. It is a non-routable
address that specifies the local system, and most software firewalls are configured so they do not
block applications using this address.

Data Type
String

See Also
ExternalAddress Property, ServerName Property, ServerPort Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerHandle Property  

 

Return the handle to the socket created to listen for client connections.

Syntax
object.ServerHandle

Remarks
The ServerHandle read-only property returns the handle of the server socket that was created to
listen for client connections. If the server has not been started, a value of -1 is returned. This
property can be used in conjunction with direct calls to the Windows Sockets API.

Data Type
Integer (Int32)

See Also
IsListening Property, Start Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerName Property  

 

Return the fully qualified domain name of the local system.

Syntax
object.ServerName

Remarks
The ServerName read-only property returns the fully qualified domain name of the local system.
This consists of the local computer name and its domain name. The actual value returned depends
on the system configuration. If no domain has been specified for the system, then only the
machine name will be returned.

Data Type
String

See Also
ServerAddress Property, ServerPort Property, Resolve Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerPort Property  

 

Gets and sets the port number that will be used by the server to listen for connections.

Syntax
object.ServerPort [= port ]

Remarks
The ServerPort property is used to set the port number that server will use to listen for incoming
client connections. Valid port numbers are in the range of 1 to 65535. It is recommended that
most custom servers specify a port number larger than 5000 to avoid potential conflicts with
standard Internet services and ephemeral ports used by client applications.

If a port number is specified that is already in use by another application, the OnError event will
fire and the background server thread will terminate. To enable a server to be stopped and
immediately restarted using the same address and port number, make sure that the
ReuseAddress property is set to a value of True.

Data Type
Integer (Int32)

See Also
ReuseAddress Property, ServerAddress Property, ServerName Property, Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerThread Property  

 

Return the thread ID for the server.

Syntax
object.ServerThread

Remarks
The ServerThread property returns the thread ID for the active server. Until the thread terminates,
the thread identifier uniquely identifies the thread throughout the system. If there is no active
server, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientThread Property, ServerAddress Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StackSize Property  

 

Gets and sets the size of the stack allocated for threads created by the server.

Syntax
object.StackSize [= bytes ]

Remarks
The StackSize property returns the initial amount of memory that is committed to the stack for
each thread created by the server. By default, the stack size for each thread is set to 256K.
Increasing or decreasing the stack size will only affect new threads that are created by the server, it
will not affect those threads that have already been created to manage active client sessions. It is
recommended that most applications use the default stack size.

You should not change this value unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Data Type
Integer (Int32)

See Also
Start Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. For example, in Visual Basic 6.0, the On Error statement is used to
establish error handling. Note that if an error occurs while a property value is being accessed, an
exception will be raised regardless of the value of the ThrowError property.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

Dim nError As Long

' The control will not raise an exception when an error occurs
Server1.ThrowError = False

' Start the server
nError = Server1.Start()

' If the method returns an error code, then display a message box
' and exit the subroutine
If nError > 0 Then
    MsgBox Server1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by generating an exception:

On Error GoTo Failed

' The control will raise an exception when an error occurs 
Server1.ThrowError = True

' Start the server
Server1.Start
Exit Sub

' If the method fails, code execution will resume at this label
Failed:
MsgBox Err.Description, vbExclamation
Exit Sub

 



See Also
LastError Property, OnError Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting this property specifies the number of seconds until a blocking network operation fails and
the control returns an error.

Data Type
Integer (Int32)

See Also
LastError Property, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable (or disable) the tracing of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Only those function calls made by the SocketTools networking controls will be logged. Calls made
directly to the Windows Sockets API, or calls made by other controls, will not be logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named CSTRACE.LOG is created in the system's temporary directory. If no temporary directory
exists, then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column identifies if the trace record is reporting information, a warning, or
an error. What follows is the name of the function being called, the arguments passed to the
function and the function's return value. If a warning or error is reported, the error code is
appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= flags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 swTraceInfo All function calls are written to the trace file. This is the default value.

1 swTraceError Only those function calls which fail are recorded in the trace file.

2 swTraceWarning Only those function calls which fail, or return values which indicate a
warning, are recorded in the trace file.

4 swTraceHexDump All functions calls are written to the trace file, plus all the data that is
sent or received is displayed, in both ASCII and hexadecimal format.

Since socket function tracing is enabled per-process, the trace flags are shared by all instances of
the controls being used. If multiple controls have tracing enabled, the TraceFlags property should
be set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and the error WSAEWOULDBLOCK is
returned, a warning is generated since the application simply needs to attempt to write the data at
a later time.

Data Type
String

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Server Control Methods  

 

Method Description

Abort Abort the specified client session, terminating its connection to the server

Broadcast Broadcast data to all active clients connected to the server

Cancel Cancels the current blocking network operation

Disconnect Disconnect the specified client session from the server

FindClient Return the socket handle for the client session with the specified moniker or client ID

Initialize Initialize the control and validate the runtime license key

Peek Read data from the specified client session, but do not remove it from the socket buffer

Read Read data from the specified client session

ReadLine Read a line of data from the specified client session, storing it in a string buffer

Reject Reject a pending client connection

Reset Reset the internal state of the control, stopping the server and terminating all client connections

Resolve Resolves a host name to a host IP address

Restart Restart the server, terminating all active client connections

Resume Resume accepting new client connections

Start Start listening for client connections on the specified IP address and port number

Stop Stop listening for new client connections and terminate all client sessions

Suspend Suspend accepting new client connections

Throttle Limit the maximum number of client connections, connections per IP address and connection rate

Uninitialize Uninitialize the control and release any system resources that were allocated

Write Write data to the specified client session

WriteLine Write a line of data to the specified client session, terminated with a carriage-return and linefeed

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Abort Method  

 

Abort the specified client session, terminating its connection to the server.

Syntax
object.Abort( Handle )

Parameters
Handle

An integer value that specifies the handle to the client session.

Return Value
A value of zero is returned if the connection was aborted successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The Abort method immediately closes the specified client socket, terminating its connection to the
server. Any queued data in the socket's send and receive buffers will be discarded, and the client
may terminate abnormally unless it is designed to handle aborted connections. It is not
recommended that you use this method unless you understand the implications of doing so. To
gracefully terminate the client connection, use the Disconnect method.

See Also
Disconnect Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Broadcast Method  

 

Broadcast data to all active clients connected to the server.

Syntax
object.Broadcast( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the server is
expecting binary data, it is recommended that a Byte array be used instead.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of clients that the data was broadcast to. A return value of -1
indicates an error condition, and the value of the LastError property will indicate the cause of the
failure.

Remarks
The Broadcast method sends the data in Buffer to all clients connected to the server. If this
method is called inside a server event handler, the message is broadcast to all clients except for
the current, active client that is processing the event notification. If this method is called outside of
an event handler, the data is broadcast to all connected clients.

See Also
Read Method, ReadLine Method, Write Method, WriteLine Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancel a blocking socket operation.

Syntax
object.Cancel( Handle )

Parameters
Handle

An integer value that specifies the handle to the client session.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation for the specified client session. This
method sets an internal flag that is periodically checked during a blocking operation, such as
waiting for more data to arrive. If the client is not blocked at the time that this method is called, it
will have no effect.

See Also
Reset Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Disconnect the specified client session from the server.

Syntax
object.Disconnect( Handle )

Parameters
Handle

An integer value that specifies the handle to the client session.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the specified client connection, releasing the socket handle that was
allocated for the session. It is only necessary to use this method if you want the server to explicitly
terminate a client connection. Normally the client will close its connection to the server, the
OnDisconnect event will fire and the server will automatically close the socket handle allocated
for that client session.

See Also
Restart Method, Stop Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FindClient Method  

 

Return the socket handle for the client session with the specified moniker or client ID.

Syntax
object.FindClient( Client )

Parameters
Client

An integer value that specifies the handle to the client session or a string value that specifies a
client name.

Return Value
An integer value which specifies the socket handle for the client session. If the specified moniker
does not match an active client session, the method will return a value of -1 and the value of the
LastError property will indicate the cause of the failure.

Remarks
The FindClient method returns a handle to the client session identified either by its moniker or
client ID. The handle value that is returned can be used in conjunction with other methods that
require it, such as the Read and Write methods.

If the Client parameter is a string, it is considered to be a client moniker and the method will
search the table of connected clients and return the handle for the session that matches the
specified moniker. A moniker can be assigned to the client session by setting the ClientName
property from within an event handler such as the OnConnect event. Monikers are not case-
sensitive, and they must be unique so that no client socket for a particular server can have the
same moniker. The maximum length for a moniker is 127 characters.

If the Client parameter is an integer, it is considered to be a client ID and the method will return
the handle for the client session that matches that ID. The ID for a client session can be obtained
using the ClientId property from within an event handler such as the OnConnect event. Each
client connection that is accepted by the server is assigned a unique numeric value, and unlike the
socket handle for the client session, a client ID will not be reused throughout the life of the server.

See Also
ClientCount Property, ClientHandle Property, ClientId Property, ClientName Property 

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set objServer = CreateObject("SocketTools.InternetServer.11")

nError = objServer.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize the InternetServer control"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/tcpsrv/control/property/isinitialized.html


 Peek Method  

 

Return data read from the specified client session, but do not remove it from the socket buffer.

Syntax
object.Peek( Handle, Buffer, [Length] )

Parameters
Handle

An integer value that specifies the handle to the client session.

Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, it is recommended
that a Byte array be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
If the method succeeds, it will return the number of bytes available to read from the socket
without causing the thread to block. A return value of zero indicates that there is no data available
to read at that time. If an error occurs, a value of -1 is returned.

Remarks
The Peek method reads the specified number of bytes from the specified socket and copies them
into the buffer, but it does not remove the data from the internal socket buffer. Note that it is
possible for the returned data to contain embedded null characters.

The data returned by the Peek method is not removed from the socket buffers. It must be
consumed by a subsequent call to the Read method. The return value indicates the number of
bytes that can be read in a single operation, up to the specified buffer size. However, it is
important to note that it may not indicate the total amount of data available to be read from the
socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a
loop to poll a socket may cause the server application to become non-responsive. To determine if
there is data available to be read, use the IsReadable property.

See Also
IsReadable Property, Read Method, ReadLine Method, Write Method, WriteLine Method, OnRead
Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Read Method  

 

Return data read from the specified client session.

Syntax
object.Read( Handle, Buffer, [Length] )

Parameters
Handle

An integer value that specifies the handle to the client session.

Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, a Byte array
should be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the socket is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been sent by the client to the server, up to the number of
bytes specified. If no data is available to be read, the application will wait until data is returned by
the server or the client connection is closed.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Read method.
When you provide a String variable as the buffer, the control will process the data as
text. Binary characters may be interpreted as 8-bit ANSI character encoding and
embedded null characters will corrupt the data. Reading the data into a byte array
ensures that you receive the data exactly as it was sent by the server.

See Also
CodePage Property, IsReadable Property, Peek Method, ReadLine Method, Write Method,
OnRead Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadLine Method  

 

Read up to a line of data from the socket and returns it in a string buffer.

Syntax
object.ReadLine( Handle, Buffer, [Length] )

Parameters
Handle

An integer value that specifies the handle to the client session.

Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned as
a string of characters. This is the most appropriate data type to use if the server is sending data
that consists of printable characters. If the server is sending binary data, it is recommended that
a Byte array be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
This method will return True if a line of data has been read. If an error occurs or there is no more
data available to read, then the method will return False. It is possible for data to be returned in
the string buffer even if the return value is False. Applications should check the length of the string
after the method returns to determine if any data was copied into the buffer. For example, if a
timeout occurs while the method is waiting for more data to arrive on the socket, it will return
zero; however, data may have already been copied into the string buffer prior to the error
condition. It is the responsibility of the application to process that data, regardless of the function
return value.

Remarks
The ReadLine method reads data from the socket up to the specified number of bytes or until an
end-of-line character sequence is encountered. Unlike the Read method which reads arbitrary
bytes of data, this function is specifically designed to return a single line of text data in a string
variable. When an end-of-line character sequence is encountered, the function will stop and
return the data up to that point; the string will not contain the carriage-return or linefeed
characters.

There are some limitations when using the ReadLine method. The method should only be used to
read text, never binary data. In particular, it will discard nulls, linefeed and carriage return control
characters. This method will force the thread to block until an end-of-line character sequence is
processed, the read operation times out or the remote host closes its end of the socket
connection.

The Read and ReadLine methods can be intermixed, however be aware that the Read method
will consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

 



See Also
CodePage Property, IsReadable Property, Peek Method, Read Method, Write Method, WriteLine
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reject Method  

 

Rejects a connection request from a remote host.

Syntax
object.Reject

Parameters
None.

Return Value
A value of zero is returned if the rejection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the
connection being aborted. If there are no pending client connections at the time, this method will
immediately return with an error indicating that the operation would cause the thread to block.

This method can only be used inside the OnAccept event, when the server accepts the pending
client connection. If this method is called outside of an event handler, it will fail.

Rejecting a client connection can cause the client to terminate abnormally unless it is designed to
handle aborted connection attempts. It is not recommended that you use this method unless you
understand the implications of doing so. To gracefully terminate a client connection, use the
Disconnect method.

See Also
Abort Method, Disconnect Method, Start Method, OnAccept Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control, stopping the server and terminating all client connections.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released. Is the server is active when this method is called, the method will return
immediately and the server shutdown process will proceed asynchronously in the background.

If this method is used to forcibly stop an active server, no further events will be generated by the
control. The OnDisconnect event will not fire for each client session that is terminated and the
OnStop event will not fire when the shutdown process has completed. If your application depends
on these events, you should not use the Reset method to stop an active server.

See Also
Restart Method, Stop Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Resolve Method  

 

Resolves a host name to a host IP address.

Syntax
object.Resolve( HostName, IpAddress )

Parameters
HostName

A string value that specifies the host name to resolve.

IpAddress

A string that will contain the IP address for the specified host name when the method returns.
This parameter must be passed by reference.

Return Value
A value of zero is returned if the host name could be resolved into an IP address. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

See Also
ClientAddress Property, ClientHost Property, ServerAddress Property, ServerName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Restart Method  

 

Restart the server, terminating all active client connections

Syntax
object.Restart

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Restart method terminates all active client connections, recreates a new listening socket
bound to the same address and port number, and then resumes accepting new client
connections.

See Also
IsActive Property, IsListening Property, ReuseAddress Property, Start Method, Stop Method,

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Resume Method  

 

Resume accepting new client connections.

Syntax
object.Restart

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Resume method instructs the server to resume accepting new client connections. Any
pending client connections that were requested while the server was suspended will be accepted.

See Also
IsActive Property, IsListening Property, Restart Method, Start Method, Stop Method, Suspend
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Start Method  

 

Start listening for client connections on the specified IP address and port number.

Syntax
object.Start( [LocalAddress], [LocalPort], [Backlog], [MaxClients], [Timeout], [Options] )

Parameters
LocalAddress

An optional string value that specifies the IP address of the network adapter that the control
should use when listening for connection requests. If this is an empty string, the server will listen
for connection on all valid network interfaces configured for the local system. If this argument is
not specified, the control will accept connections on the address specified by the value of the
ServerAddress property.

LocalPort

An optional integer value that specifies the port number to listen for connections on. If this
argument is not provided, it defaults to the value specified by the ServerPort property.

Backlog

An optional integer value that specifies the maximum size of the queue used to manage
pending connections to the service. If the argument is set to value which exceeds the maximum
size for the underlying service provider, it will be silently adjusted to the nearest legal value. On
Windows workstations, the maximum backlog value is 5. On Windows servers, the maximum
value is 200. If this argument is not provided, the value specified by the Backlog property will
be used.

MaxClients

An optional integer value that specifies the maximum number of clients that may connect to the
server. If this argument is not provided, the value specified by the MaxClients property will be
used. A value of zero specifies that there is no fixed limit to the number of active client
connections that may be established with the server. This value can be adjusted after the server
has been created by calling the Throttle method

Timeout

An optional integer value that specifies the number of seconds the control will wait for a
network operation to complete. If this argument is not specified, the value of the Timeout
property will be used as the default

Options

An optional integer value that specifies specifies one or more socket options which are to be
used when establishing the connection. The value is created by combining the options using a
bitwise Or operator. Note that if this argument is specified, it will override any property values
that are related to that option.

Value Constant Description

2 swOptionDontRoute This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

4 swOptionKeepAlive This option specifies that packets are to be sent to
the remote system when no data is being

 



exchanged to keep the connection active. This is
the same as setting the KeepAlive property to a
value of True.

8 swOptionReuseAddress This option specifies the local address can be
reused when the server is stopped and
immediately restarted. This is the same as setting
the ReuseAddress property to a value of True.

16 swOptionNoDelay This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a
full-size packet can be sent to the remote host.
This is the same as setting the NoDelay property
to a value of True.

&H1000 swOptionSecure This option specifies the server will enable the
security protocols and negotiate with the client to
establish an encrypted session. This is the same as
setting the Secure property to a value of True.
<</td>

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port
number. The server is started in its own thread and manages the client sessions independently of
the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

See Also
MaxClients Property, ServerAddress Property, ServerPort Property, Timeout Property, Restart
Method, Stop Method, OnStart Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Stop Method  

 

Stop listening for new client connections and terminate all client sessions.

Syntax
object.Stop

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active
client connections and terminates the thread that is managing the server session. This method will
block waiting for the clients to disconnect and the server thread to terminate. Once the server has
stopped, the OnStop event will fire.

Clients that are disconnected using the Stop method are terminated immediately and will not
generate an OnDisconnect event. If your application is using this event to perform some cleanup
on a per-client basis, then you should shutdown the server by first calling the Suspend method to
prevent new connections from being accepted and terminate all active client sessions. The
OnDisconnect event will fire for each client as it disconnects from the server, and when the last
client has disconnected, the OnIdle event will fire. You can then call the Stop method to complete
the shutdown of the server.

After the server has been stopped, the closed listening socket will go into a TIME-WAIT state which
prevents an application from reusing the same address and port number bound to that socket for
a brief period of time, typically two to four minutes. This is normal behavior designed to prevent
delayed or misrouted packets of data from being read by a subsequent connection. To
immediately start a new server using the same local address and port number, set the
ReuseAddress property to a value of True.

See Also
IsActive Property, Restart Method, Start Method, Suspend Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Suspend Method  

 

Suspend accepting new client connections.

Syntax
object.Suspend

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. Any
incoming client connections will be queued up to the maximum backlog value specified when the
server was started. To resume accepting client connections, call the Resume method.

It is not recommended that you leave a server in a suspended state for extended periods of time.
Once the connection backlog queue has filled, subsequent incoming client connections will be
rejected.

See Also
IsActive Property, IsListening Property, Restart Method, Resume Method, Start Method, Stop
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Throttle Method  

 

Limit the maximum number of client connections, connections per IP address and connection rate.

Syntax
object.Throttle( [MaxClients], [MaxClientsPerAddress], [ConnectionRate] )

Parameters
MaxClients

An optional integer value that specifies the maximum number of clients that may connect to the
server. A value of zero specifies that there is no fixed limit to the number of client connections.

MaxClientsPerAddress

An optional integer value that specifies the maximum number of clients that may connect to the
server from the same IP address. A value of zero specifies that there is no fixed limit to the
number of client connections per address. By default, there is no limit on the number of client
connections per address.

ConnectionRate

An optional integer value that specifies a restriction on the rate of client connections, limiting
the number of connections that will be accepted within that period of time. A value of zero
specifies that there is no restriction on the rate of client connections. The higher this value, the
fewer the number of connections that will be accepted within a specific period of time. By
default, there is no limit on the client connection rate.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Throttle method limits the number of connections and the connection rate to minimize the
potential impact of a large number of client connections over a short period of time. This can be
used to protect the server from a client application that is malfunctioning or a deliberate denial-
of-service attack in which the attacker attempts to flood the server with connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the Start method is called with the maximum number of clients set to 100, and then
the Throttle method is called lowering that value to 75, no existing client connections will be
affected by the change. However, the server will not accept any new connections until the number
of active clients drops below 75.

Increasing the ConnectionRate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000
would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

See Also

 



MaxClients Property, Timeout Property, Start Method, Stop Method,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. Any active client sessions will be terminated and the server will stop
listening for new client connections. Any items in the server FIFO queue will be removed and the
memory allocated for the queue will be released. This method is not typically used because any
resources that have been allocated by an instance of the control will automatically be released
when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the specified client session.

Syntax
object.Write( Handle, Buffer, [Length] )

Parameters
Handle

An integer value that specifies the handle to the client session.

Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the server is
expecting binary data, it is recommended that a Byte array be used instead.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the socket, or -1 if an error was
encountered.

Remarks
The Write method sends the data in Buffer to the specified client socket. Typically the data is
copied to an internal buffer and control is immediately returned to the calling thread. If the buffer
is full, the current thread will block until the data can be sent. If the client does not acknowledge
the data that is being sent to it, this method will eventually fail with an error indicating that the
connection has been aborted.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Write method.
When you provide a String variable as the buffer, the control will process the data as
text. If the string contains Unicode characters, it will automatically be converted to 8-
bit encoded text prior to being written. Using a byte array ensures that binary data
will be sent as-is without being encoded.

See Also
CodePage Property, IsWritable Property, Timeout Property, Read Method, Write Method, OnWrite
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 WriteLine Method  

 

Write a line of data to the specified client session, terminated with a carriage-return and linefeed.

Syntax
object.WriteLine( Handle, [Buffer] )

Parameters
Handle

An integer value that specifies the handle to the client session.

Buffer

An optional string which contains the data that will be sent to the remote host. The data will
always be terminated with a carriage-return and linefeed control character sequence. If this
argument is omitted, then a only a carriage-return and linefeed are written to the socket. Note
that if the string contains a null character, any data that follows the null character will be
discarded.

Return Value
This method returns True if the contents of the string have been written to the socket. If an error
occurs, the method will return False.

Remarks
The WriteLine method writes a line of text to the remote host and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the Write method which writes
arbitrary bytes of data to the socket, this method is specifically designed to write a single line of
text data from a string.

The WriteLine method should only be used to send text, never binary data. In particular, the
method will discard any data that follows a null character and will append linefeed and carriage
return control characters to the data stream. Calling this this method will force the thread to block
until the complete line of text has been written, the write operation times out or the remote host
aborts the connection.

The Write and WriteLine function calls can be safely intermixed.

See Also
CodePage Property, IsWritable Property, Timeout Property, Read Method, ReadLine Method,
Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Server Control Events  

 

Event Description

OnAccept This event is generated when a client connects to the server

OnCancel This event is generated when a blocking network operation is canceled

OnConnect This event is generated when a client connection is established

OnDisconnect This event is generated when a client connection is terminated

OnError This event is generated when an error occurs

OnIdle This event is generated after the last client has disconnected from the server

OnRead This event is generated when a client has sent data to the server

OnStart This event is generated when the server has started listening for connections

OnStop This event is generated when the server has stopped

OnTimeout This event is generated when a network operation times out

OnWrite This event is generated when data can be written to the client

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnAccept Event  

 

The OnAccept event is generated when a remote host connects to the server.

Syntax
Sub object_OnAccept ( [Index As Integer,] ByVal Handle As Variant )

Remarks
This event is generated when a client attempts to establish a connection with the server.

The Handle argument specifies the socket descriptor of the server that has accepted the
connection. The ClientAddress property may be used to determine the IP address of the client.
To prevent the client from completing the connection, call the Reject method.

After the client connection has been established and the worker thread for that client session has
started, the OnConnect event will fire.

See Also
ClientAddress Property, Reject Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ( [Index As Integer, ] ByVal Handle As Variant )

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. The Handle argument specifies the handle to the active
client socket.

See Also
Cancel Method, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a client connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer, ] ByVal Handle As Variant )

Remarks
The OnConnect event is generated when the client connection to the server has completed. The
Handle argument specifies the handle to the client socket that was allocated for the session. This
handle can be used with methods such as Read and Write to exchange information with the
client.

The ClientAddress property can be used to determine the IP address of the client which
established the connection. To terminate the client connection, use the Disconnect method.

See Also
ClientAddress Property, Disconnect Method, Read Method, ReadLine Method, Write Method,
WriteLine Method, OnAccept Event, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a client connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer,] ByVal Handle As Variant )

Remarks
The OnDisconnect event is generated when the connection is terminated by the client and there
is no more data available to be read. The Handle argument specifies the socket handle of the
client session which has terminated. It is important to note that the client handle is provided for
informational purposes only and the application should not attempt to read or write data using
this handle. When this event fires, the connection to the client has already been closed and the
handle is no longer valid.

It is not necessary to call the Disconnect method inside the OnDisconnect event handler
because the connection has already been closed.

See Also
OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal Handle As Variant, ByVal ErrorCode As
Variant, ByVal Description As Variant )

Remarks
This event is generated when an error occurs during a control action. Visual Basic errors do not
generate this event.

The Handle argument specifies the handle to the server or the specific client session which is
associated with the error.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnIdle Event  

 

The OnIdle event is generated after the last client has disconnected from the server.

Syntax
Sub object_OnIdle ( [Index As Integer ] )

Remarks
This event will only occur after at least one client has connected to the server and then closes its
connection or is disconnected. This event will not occur immediately after the server has started
using the Start method, and will not occur when the server is stopped using the Stop method.
Your application should implement an OnStart event handler for when the server first starts, and
an OnStop event handler for when the server is stopped.

If one or more new client connections are accepted after this event occurs, the event will be
generated again when those clients disconnect and the active client count drops to zero.
Therefore it is to be expected that this event will occur multiple times over the lifetime of the
server as it continues to listen for connections.

See Also
IsActive Property, Restart Method, Start Method, Stop Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when a client has sent data to the server.

Syntax
Sub object_OnRead ( [Index As Integer,] ByVal Handle As Variant )

Remarks
The OnRead event is generated when the client sends data to the server. The Handle argument
specifies the handle to the client socket which can be used with the Read or ReadLine methods
to read the data that was sent.

The application should not call the Read method repeatedly inside the OnRead event handler.
When this event fires, it guarantees that data can be read from the specified client without causing
the program to enter a blocked state. However, calling this method multiple times inside the event
handler may cause the application to block when there is no more data available to read and this
can negatively impact the overall performance of the server.

The preferred approach is to call the Read method once inside the event handler, buffer and/or
process the data received from the client and exit the event handler. If there is more data available
to be read from the client, the OnRead event will fire again. If you must call the Read method
multiple times within the event handler, first check the value of the IsReadable property to
determine if there is data available to be read.

See Also
IsReadable Property, Peek Method, Read Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnStart Event  

 

The OnStart event is generated when the server starts listening for connections.

Syntax
Sub object_OnStart ( [Index As Integer ] )

Remarks
This event is generated after the Start method has been called and the server and begins listening
for connections from clients. An application can use this event to update the user interface and
perform any additional initialization functions that are required by the application.

See Also
IsActive Property, Start Method, Stop Method, OnStop Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnStop Event  

 

The OnStop event is generated when the server has stopped.

Syntax
Sub object_OnStop ( [Index As Integer ] )

Remarks
This event is generated after the Stop method has been called and all active client sessions have
terminated. An application can use this event to update the user interface and perform any
additional cleanup functions that are required by the application. If the server has a large number
of active clients, this event may not occur immediately. The OnDisconnect event will fire for each
client as the server is in the process of shutting down. During the shutdown process, the server is
still considered to be active, however it will not accept any further connections. When the OnStop
event is fired, the server thread has terminated and the listening socket has been closed.

This event will not occur if the server is forcibly stopped using the Reset method, or when the
Uninitialize method is called prior to disposing an instance of the control. Applications that
depend on this event should ensure that the server is shutdown gracefully using the Stop method
prior to terminating the application.

See Also
IsActive Property, Start Method, Stop Method, OnDisconnect Event, OnStart Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a network operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer,] ByVal Handle As Variant )

Remarks
The OnTimeout event is generated when a network operation, such as sending or receiving data,
times out. The Handle property specifies the socket handle for the current client session when the
timeout occurred.

The value of the Timeout property determines how long the control will wait for a network
operation to complete.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the client.

Syntax
Sub object_OnWrite ( [Index As Integer,] ByVal Handle As Variant )

Remarks
The OnWrite event is generated when the client can accept data from the server. The Handle
argument specifies the handle to the client socket and can be used in conjunction with the Write
or WriteLine methods.

This event is typically fired once when the client connection is established with the server, the
session thread starts and the client socket enters a writable state. If the internal send buffer for the
client socket becomes full, this event will fire again when more data can be written to the socket. It
is important to note that this event is level-triggered and will not fire repeatedly if the client socket
is writable. Under most circumstances this event fire only once for each client session after the
initial connection has been established.

See Also
IsWritable Property, Write Method, WriteLine Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Server Control Error Codes  

Value Constant Description

10001 swErrorNotHandleOwner Handle not owned by the current thread

10002 swErrorFileNotFound The specified file or directory does not exist

10003 swErrorFileNotCreated The specified file could not be created

10004 swErrorOperationCanceled The blocking operation has been canceled

10005 swErrorInvalidFileType The specified file is a block or character device, not a regular
file

10006 swErrorInvalidDevice The specified device or address does not exist

10007 swErrorTooManyParameters The maximum number of function parameters has been
exceeded

10008 swErrorInvalidFileName The specified file name contains invalid characters or is too
long

10009 swErrorInvalidFileHandle Invalid file handle passed to function

10010 swErrorFileReadFailed Unable to read data from the specified file

10011 swErrorFileWriteFailed Unable to write data to the specified file

10012 swErrorOutOfMemory Out of memory

10013 swErrorAccessDenied Access denied

10014 swErrorInvalidParameter Invalid argument passed to function

10015 swErrorClipboardUnavailable The system clipboard is currently unavailable

10016 swErrorClipboardEmpty The system clipboard is empty or does not contain any text
data

10017 swErrorFileEmpty The specified file does not contain any data

10018 swErrorFileExists The specified file already exists

10019 swErrorEndOfFile End of file

10020 swErrorDeviceNotFound The specified device could not be found

10021 swErrorDirectoryNotFound The specified directory could not be found

10022 swErrorInvalidBuffer Invalid memory address passed to function

10024 swErrorNoHandles No more handles available to this process

10035 swErrorOperationWouldBlock The specified operation would block the current thread

10036 swErrorOperationInProgress A blocking operation is currently in progress

10037 swErrorAlreadyInProgress The specified operation is already in progress

10038 swErrorInvalidHandle Invalid handle passed to function

10039 swErrorInvalidAddress Invalid network address specified

10040 swErrorInvalidSize Datagram is too large to fit in specified buffer



 

10041 swErrorInvalidProtocol Invalid network protocol specified

10042 swErrorProtocolNotAvailable The specified network protocol is not available

10043 swErrorProtocolNotSupported The specified protocol is not supported

10044 swErrorSocketNotSupported The specified socket type is not supported

10045 swErrorInvalidOption The specified option is invalid

10046 swErrorProtocolFamily The specified protocol family is not supported

10047 swErrorProtocolAddress The specified address is invalid for this protocol family

10048 swErrorAddressInUse The specified address is in use by another process

10049 swErrorAddressUnavailable The specified address cannot be assigned

10050 swErrorNetworkUnavailable The networking subsystem is unavailable

10051 swErrorNetworkUnreachable The specified network is unreachable

10052 swErrorNetworkReset Network dropped connection on reset

10053 swErrorConnectionAborted Connection was aborted due to timeout or other failure

10054 swErrorConnectionReset Connection was reset by remote network

10055 swErrorOutOfBuffers No buffer space is available

10056 swErrorAlreadyConnected Connection already established with remote host

10057 swErrorNotConnected No connection established with remote host

10058 swErrorConnectionShutdown Unable to send or receive data after connection shutdown

10060 swErrorOperationTimeout The specified operation has timed out

10061 swErrorConnectionRefused The connection has been refused by the remote host

10064 swErrorHostUnavailable The specified host is unavailable

10065 swErrorHostUnreachable The specified host is unreachable

10067 swErrorTooManyProcesses Too many processes are using the networking subsystem

10091 swErrorNetworkNotReady Network subsystem is not ready for communication

10092 swErrorInvalidVersion This version of the operating system is not supported

10093 swErrorNetworkNotInitialized The networking subsystem has not been initialized

10101 swErrorRemoteShutdown The remote host has initiated a graceful shutdown sequence

11001 swErrorInvalidHostName The specified hostname is invalid or could not be resolved

11002 swErrorHostNameNotFound The specified hostname could not be found

11003 swErrorHostNameRefused Unable to resolve hostname, request refused

11004 swErrorHostNameNotResolved Unable to resolve hostname, no address for specified host

12001 swErrorInvalidLicense The license for this product is invalid

12002 swErrorProductNotLicensed This product is not licensed to perform this operation

12003 swErrorNotImplemented This function has not been implemented on this platform

12004 swErrorUnknownLocalHost Unable to determine local host name

 



12005 swErrorInvalidHostAddress Invalid host address specified

12006 swErrorInvalidServicePort Invalid service port number specified

12007 swErrorInvalidServiceName Invalid or unknown service name specified

12008 swErrorInvalidEventId Invalid event identifier specified

12009 swErrorOperationNotBlocking No blocking operation in progress on this socket

12101 swErrorSecurityNotInitialized Unable to initialize security interface for this process

12102 swErrorSecurityContext Unable to establish security context for this session

12103 swErrorSecurityCredentials Unable to open client certificate store or establish client
credentials

12104 swErrorSecurityCertificate Unable to validate the certificate chain for this session

12105 swErrorSecurityDecryption Unable to decrypt data stream

12106 swErrorSecurityEncryption Unable to encrypt data stream

12201 swErrorOperationNotSupported The specified operation is not supported

12330 swErrorFeatureNotSupported The specified feature is not supported

12337 swErrorMaximumConnections The maximum number of client connections exceeded

12338 swErrorThreadCreationFailed Unable to create a new thread for the current process

12339 swErrorInvalidThreadHandle The specified thread handle is no longer valid

12340 swErrorThreadTerminated The specified thread has been terminated

12341 swErrorThreadDeadlock The operation would result in the current thread becoming
deadlocked

12342 swErrorInvalidClientMoniker The specified moniker is not associated with any client session

12343 swErrorClientMonikerExists The specified moniker has been assigned to another client
session

12344 swErrorServerInactive The specified server is not listening for client connections

12345 swErrorServerSuspended The specified server is suspended and not accepting client
connections

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Mail Message Control

Compose and parse standard MIME formatted email messages.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name MailMessageCtl.MailMessage

File Name CSMSGX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.MailMessage.11

ClassID 2EBAA6DD-FFE7-4C6E-AA25-273C399C43E4

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 822, RFC 2045, RFC 2046, RFC 2047, RFC 2048

Overview
The Mail Message ActiveX control provides an interface for composing and processing email
messages and newsgroup articles which are structured according to the Multipurpose Internet
Mail Extensions (MIME) standard. Using this control, an application can easily create complex
messages which include multiple alternative content types, such as plain text and styled HTML text,
file attachments and customized headers.

It is not required that the developer understand the complex MIME standard; a single method can
be used to create multipart message, complete with a styled HTML text body and support for
international character sets. The Mail Message control can be easily integrated with the other mail
related components, making it extremely easy to create and process MIME formatted messages.

The control also includes an interface for managing a local message storage file that can be used
to store and retrieve multiple messages. Methods are provided to open and create storage files,
add, remove and extract messages from storage, and search the stored messages for specific
header field values.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)



installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Mail Message Control Properties  

 

Property Description

AllHeaders Returns the complete RFC 822 header values for the current message

AllRecipients Returns a comma-separated list of all message recipients

Attachment Gets and sets the name of the current file attachment

Bcc Gets and sets the blind carbon-copy header field value

Boundary Returns the boundary string used to separate parts in a multipart message

Cc Gets and sets the carbon-copy header field value

ContentID Return the content identifier for the selected message part

ContentLength Returns the size of the data stored in the selected message part

ContentType Gets and sets the content type of the selected message part

Date Gets and sets the date for the current message

Encoding Gets and sets the content encoding method used for the current message part

From Gets and sets the address of the user who sent the message

HeaderField Gets and sets the current header field name

HeaderValue Gets and sets the value of the specified header field

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

Localize Enable or disable message localization

Mailer Gets and sets the name of the mailer application

Message Gets and sets the current message headers and body

MessageID Return the current message identifier

MimeVersion Gets and sets the MIME version number for the current message

Organization Gets and sets the name of the organization that originated the message

Part Gets and sets the current message part

PartCount Return the number of parts in the current message

Priority Gets and sets the current message priority

Recipient Returns the address of a message recipient

Recipients Returns the number of recipients specified in the current message

ReplyTo Gets and sets the address of the user who should receive replies to this message

SelLength Gets and sets the current message body text selection length

SelStart Gets and sets the starting position of the current message body text selection

SelText Gets and sets the selected message body text

Sender Gets and sets the address of the user who originated the message

 



StoreCount Gets the number of messages in the current storage file, not including deleted messages

StoreFile Gets and sets the name of the file used to store messages

StoreIndex Gets and sets the current message index for the current storage file

StoreSize Gets the total number of messages in the current storage file, including deleted messages

Subject Gets and sets the subject of the current message

ThrowError Enable or disable error handling by the container of the control

TimeZone Gets and sets the current timezone offset in seconds

Text Gets and sets the body of the current message part

To Gets and sets the address of the message recipient

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AllHeaders Property  

 

Returns the complete RFC 822 header values for the current message.

Syntax
object.AllHeaders

Remarks
The AllHeaders property will return all of the RFC 822 header values in a string. This includes the
message headers that are most commonly referred to, such as the To, From and Subject headers.
Each header and its value are separated by a colon, and terminated with a carriage return and
linefeed (CRLF) pair.

The headers and their values returned by this property will not be identical to the header block in
the original message. If a header value is split across multiple lines, the text returned by this
property will be folded, with the complete header value on a single line of text and removing any
extraneous whitespace. If the header value has been encoded by the mail client, this property will
return the decoded value, not the original encoded value.

Data Type
String

See Also
HeaderField, HeaderValue, GetHeader, SetHeader

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AllRecipients Property  

 

Returns a comma-separated list of all message recipients.

Syntax
object.AllRecipients

Remarks
The AllRecipients property returns a string value that contains a comma-separated list of all
message recipients. To individually enumerate through each of the recipient addresses, you can
use the Recipient property array and Recipients property.

The string returned by this property will include those addresses specified by the Bcc property,
even though they are not included in the message header.

Data Type
String

See Also
Bcc Property, Cc Property, Recipient Property, Recipients Property, To Property, ComposeMessage
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Attachment Property  

 

Gets and sets the name of the current file attachment.

Syntax
object.Attachment [= filename ]

Remarks
The Attachment property specifies the name of the file attachment in a multipart message. When
a new part is selected that contains an attached file, the Attachment property is updated to
reflect the attached file's name.

This property is used by the attach and extract actions to specify the local file name that will be
used. Changing its value does not change the attached file name in the multipart message itself.

Data Type
String

See Also
Boundary Property, FileName Property, AttachFile Method, ExtractFile Method, FindAttachment
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Bcc Property  

 

Gets and sets the blind carbon-copy header field value.

Syntax
object.Bcc [= addresses ]

Remarks
The Bcc property returns the list of addresses that are to receive blind carbon copies of the
message. Setting the property creates or modifies the Bcc header field. Multiple addresses can be
specified by separating them with commas.

A blind carbon copy is when a copy of a message is delivered to a recipient, but that recipient is
not listed in the message headers. Because the other recipients of that same message will not see
the address in the headers, they will not know it was delivered to that person. As a result, the Bcc
header field is not normally exported when the ExportMessage method is called, or when the
contents of the message are referenced using the Message property. To include the Bcc header
in the message, use the mimeOptionAllHeaders option. Of course, if this option is specified, the
addresses in the Bcc list will no longer be blind to the other recipients.

Data Type
String

See Also
Cc Property, From Property, Message Property, Recipient Property, Recipients Property, ReplyTo
Property, Sender Property, To Property, ExportMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Boundary Property  

 

Returns the boundary string used to separate parts in a multipart message.

Syntax
object.Boundary

Remarks
The Boundary property returns the current boundary string being used in a multipart message.
When the control is used to create a multipart message, a unique boundary string is created and
the Boundary property is updated to reflect it's value.

Data Type
String

See Also
Attachment Property, AttachFile Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cc Property  

 

Gets and sets the carbon-copy header field value.

Syntax
object.Cc [= addresses ]

Remarks
The Cc property returns the list of addresses that were delivered carbon copies of the message.
Setting the property creates or modifies the Cc header field. Multiple addresses can be specified
by separating them with commas.

Data Type
String

See Also
Bcc Property, From Property, ReplyTo Property, Sender Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ContentID Property  

 

Return the content identifier for the selected message part.

Syntax
object.ContentID

Remarks
The ContentID property returns the unique content identifier string for the current message part.
This multipart header field is not commonly used, and if undefined, will return an empty string.

Data Type
String

See Also
ContentLength Property, ContentType Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ContentLength Property  

 

Returns the size of the data stored in the selected message part.

Syntax
object.ContentLength

Remarks
The ContentLength property returns the size of the data (in bytes) stored in the selected
message part. This property is read-only, and is updated when the current message part changes.

Data Type
Integer (Int32)

See Also
ContentID Property, ContentType Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ContentType Property  

 

Gets and sets the content type of the selected message part.

Syntax
object.ContentType [= value ]

Remarks
The ContentType property returns the MIME type for the currently selected message part. The
type string consists of a primary type and secondary sub-type separated by a slash, followed by
one or more optional parameters delimited by semi-colons. For example, this is a common
content type for text messages:

text/plain; charset=utf-8

The text designation indicates that this message part contains readable text, and the plain sub-
type indicates that the text does not contain any special encoding. The optional parameter which
follows the content type provides additional information about the content. In this example, it
specifies which character set should be used to display the text. The two common character sets
used are UTF-8 and US-ASCII.

There are seven predefined, standard content types, each with their own sub-types. The following
table lists these types, along with some common sub-types that are found in messages:

Type Sub-Types Description

text plain, richtext, html Indicates that the message part contains text. This is the
most common type found in mail messages; if no
content type is explicitly defined, then it is assumed to be
plain text

image gif, jpeg Indicates that the message part contains a graphics
image

audio basic, aiff, wav Indicates that the message part contains audio data; the
basic sub-type is 8-bit PCM encoded audio (commonly
found with the .au filename extension)

video mpeg, avi Indicates that the message part contains a video clip in
the specified format

application octet-stream, postscript Indicates that the message part contains application
specific data, typically used with the octet-stream sub-
type to indicate binary file attachments for executable
programs, compressed file archives, etc.

message rfc822 Indicates that the message part contains a complete RFC
822 compliant message, complete with headers

multipart mixed, alternative Indicates that this is part of a mixed message (a message
that contains multiple parts of different content types)

The three most common content types that are used in applications are text/plain for the mail
message body, application/octet-stream for binary file attachments and multipart/mixed for
messages that contain both text and attached files. For more information about the different

 



content types, refer to the Multipurpose Internet Mail Extensions (MIME) standards document RFC
1521.

Data Type
String

See Also
ContentID Property, ContentLength Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Date Property  

 

Gets and sets the date for the current message.

Syntax
object.Date [= date ]

Remarks
The Date property returns the value of the date field in the current message header. Setting this
property causes the date field to be updated with the specified value. When setting the date, any
one of the following formats may be used:

Format Example

mm/dd/yy[yy] hh:mm[:ss] 03/01/1998 12:00:00

yy[yy]/mm/dd hh:mm[:ss] 97/03/01 12:00:00

dd mmm yy[yy] hh:mm[:ss] 01 Mar 1998 12:00:00

mmm dd yy[yy] hh:mm[:ss] Mar 01 1998 12:00:00

Any extraneous information that may be included in the date string, such as the day of the week,
is ignored. In addition to the date and time, the string may also include a time zone specification
at the end. If no time zone is specified, the current time zone is used.

When specifying a time zone, the value should either be prefixed by a plus sign (+) to indicate that
the time zone is to the east of GMT, or a minus sign (-) to indicates that it's to the west. Four digits
follow, with the first two indicating the number of hours east or west of GMT, and the last two
digits indicating the number of minutes. Therefore, a value of -0800 means that the time zone is
eight hours to the west of GMT, or in other words, the Pacific time zone.

Regardless of the format of the string assigned to the property, it always returns the date in the
same format (which conforms to the RFC 822 specification). Using the above examples, the date
would be returned as "Sat, 01 Mar 1998 12:00:00 -0800".

The Localize property affects how dates are processed by the control. If enabled, dates are
automatically adjusted for the local time zone. By default, localization is disabled.

Data Type
String

See Also
Localize Property, TimeZone Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Encoding Property  

 

Gets and sets the content encoding method used for the current message part.

Syntax
object.Encoding [= value ]

Remarks
The Encoding property returns the method used for encoding the current message part. Setting
this property causes the Content-Transfer-Encoding header value to be updated. The following
values are commonly used:

Type Description

7bit The default transfer encoding type, which consists of printable ASCII
characters.

8bit Printable ASCII characters, including those characters with the high-bit set (as
is common with the ISO Latin-1 character set); this encoding type is not
commonly used.

binary All characters; binary transfer encoding is rarely used.

quoted-printable Printable ASCII characters, with non-printable or extended characters
represented using their hexadecimal equivalents.

base64 The transfer encoding type commonly used to convert binary data into 7-bit
ASCII characters so that it may be transported safely through the mail
system.

x-uuencode A transfer encoding type similar in function to the base64 encoding method.

Note that setting this property only updates the Content-Transfer-Encoding header value. To
control the actual encoding method used for attachments, specify the encoding method when
calling the AttachFile method.

Data Type
String

See Also
Attachment Property, ContentLength Property, ContentType Property, ExtractFile Method,
AttachFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FileName Property  

 

Gets and sets the name of the file that contains the message to be processed

Syntax
object.FileName [= filename ]

Remarks
The FileName property returns the name of the file that contains the message being processed.
Setting this property specifies the name of a file that contains a MIME message, and is used in
conjunction with the methods used to import and export messages.

Data Type
String

See Also
AttachFile Method, ExportMessage Method, ExtractFile Method, ImportMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 From Property  

 

Gets and sets the address of the user who sent the message.

Syntax
object.From [= address ]

Remarks
The From property returns the address of the user who sent the message. Setting the property
causes the From header field to be updated with the new value.

Data Type
String

See Also
Bcc Property, Cc Property, ReplyTo Property, Sender Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HeaderField Property  

 

Gets and sets the current header field name.

Syntax
object.HeaderField [= header ]

Remarks
The HeaderField property returns the name of the current header field. Setting this property
causes the control to determine if that header field exists, and if it does, to update the
HeaderValue property with it's value. This property can be used to obtain the value of any header
in the current message part, and in conjunction with the HeaderValue property, can be used to
create new headers.

Data Type
String

See Also
AllHeaders Property, HeaderValue Property, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HeaderValue Property  

 

Gets and sets the value of the specified header field.

Syntax
object.HeaderValue [= value ]

Remarks
The HeaderValue property returns the value of the header specified by the HeaderField
property. Setting this property updates the specified header value. If the HeaderField property
refers to a header field that does not exist, then it is created in the current message part.

Data Type
String

See Also
AllHeaders Property, HeaderField Property, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Localize Property  

 

Enable or disable message localization.

Syntax
object.Localize [= { True | False } ]

Remarks
The Localize property is used to enable or disable localization features of the control. Currently
this only affects the way in which dates are processed by the control. If set to True, the control will
adjust for the local time zone when setting and reading the Date property. The default value for
this property is False.

Data Type
Boolean

See Also
Date Property, TimeZone Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Mailer Property  

 

Gets and sets the name of the mailer application.

Syntax
object.Mailer [= program ]

Remarks
The Mailer property returns the value of the X-Mailer field in the current message header. Setting
this property causes the field to be updated with the specified value. This is typically used to
identify the program which generated the message.

Data Type
String

See Also
HeaderField Property, HeaderValue Property, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Message Property  

 

Gets and sets the current message headers and body.

Syntax
object.Message [= value ]

Remarks
The Message property returns the current message, including the headers and all message parts,
as a string. Setting this property will cause the current message to be cleared and replaced by the
new value. The string contents must follow the standard specifications for a message. If the
property is set to an empty string, the current message is cleared.

Data Type
String

See Also
Text Property, ExportMessage Method, ImportMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageID Property  

 

Return the current message identifier.

Syntax
object.MessageID

Remarks
The read-only MessageID property returns the unique identifier for the current message.

Data Type
String

See Also
HeaderField Property, HeaderValue Property, GetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MimeVersion Property  

 

Gets and sets the MIME version number for the current message.

Syntax
object.MimeVersion [= version ]

Remarks
The MimeVersion property returns the version number for the current message. Setting this
property causes the MIME-Version header value to be changed to the specified value. An empty
string causes the MIME version number to be set to the default value of "1.0".

Data Type
String

See Also
HeaderField Property, HeaderValue Property, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Organization Property  

 

Gets and sets the name of the organization that originated the message.

Syntax
object.Organization [= value ]

Remarks
The Organization property returns the name of the organization that originated the current
message. Setting this property updates the specified header value. Note that many mailers do not
generate an Organization header field, in which case the property value will be an empty string.

Data Type
String

See Also
HeaderField Property, HeaderValue Property, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Part Property  

 

Gets and sets the current message part.

Syntax
object.Part [= index ]

Remarks
The Part property returns the current message part index. All messages have at least one part,
which consists of one or more header fields, followed by the body of the message. The default
part, part 0, refers to the main message header and body. If the message contains multiple parts
(as with a message that contains one or more attached files), the Part property can be set to refer
to that specific part of the message.

For example, messages with file attachments typically consist of a message part which describes
the contents of the attachment, followed by the attachment itself. For a message with one
attached file, there would be a total of three parts. Part 0 would refer to the main message part,
which contains the headers such as From, To, Subject, Date and so on. For multipart messages,
part 0 typically does not have a message body, since any text is usually created as a separate part
(for those messages that do not contain multiple parts, the part 0 body contains the text
message). Part 1 would contain the text describing the attachment, and part 2 would contain the
attachment itself. If the attached file is binary, then the transfer encoding type would usually be
base64.

Data Type
Integer (Int32)

See Also
ContentType Property, ContentLength Property, Encoding Property, PartCount Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PartCount Property  

 

Return the number of parts in the current message.

Syntax
object.PartCount

Remarks
The PartCount property returns the number of parts in the current message. All messages have at
least one part, referenced as part 0. Multipart messages will consist of additional parts which may
be accessed by setting the Part property.

Data Type
Integer (Int32)

See Also
Part Property, AttachFile Method, ExportMessage Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Priority Property  

 

Gets and sets the current message priority.

Syntax
object.Priority [= value ]

Remarks
The Priority property returns the current priority for the message. Setting this property value
causes the X-Priority header to be updated with the specified value.

There is no standard for specifying message priority. The convention is to use a number from 1-5,
with 1 indicating the highest priority, 3 as normal priority and 5 as the lowest priority. Some
mailers follow the number with a space and then text that describes the priority level.

Data Type
String

See Also
HeaderField Property, HeaderValue Property, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Recipient Property  

 

Returns the address of a message recipient.

Syntax
object.Recipient(Index)

Remarks
The Recipient property array is used to enumerate the recipient addresses that have been
specified in the current message. This includes all of the addresses listed in the To, Cc and Bcc
header fields. Only the address itself will be returned, not any comments or extraneous text such
as the full name of the recipient. This property array is zero based, meaning that the first index
value is zero. The total number of recipients specified in the message can be determined by
checking the value of the Recipients property.

Data Type
String

Example
The following example demonstrates how to use the Recipient property array and the Recipients
property:

' Create a comma separated list of all of the recipient email
' addresses currently specified in the message
Dim strRecipients As String

For nIndex = 0 To MailMessage1.Recipients - 1
  If Len(strRecipients) > 0 Then strRecipients = strRecipients & ", "
  strRecipients = strRecipients & MailMessage1.Recipient(nIndex)
Next

See Also
Bcc Property, Cc Property, Recipients Property, To Property, ParseAddress Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Recipients Property  

 

Returns the number of recipients specified in the current message.

Syntax
object.Recipients

Remarks
The Recipients property returns the number of recipient addresses that have been specified in
the current message. This includes all of the addresses listed in the To, Cc and Bcc header fields.
This property can be used in conjunction with the Recipient property array to enumerate all of
the recipient addresses in the message.

The AllRecipients property will return a comma-separated list of all message recipients.

Data Type
Integer (Int32)

Example
The following example demonstrates how to use the Recipient property array and the Recipients
property:

' Create a comma separated list of all of the recipient email
' addresses currently specified in the message
Dim strRecipients As String

For nIndex = 0 To MailMessage1.Recipients - 1
  If Len(strRecipients) > 0 Then strRecipients = strRecipients & ", "
  strRecipients = strRecipients & MailMessage1.Recipient(nIndex)
Next

See Also
AllRecipients Property, Bcc Property, Cc Property, Recipient Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReplyTo Property  

 

Gets and sets the address of the user who should receive replies to this message.

Syntax
object.ReplyTo [= address ]

Remarks
The ReplyTo property returns the address of the user who should receive replies to the current
message. Setting this property updates the Reply-To header with the specified value.

Data Type
String

See Also
Bcc Property, Cc Property, From Property, Sender Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SelLength Property  

 

Gets and sets the current message body text selection length.

Syntax
object.SelLength [= length ]

Remarks
The SelLength property is used to set the length of the text selection in the current message
body. When used in conjunction with the SelStart property, it can be used to refer to part of a
message body.

Data Type
Integer (Int32)

See Also
SelStart Property, SelText Property, Text Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SelStart Property  

 

Gets and sets the starting position of the current message body text selection.

Syntax
object.SelStart [= offset ]

Remarks
The SelStart property specifies a byte offset which is the starting position in the current message
body. This property can be used in conjunction with the SelLength property to refer to part of a
message body.

Data Type
Integer (Int32)

See Also
SelLength Property, SelText Property, Text Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SelText Property  

 

Gets and sets the selected message body text.

Syntax
object.SelText [= message ]

Remarks
The SelText property returns the selected message body text as specified by the SelStart and
SelLength properties. Setting this property replaces text in the message body starting at the byte
offset specified by the SelStart property.

Data Type
String

See Also
SelLength Property, SelStart Property, Text Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Sender Property  

 

Gets and sets the address of the user who originated the message.

Syntax
object.Sender [= address ]

Remarks
The Sender property returns the address of the user who originated the message. Setting this
property updates the X-Sender header with the specified value.

Data Type
String

See Also
Bcc Property, Cc Property, From Property, ReplyTo Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StoreCount Property  

 

Returns the number of messages in the current storage file, not including deleted messages.

Syntax
object.StoreCount

Remarks
The StoreCount property returns the number of messages in the message store. It is important to
note that does not count those messages which have been marked for deletion. This means that
the value returned by this function will decrease as messages are deleted. To determine the total
number of messages, including deleted messages, use the StoreSize property.

Data Type
Integer (Int32)

See Also
StoreFile Property, StoreIndex Property, StoreSize Property, DeleteMessage Method, FindMessage Method,
OpenStore Method, PurgeStore Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StoreFile Property  

 

Gets and sets the name of the file used to store messages.

Syntax
object.StoreFile [= filename ]

Remarks
The StoreFile property returns the name of the current storage file. Setting this property changes
the default filename that is used when opening a new storage file. Note that this property value
cannot be changed while a storage file is open; attempting to do so will result in an exception
being thrown.

Data Type
String

See Also
StoreCount Property, StoreIndex Property, OpenStore Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StoreIndex Property  

 

Gets and sets the current message index for the current storage file.

Syntax
object.StoreIndex [= value ]

Remarks
The StoreIndex property returns the current message index for the message store. Setting this
property changes the current message index. When no storage file has been opened, this
property will return a value of zero. After a storage file has been opened, it is changed to a value
of one, the first message in the message store. The maximum value for this property is the number
of messages in the store, as returned by the StoreSize property. Attempting to set this property
to a value less than one or greater than the number of messages in the store will result in an
exception being thrown.

This property value is updated whenever the ReadStore or ReplaceMessage methods are used.
When the WriteStore method is used to store the current message in the message store, this
property will be updated to reflect the message index of the newly added message.

Data Type
Integer (Int32)

See Also
StoreCount Property, StoreFile Property, StoreSize Property, FindMessage Method, ReadStore Method,
WriteStore Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StoreSize Property  

 

Returns the total number of messages in the current storage file, including deleted messages.

Syntax
object.StoreSize

Remarks
The StoreSize property returns the total number of messages in the message store, including
those messages that have been deleted. Because the StoreCount property value will decrease as
messages are deleted, it is recommended that you use this property value when iterating through
all of the messages in the message store.

Data Type
Integer (Int32)

See Also
StoreCount Property, StoreFile Property, StoreIndex Property, DeleteMessage Method, FindMessage
Method, OpenStore Method, PurgeStore Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Subject Property  

 

Gets and sets the subject of the current message.

Syntax
object.Subject [= value ]

Remarks
The Subject property returns the subject of the current message. Setting this property updates
the Subject header with the specified value. Note that not all messages have subjects, in which
case this property will be set to an empty string.

Data Type
String

See Also
HeaderField Property, HeaderValue Property, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Text Property  

 

Gets and sets the body of the current message part.

Syntax
object.Text [= value ]

Remarks
The Text property returns the body of the current message part. Setting this property replaces the
body of the current message part with the new text.

Data Type
String

See Also
SelLength Property, SelStart Property, SelText Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

MailMessage1.ThrowError = False
nError = MailMessage1.ImportMessage(strFileName)

If nError > 0 Then
    MsgBox MailMessage1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

MailMessage1.ThrowError = True
MailMessage1.ImportMessage strFileName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TimeZone Property  

 

Gets and sets the current timezone offset in seconds.

Syntax
object.TimeZone [= value ]

Remarks
The TimeZone property returns the current offset from UTC in seconds. Setting the property
changes the current timezone offset to the specified value. The value of this property is initially
determined by the date and time settings on the local system.

The TimeZone property value is used in conjunction with the Localize property to control how
message date and time localization is handled.

Data Type
Integer (Int32)

Example
The following code enables localization and changes the current timezone to Eastern Standard,
which is five hours (18,000 seconds) west of UTC:

MailMessage1.Localize = True 
MailMessage1.TimeZone = (5 * 60 * 60)

See Also
Localize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 To Property  

 

Gets and sets the address of the message recipient.

Syntax
object.To [= addresses ]

Remarks
The To property returns the address of the message recipient. Setting this property causes the To
header to be updated with the specified value. Multiple addresses can be specified by separating
them with commas.

Data Type
String

See Also
Bcc Property, Cc Property, From Property, ReplyTo Property, Sender Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Mail Message Control Methods  

 

Method Description

AppendMessage Append text to the body of the current message part

AttachData Attach the contents of a buffer to the current message

AttachFile Attach the specified file to the current message

AttachImage Attach an inline image to the current message

ClearMessage Clear the header and body of the current message

CloseStore Close the current message storage file

ComposeMessage Compose a new mail message

CreatePart Create a new message part in a multipart message

DecodeText Decode a previously encoded string

DeleteHeader Delete a header field from the current message part

DeleteMessage Remove the specified message from the current message store

DeletePart Delete the specified message part in the current message

EncodeText Encode a string using base64 or quoted-printable encoding

ExportMessage Export the current message to a file on the local system

ExtractAllFiles Extract all file attachments from the current message

ExtractFile Extract an attachment from the message and store it in a file

FindAttachment Search the current message for a file attachment with the specified file name

FindMessage Search for a message in the current message store

GetFirstHeader Return the first header in the current message part

GetHeader Return the value for the specified header in the current message part

GetNextHeader Return the next header in the current message part

ImportMessage Replace the current message with the contents of a file

Initialize Initialize the control and validate the runtime license

OpenStore Open the specified message storage file

ParseAddress Parse an Internet email address

ParseMessage Parse the specified string, adding the contents to the current message

PurgeStore Purge all deleted messages from the current message store

ReadStore Retrieve a message from the message store, replacing the current message

ReplaceMessage Replace the specified message in the current message store

Reset Reset the internal state of the control

SetHeader Set the value for the specified header in the current message part

 



Uninitialize Uninitialize the control and reset it to its default state

WriteStore Store the current message in the message store

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AppendMessage Method  

 

Append text to the body of the current message part.

Syntax
object.AppendMessage( MessageText )

Parameters
MessageText

A string which specifies the message text to be appended to the current message part.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
If the current message is not a multipart message, it is marked as multipart and the attached file is
appended to the message. If the message is already a multipart message, an additional part is
created and the attachment is added to the message.

To attach data that is stored in a string or byte array rather than a file, use the AttachData
method.

See Also
Text Property, ParseMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AttachData Method  

 

Attach the contents of a buffer to the current message.

Syntax
object.AttachData( Buffer, [Length], [ContentName], [ContentType], [Options] )

Parameters
Buffer

A string or byte array which specifies the data to be attached to the message. If an empty string
is passed as the argument, no data is attached, but an additional empty message part will be
created.

Length

An integer value which specifies the number of bytes of data in the buffer. If this value is
omitted, the entire length of of the string or size of the byte array is used.

ContentName

An optional string argument which specifies a name for the data being attached to the
message. This typically is used as a file name by the mail client to store the data in. If this
parameter is omitted or passed as an empty string then no name is defined and the data is
attached as inline content. Note that if a file name is specified with a path, only the base name
will be used.

ContentType

An optional string argument which specifies the type of data being attached. The value must be
a valid MIME content type. If this parameter is omitted or passed as an empty string, then the
buffer will be examined to determine what kind of data it contains. If there is only text
characters, then the content type will be specified as "text/plain". If the buffer contains binary
data, then the content type will be specified as "application/octet-stream", which is appropriate
for any type of data.

Options

An optional integer value which specifies one or more options. This parameter is constructed by
using a bitwise operator with any of the following values:

Value Constant Description

0 mimeAttachDefault The data encoding is based on the content type. Text
data is not encoded, and binary data is encoded using
the standard base64 encoding algorithm. If this argument
is omitted, this is the default value used.

1 mimeAttachBase64 The data is always encoded using the standard base64
algorithm, even if the buffer only contains printable text
characters.

2 mimeAttachUucode The data is always encoded using the uuencode
algorithm, even if the buffer only contains printable text
characters.

3 mimeAttachQuoted The data is always encoded using the quoted-printable
algorithm. This encoding should only be used if the data
contains 8-bit text characters.

 



Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The AttachData method allows an application to attach data to the message as either a file
attachment or as inline content. The recipient of the message will see the attached data in the
same way that they would see a file attached to the message using the AttachFile function.

If the specified message is not a multipart message, it is marked as multipart and the attached file
is appended to the message. If the message is already a multipart message, an additional part is
created and the attachment is added to the message.

Example
The following example demonstrates how to use the AttachData method in Visual Basic:

Dim hFile As Integer
Dim lpBuffer() As Byte
Dim cbBuffer As Long

' Open a file for binary access and read it into a
' byte array that will be attached to the message

hFile = FreeFile()
Open strDataFile For Binary As hFile
cbBuffer = LOF(hFile)
ReDim lpBuffer(cbBuffer)
Get hFile, , lpBuffer
Close hFile

' Compose a new message and then attach the contents
' of the buffer

MailMessage1.ComposeMessage strFrom, _
                            strTo, _
                            strCc, _
                            strSubject, _
                            strMessage
                            
MailMessage1.AttachData lpBuffer, cbBuffer, strDataFile

See Also
Attachment Property, AttachFile Method, ExtractFile Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AttachFile Method  

 

Attach the specified file to the current message.

Syntax
object.AttachFile( FileName, [Options] )

Parameters
FileName

A string which specifies the name of the file to be attached to the message. If the file is empty or
does not exist, an error will be returned by the control.

Options

An optional integer value which specifies how the file will be attached to the message. If this
argument is omitted and the file is a text file, it will not be encoded; if the file is a binary file, it
will be base64 encoded. To override the default encoding used, specify one of the following
options:

Value Constant Description

0 mimeAttachDefault The file attachment encoding is based on the file content
type. Text files are not encoded, and binary files are
encoded using the standard base64 encoding algorithm.
This is the default option for file attachments.

1 mimeAttachBase64 The file attachment is always encoded using the standard
base64 algorithm, even if the attached file is a plain text
file.

2 mimeAttachUucode The file attachment is always encoded using the
uuencode algorithm, even if the attached file is a plain
text file.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The AttachFile method attaches the specified file to the current message. If the message already
contains one or more file attachments, then it is added to the end of the message. If the message
does not contain any attached files, then it is converted to a multipart message and the file is
appended to the message.

The AttachImage method can be used to attach an inline image to the message.

See Also
Boundary Property, ContentType Property, AttachImage Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AttachImage Method  

 

Attach an inline image to the current message.

Syntax
object.AttachImage( FileName, [ContentId] )

Parameters
FileName

A string which specifies the name of the image file to be attached to the message. If the file is
empty or does not exist, an error will be returned by the control.

ContentId

An optional string which specifies the content ID that is associated with the inline image. If this
parameter is omitted or is an empty string, a random content ID string will be automatically
generated.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The AttachImage method attaches an inline image to the current message. Unlike a normal file
attachment, this method is designed to be used with HTML formatted email messages that display
images attached to the message. If the message already contains one or more images or file
attachments, then it is added to the end of the message. If the message does not contain any
attachments, then it is converted to a multipart message and the image is appended to the
message.

The AttachFile method can be used to add standard file attachments to the message.

See Also
Boundary Property, ContentType Property, AttachFile Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClearMessage Method  

 

Clear the header and body of the current message.

Syntax
object.ClearMessage

Parameters
None.

Return Value
A value of zero is returned if the action was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ClearMessage method clears the current message, releasing the memory allocated for the
message and any attachments.

See Also
SelLength Property, SelStart Property, SelText Property, Text Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CloseStore Method  

 

Close the current message storage file.

Syntax
object.CloseStore

Parameters
None.

Return Value
A value of zero is returned if the action was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The CloseStore method closes the storage file that was previously opened, releasing all of the
memory allocated for the message store and purging all deleted messages. This method must be
called when the application has finished accessing the messages in the message store.

When the control instance is released by its container, the storage file will automatically be closed.
To prevent deleted messages from being removed from the message store, use the Reset
method.

See Also
StoreFile Property, OpenStore Method, PurgeStore Method, ReadStore Method, WriteStore
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ComposeMessage Method  

Compose a new mail message.

Syntax
object.ComposeMessage( From, To, [Cc], [Bcc], [Subject], [MessageText], [MessageHTML],
[CharacterSet], [EncodingType] )

Parameters
From

A string argument which specifies the sender's email address. Only a single address should be
specified. After the message has been composed, the From property will be updated with this
value.

To

A string argument which specifies one or more recipient email addresses. Multiple email
addresses may be specified by separating them with commas. After the message has been
composed, the To property will be updated with this value.

Cc

An optional string which specifies one or more additional recipient addresses that will receive a
copy of the message. If this argument is not specified, then no Cc header field will be created
for this message. After the message has been composed, the Cc property will be updated with
this value.

Bcc

An optional string which specifies one or more additional recipient addresses that will receive a
"blind" copy of the message. If this argument is not specified, then no Bcc header field will be
created for this message. After the message has been composed, the Bcc property will be
updated with this value. Note that the Bcc header field is not normally included in the header
when the message is exported.

Subject

An optional string argument which specifies the subject for the message. If the argument is not
specified, then no Subject header field will be created for this message. After the message has
been composed, the Subject property will be updated with this value.

MessageText

An optional string argument which specifies the body of the message. Each line of text
contained in the string should be terminated with a carriage-return/linefeed (CRLF) pair, which is
recognized as the end-of-line. If the argument is not specified, then the message will have an
empty body unless the MessageHTML argument has been specified.

MessageHTML

An optional argument which specifies an alternate HTML formatted message. If the
MessageText argument has been specified, then a multipart message will be created with both
plain text and HTML text as the alternative. This allows mail clients to select which message body
they wish to display. If the MessageText argument is not specified or is an empty string, then the
message will only contain HTML. Although this is supported, it is not recommended because
older mail clients may be unable to display the message correctly.

CharacterSet

An optional integer value which specifies the character set for the message text. If this



 

parameter is omitted, the default is for the message to be composed using the standard UTF-8
character set.

EncodingType

An optional integer value which specifies the content encoding to use for the message text. The
default is for the control to use 8-bit encoding. One of the following values may be used:

Value Constant Description

1 mimeEncoding7Bit Each character is encoded in one or more bytes,
with each byte being 8 bits long, with the first bit
cleared. This encoding is most commonly used with
plain text using the US-ASCII character set, where
each character is represented by a single byte in the
range of 20h to 7Eh.

2 mimeEncoding8Bit Each character is encoded in one or more bytes,
with each byte being 8 bits long and all bits are
used. 8-bit encoding is used with UTF-8 and other
multi-byte character sets,

4 mimeEncodingQuoted Quoted-printable encoding is designed for textual
messages where most of the characters are
represented by the ASCII character set and is
generally human-readable. Non-printable
characters or 8-bit characters with the high bit set
are encoded as hexadecimal values and represented
as 7-bit text. Quoted-printable encoding is typically
used for messages which use character sets such as
ISO-8859-1, as well as those which use HTML.

5 mimeEncodingBase64 Base64 encoding converts binary or text data to
ASCII by translating it so each base64 digit
represents 6 bits of data. This encoding method is
commonly used with messages that contain binary
data (such as binary file attachments), or when text
uses extended characters that cannot be
represented by 7-bit ASCII. It is recommended that
you use base64 encoding with Unicode text.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
email addresses may be specified as simple addresses, or as commented addresses that include
the sender's name or other information. For example, any one of these address formats are
acceptable:

user@domain.tld
User Name <user@domain.tld>
user@domain.tld (User Name)

To specify multiple addresses, you should separate each address by a comma or semi-colon. Note
that the From parameter cannot specify multiple addresses, however it is permitted with the To,

 



Cc and Bcc parameters.

To send a message that contains HTML, it is recommended that you provide both a plain text
version of the message body and an HTML formatted version. While it is permitted to send a
message that only contains HTML, some older mail clients may not be capable of displaying the
message correctly. In some cases, anti-spam software will increase the spam score of messages
that do not contain a plain text message body. This can result in your message being rejected or
quarantined by the mail server.

Example
nError = MailMessage1.ComposeMessage(editFrom.Text, _
                                     editTo.Text, _
                                     editCc.Text, _
                                     editBcc.Text, _
                                     editSubject.Text, _
                                     editMessage.Text)
If nError > 0 Then
    MessageBox MailMessage1.LastErrorString, vbExclamation
    Exit Sub
End If

See Also
Bcc Property, Cc Property, Encoding Property, From Property, Recipient Property, Recipients
Property, Subject Property, Text Property, To Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreatePart Method  

 

Create a new message part in a multipart message.

Syntax
object.CreatePart( [MessageText], [CharacterSet], [EncodingType] )

Parameters
MessageText

An optional string argument which specifies the body of the new message part. Each line of text
contained in the string should be terminated with a carriage-return/linefeed (CRLF) pair, which is
recognized as the end-of-line. If the argument is not specified, then the message part will have
an empty body.

CharacterSet

An optional integer value which specifies the character set for the message part. If this
parameter is omitted, the default is for the message to be composed using the standard UTF-8
character set.

EncodingType

An optional integer value which specifies the content encoding to use for the message part. The
default is for the control to use 7-bit encoding. If an 8-bit character set is specified for the
CharacterSet argument, the default encoding type will be set to quoted-printable. One of the
following values may be used:

Value Constant Description

1 mimeEncoding7Bit Each character is encoded in one or more bytes,
with each byte being 8 bits long, with the first bit
cleared. This encoding is most commonly used with
plain text using the US-ASCII character set, where
each character is represented by a single byte in the
range of 20h to 7Eh.

2 mimeEncoding8Bit Each character is encoded in one or more bytes,
with each byte being 8 bits long and all bits are
used. 8-bit encoding may be used with UTF-8 and
other multi-byte character sets.

4 mimeEncodingQuoted Quoted-printable encoding is designed for textual
messages where most of the characters are
represented by the ASCII character set and is
generally human-readable. Non-printable
characters or 8-bit characters with the high bit set
are encoded as hexadecimal values and represented
as 7-bit text. Quoted-printable encoding is typically
used for messages which use character sets such as
ISO-8859-1, as well as those which use HTML.

5 mimeEncodingBase64 Base64 encoding converts binary or text data to
ASCII by translating it so each base64 digit
represents 6 bits of data. This encoding method is
commonly used with messages that contain binary

 



data (such as binary file attachments), or when text
uses extended characters that cannot be
represented by 7-bit ASCII. It is recommended that
you use base64 encoding with Unicode text.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CreatePart method creates a new message part. If the current message is a simple RFC822
formatted message, then this method converts it to a MIME multipart message. The current
message part will be set to the new part that was just created.

See Also
Bcc Property, Cc Property, Encoding Property, From Property, Subject Property, Text Property, To
Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DecodeText Method  

 

Decode a string which was previously encoded using base64 or quoted-printable encoding.

Syntax
object.DecodeText( EncodedText, MessageText, [CharacterSet], [EncodingType] )

Parameters
EncodedText

A string which contains the encoded text which should be decoded.

MessageText

A string variable passed by reference which will contain the decoded text when the method
returns.

CharacterSet

An optional integer value which specifies the character set to use when decoding the encoded
text. If this value does not match the character set used when the text was originally encoded,
the resulting output text may be invalid. If no character set is specified, this method will default
to using UTF-8.

EncodingType

An optional integer value which specifies the content encoding to use when decoding the text.
It may be one of the following values:

Value Constant Description

4 mimeEncodingQuoted Quoted-printable encoding is designed for textual
messages where most of the characters are
represented by the ASCII character set and is
generally human-readable. Non-printable
characters or 8-bit characters with the high bit set
are encoded as hexadecimal values and represented
as 7-bit text. Quoted-printable encoding is typically
used for messages which use character sets such as
ISO-8859-1, as well as those which use HTML.

5 mimeEncodingBase64 Base64 encoding converts binary or text data to
ASCII by translating it so each base64 digit
represents 6 bits of data. This encoding method is
commonly used with messages that contain binary
data (such as binary file attachments), or when text
uses extended characters that cannot be
represented by 7-bit ASCII. It is recommended that
you use base64 encoding with Unicode text. This is
the default encoding type used by this method.

Return Value
The method returns the number of characters of decoded text. A return value of zero indicates no
text has been decoded. If the method fails, it will return -1 and the LastError property can be used
to determine the cause of the failure. In most cases where the method fails, it is because an invalid
character set or encoding type has been specified.

 



Remarks
This method provides a means to decode text that was previously encoded using either base64 or
quoted-printable encoding. In most cases, it is not necessary to use this method because the
message parser will detect which character set and encoding was used, then automatically decode
the message text if necessary.

The value of the CharacterSet parameter does not affect the resulting output text, it is only used
when decoding the input text. The previous contents of the MessageText string will be replaced by
the decoded text, and the output string will always be Unicode.

If the CharacterSet parameter is specified as mimeCharsetUTF16, the encoding type must be
mimeEncodingBase64. Other encoding methods are not supported for Unicode strings and will
cause the method to fail. In most cases, it is preferable to always use mimeEncodingBase64 as
the encoding method, with quoted-printable encoding only used for legacy support. If an
unsupported encoding type is specified, this method will return -1 and the output text string will
be empty. This method cannot be used to decode uuencoded text.

If you are developing your application using Visual Basic 6.0, the IDE does not provide complete
support for Unicode. The decoded text may appear to be corrupted when examining it in the
debugger. This is because the IDE will attempt to convert the string to ANSI using the system
default code page. To display Unicode text correctly, you must use controls which are Unicode
aware, such as the Microsoft InkEdit control.

See Also
Encoding Property, Text Property, ComposeMessage Method, CreatePart Method, EncodeText
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteHeader Method  

 

Delete a header field from the current message part.

Syntax
object.DeleteHeader( HeaderField )

Parameters
HeaderField

A string which specifies the header field to delete from the current message part.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The DeleteHeader method deletes the specified header field value from the current message
part.

See Also
HeaderField Property, HeaderValue Property, Part Property, PartCount Property, GetHeader
Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteMessage Method  

 

Remove the specified message from the current message store.

Syntax
object.DeleteMessage( [MessageIndex] )

Parameters
MessageIndex

An integer value which specifies the message that is to be removed from the message store. If
this parameter is omitted, the current message as specified by the value of the StoreIndex
property will be used.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The DeleteMessage method marks the specified message for deletion from the storage file.
When the message store is closed or purged, the message is removed from the file. Once a
message has been marked for deletion, it may no longer be referenced by the application. For
example, you cannot access the contents of a message that has been deleted.

The message store must be opened with write access. This method will fail if you attempt to delete
a message from a storage file that has been opened for read-only access. If the application needs
to delete messages in the message store, it is recommended that the file be opened for exclusive
access using the mimeStoreLock option when calling the OpenStore method.

See Also
StoreCount Property, StoreIndex Property, PurgeStore Method, ReadStore Method,
ReplaceMessage Method, WriteStore Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeletePart Method  

 

Delete the specified message part in the current message.

Syntax
object.DeletePart( [MessagePart] )

Parameters
MessagePart

An optional integer value which specifies the message part to remove from a multipart
message.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The DeletePart method deletes the specified message part in the current message. If the optional
message part is not specified, then the current message part is deleted. This method cannot be
used to delete the main body of the message. Use the ClearMessage method to clear the
contents of the complete message.

See Also
AttachFile Method, ClearMessage Method, CreatePart Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 EncodeText Method  

 

Encodes a string using base64 or quoted-printable encoding.

Syntax
object.EncodeText( MessageText, EncodedText, [CharacterSet], [EncodingType] )

Parameters
MessageText

A string that contains the text which will be encoded.

EncodedText

A string variable passed by reference which will contain the encoded text when the method
returns.

CharacterSet

An optional integer value which specifies the character set to use when encoding the text. If no
character set is specified, this method will default to using UTF-8.

EncodingType

An optional integer value which specifies the content encoding type. It may be one of the
following values:

Value Constant Description

4 mimeEncodingQuoted Quoted-printable encoding is designed for textual
messages where most of the characters are
represented by the ASCII character set and is
generally human-readable. Non-printable
characters or 8-bit characters with the high bit set
are encoded as hexadecimal values and represented
as 7-bit text. Quoted-printable encoding is typically
used for messages which use character sets such as
ISO-8859-1, as well as those which use HTML.

5 mimeEncodingBase64 Base64 encoding converts binary or text data to
ASCII by translating it so each base64 digit
represents 6 bits of data. This encoding method is
commonly used with messages that contain binary
data (such as binary file attachments), or when text
uses extended characters that cannot be
represented by 7-bit ASCII. It is recommended that
you use base64 encoding with Unicode text. This is
the default encoding type used by this method.

Return Value
The method returns the number of characters of encoded text. A return value of zero indicates no
text has been encoded. If the method fails, it will return -1 and the LastError property can be used
to determine the cause of the failure. In most cases where the method fails, it is because an invalid
character set or encoding type has been specified.

Remarks
This method provides a means to encode text using either base64 or quoted-printable encoding.

 



It is not necessary to use this method to encode text when assigning a value to the Text property.
The control will automatically encode message text which contains non-ASCII characters using the
character set specified when the message is created.

If the CharacterSet parameter s specified, the method will convert the message text using the
ANSI code page associated with the character set, and then the text will be encoded. If the
parameter is omitted, the message text will be converted to UTF-8 and then encoded.

If the mimeCharsetUTF16 character set is specified, you must also specify
mimeEncodingBase64 as the encoding method. Other encoding methods are not supported
and this will cause the method to fail. It is not recommended you encode text as UTF-16 unless
there is a specific requirement to use that character set.

It is recommended that you use the mimeCharsetUTF8 character set whenever possible. It is
capable of encoding all Unicode code points, and is a standard for virtually all modern Internet
applications. In most cases, it is preferable to use mimeEncodingBase64 as the encoding
method, with quoted-printable encoding only used for legacy support.

If you are developing your application using Visual Basic 6.0, the IDE does not provide complete
support for Unicode. The decoded text may appear to be corrupted when examining it in the
debugger. This is because the IDE will attempt to convert the string to ANSI using the system
default code page. To display Unicode text correctly, you must use controls which are Unicode
aware, such as the Microsoft InkEdit control.

See Also
Encoding Property, Text Property, ComposeMessage Method, CreatePart Method, DecodeText
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExportMessage Method  

 

Export the current message to a file on the local system.

Syntax
object.ExportMessage( FileName, [Options] )

Parameters
FileName

A string which specifies the name of the file that will contain the message. If the file does not
exist, it will be created. If it does exist, it will be overwritten with the contents of the message.

Options

An optional integer value which specifies one or more options. If this argument is omitted, the
Options property value will be used as the default. The following values may be combined
using a bitwise Or operator:

Value Constant Description

0 mimeOptionDefault The default export options. The headers for the
message are written out in a specific consistent order,
with custom headers written to the end of the header
block regardless of the order in which they were set
or imported from another message. If the message
contains Bcc, Received, Return-Path, Status or X400-
Received header fields, they will not be exported.

1 mimeOptionAllHeaders All headers, including the Bcc, Received, Return-Path,
Status and X400-Received header fields will be
exported. Normally these headers are not exported
because they are only used by the mail transport
system. This option can be useful when exporting a
message to be stored on the local system, but should
not be used when exporting a message to be
delivered to another user.

2 mimeOptionKeepOrder The original order in which the message header fields
were set or imported are preserved when the
message is exported.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

See Also
ImportMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExtractAllFiles Method  

 

Extract all file attachments from the current message, storing them in the specified directory.

Syntax
object.ExtractAllFiles( [Directory] )

Parameters
Directory

An optional string that specifies the name of the directory where the file attachments should be
stored. If this parameter is omitted or points to an empty string, the attached files will be stored
in the current working directory on the local system.

Return Value
If the method succeeds, the return value is the number of file attachments which were extracted
from the current message. If the message does not contain any file attachments, this method will
return a value of zero. If the method fails, the return value is -1. To get extended error
information, check the value of the LastError property.

Remarks
This method will extract all of the files that are attached to the current message and store them in
the specified directory. The directory must exist and the current user must have the appropriate
permissions to create files there. If a file with the same name as the attachment already exists, it
will be overwritten with the contents of the attachment. If the file attachment was encoded using
base64 or uuencode, this method will automatically decode the contents of the attachment.

To store a file attachment on the local system using a name that is different than the file name of
the attachment, use the ExtractFile method.

See Also
Attachment Property, AttachData Method, AttachFile Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExtractFile Method  

 

Extract the contents of a file attachment and store it on the local system.

Syntax
object.ExtractFile( FileName, [MessagePart] )

Parameters
FileName

A string which specifies the name of the file that the attachment will be written to. If the file does
not exist, it will be created. If the file exists, it will be overwritten.

MessagePart

An optional integer value that specifies the message part number that contains the file
attachment. If this parameter is omitted, the method will extract the file attachment in the
current message part.

Return Value
A value of zero is returned if the action was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ExtractFile method writes the contents of a message part, typically a file attachment, to a file
on the local system. This method will automatically decode any binary file attachments. To
determine if the current message part contains a file attachment, check the value of the
Attachment property.

See Also
Attachment Property, AttachData Method, AttachFile Method, ExtractAllFiles Method,
FindAttachment Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FindAttachment Method  

 

Search the current message for a file attachment with the specified file name.

Syntax
object.FindAttachment( FileName )

Parameters
FileName

A string the specifies the name of the file attachment to search for. This parameter should only
specify a base file name; it should not include a file path and cannot be an empty string.

Return Value
If the method succeeds, the return value is the message part number that contains the file
attachment. If the message does not contain an attachment that matches the specified file name,
the return value is -1. To get extended error information, check the value of the LastError
property.

Remarks
The FindAttachment method will search the current message for a attachment that matches the
specified file name. The search is not case-sensitive, however it must match the attachment file
name completely. This method will not match partial file names or names that include wildcard
characters.

Example
nMessagePart = MailMessage1.FindAttachment(strFileName)

If nMessagePart > -1 Then
    MailMessage1.ExtractFile(strFileName, nMessagePart)
End If

See Also
Attachment Property, AttachFile Method, ExtractAllFiles Method, ExtractFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FindMessage Method  

 

Search for a message in the current message store.

Syntax
object.FindMessage( HeaderField, HeaderValue, [MessageIndex], [Options] )

Parameters
HeaderField

A string which specifies the name of the header field that should be searched. The header field
name is not case sensitive.

HeaderValue

A string which specifies the header value that should be searched for. The search options can
be used to specify if the search is case-sensitive, and whether the search should return partial
matches to the string.

MessageIndex

An optional integer value which specifies the message number that should be used when
starting the search. If this parameter is omitted, the search will begin with the first message in
the message store.

Options

An optional integer value which specifies how the search will be performed. If this parameter is
omitted, the default search options will be used. One or more of the following values may be
specified:

Value Constant Description

0 mimeSearchDefault Perform a complete match against the specified
header value. The comparison is not case-
sensitive. It is the default search option used if
this parameter is omitted.

1 mimeSearchCaseSensitive The header value comparison will be case-
sensitive. Note that this does not affect header
field names. Matches for header names are
always case-insensitive.

2 mimeSearchPartialMatch Perform a partial match against the specified
header value. It recommended that this option
be used when searching for matches to email
addresses.

4 mimeSearchDecodeHeaders Decode any encoded message headers before
comparing them to the specified value. This
option can increase the amount of time required
to search the message store and should only be
used when necessary.

Return Value
If the method is successful, it returns the message number which specifies the message that
matches the search criteria. If no matching message could be found, the method will return zero.

 



Remarks
The FindMessage method is used to search the message store for a message which matches a
specific header field value. For example, it can be used to find every message which is addressed
to a specific recipient or has a subject which matches a particular string value.

See Also
StoreCount Property, StoreIndex Property, CloseStore Method, OpenStore Method, ReadStore
Method, WriteStore Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFirstHeader Method  

 

Return the first header in the current message part.

Syntax
object.GetFirstHeader( HeaderField, HeaderValue )

Parameters
HeaderField

A string which will contain the name of the first header field when the method returns. This
parameter must be passed by reference.

HeaderValue

A string which will contain the value of the first header field when the method returns. This
parameter must be passed by reference.

Return Value
A value of True is returned if the first header value was returned. If the current message part does
not contain any header fields, this method will return False.

Example
The following example enumerates all of the headers in the main part of the current message and
adds them to a listbox:

Dim strHeader As String, strValue As String
Dim bResult As Boolean

bResult = MailMessage1.GetFirstHeader(strHeader, strValue)
Do While bResult
    List1.AddItem strHeader & ": " & strValue
    bResult = MailMessage1.GetNextHeader(strHeader, strValue)
Loop

See Also
Part Property, GetHeader Method, GetNextHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetHeader Method  

 

Return the value for the specified header in the current message part.

Syntax
object.GetHeader( HeaderField, HeaderValue )

Parameters
HeaderField

A string variable which will specifies the name of the header field to return the value of. Header
field names are not case sensitive.

HeaderValue

A string variable which will contain the value of the specified header field.

Return Value
A value of True is returned if the header value was returned. If the current message part does not
contain the specified header field, this method will return False.

Parameters
The GetHeader method is used to retrieve the value for a specific header in the current message
part. If there are multiple headers with the same name, the first value will be returned. To
enumerate all of the headers in a message, including duplicate header fields, use the
GetFirstHeader and GetNextHeader methods.

See Also
AllHeaders Property, Part Property, GetFirstHeader Method, GetNextHeader Method, SetHeader
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetNextHeader Method  

 

Return the next header in the current message part.

Syntax
object.GetNextHeader( HeaderField, HeaderValue )

Parameters
HeaderField

A string which will contain the name of the next header field when the method returns. This
parameter must be passed by reference.

HeaderValue

A string which will contain the value of the next header field when the method returns. This
parameter must be passed by reference.

Return Value
A value of True is returned if the next header value was returned. If there are no more header
fields in the current message part, this method will return False.

Example
The following example enumerates all of the headers in the main part of the current message and
adds them to a listbox:

Dim strHeader As String, strValue As String
Dim bResult As Boolean

bResult = MailMessage1.GetFirstHeader(strHeader, strValue)
Do While bResult
    List1.AddItem strHeader & ": " & strValue
    bResult = MailMessage1.GetNextHeader(strHeader, strValue)
Loop

See Also
Part Property, GetFirstHeader Method, GetHeader Method, SetHeader Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ImportMessage Method  

 

Replace the current message with the contents of a file.

Syntax
object.ImportMessage( FileName )

Parameters
FileName

A string which specifies the name of the text file to import.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

See Also
AppendMessage Method, ExportMessage Method, ParseMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set objMessage = CreateObject("SocketTools.MailMessage.11")

nError = objMessage.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OpenStore Method  

 

Open the specified message storage file.

Syntax
object.OpenStore( FileName, [OpenMode] )

Parameters
FileName

A string which specifies the name of the storage file.

OpenMode

An optional integer value which specifies how the storage file will be opened. If this parameter is
omitted, the file will be opened for read-only access. One or more of the following values may
be specified:

Value Constant Description

0 mimeStoreRead The message store will be opened for read access.
The contents of the message store can be accessed,
but cannot be modified by the process unless it has
also been opened for writing.

1 mimeStoreWrite The message store will be opened for writing. This
mode also implies read access and must be specified
if the application needs to modify the contents of the
message store.

2 mimeStoreCreate The message store will be created if the storage file
does not exist. If the file exists, it will be truncated.
This mode implies read and write access.

4 mimeStoreLock The message store will be opened so that it may only
be accessed and modified by the current process.

&H1000 mimeStoreCompress The contents of the message store are compressed.
This option is automatically enabled if a compressed
message store is opened for reading or writing.

&H2000 mimeStoreMailbox The message store should use the UNIX mbox format
when reading and storing messages. This option is
provided for backwards compatibility and is not
recommended for general use.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The OpenStore method opens a message storage file which contains one or more messages. If
the storage file is opened for read access, the application can search the message store and
extract messages but it cannot add or delete messages. To add new messages or delete existing
messages from the store, it must be opened with write access.

 



The message store is designed to be a simple, effective way to store multiple messages together
in a single file. When the message store is opened, the contents are indexed in memory. Although
there is no specific limit to the number of messages that can be stored, there must be sufficient
memory available to build an index of each message and its headers. If the application must store
and manage a very large number of messages, it is recommended that you use a database rather
than a flat-file message store.

Message Store Format 
Each message is prefixed by a control sequence of five ASCII 01 characters followed by an ASCII
10 and ASCII 13 character. The messages themselves are stored unmodified in their original text
format. The length of each message is calculated based on the location of the control sequence
that delimits each message, and explicit message lengths are not stored in the file. This means that
it is safe to manually change the message contents, as long as the message delimiters are
preserved.

If the message store is compressed, the contents of the storage file are expanded when the file is
opened and then re-compressed when the storage file is closed. Using the mimeStoreCompress
option reduces the size of the storage file and prevents the contents of the message store from
being read using a text file editor. However, enabling compression will increase the amount of
memory allocated by the control and can increase the amount of time that it takes to open and
close the storage file.

The control also has a backwards compatibility mode where it will recognize storage files that use
the UNIX mbox format. While this format is supported for accessing existing files, it is not
recommended that you use it when creating new message stores or adding messages to an
existing store. There are a number of different variants on the mbox format that have been used
by different Mail Transfer Agents (MTAs) on the UNIX platform. For example, the mboxrd variant
looks identical to the mboxcl2 variant, and they are programmatically indistinguishable from one
another, but they are not compatible. For this reason, the use of the mbox format is strongly
discouraged.

See Also
StoreCount Property, StoreFile Property, CloseStore Method, FindMessage Method, ReadStore
Method, WriteStore Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ParseAddress Method  

 

Parse an Internet email address.

Syntax
object.ParseAddress( Address )

Parameters
Address

A string which specifies the email address to be parsed.

Return Value
A string containing the parsed address is returned if method was successful, otherwise an empty
string is returned.

Remarks
The ParseAddress method parses a string which contains an email address and returns only the
address portion, excluding any comments. An address may contain comments enclosed in
parenthesis, or may specify a name along with the address in which case the address is enclosed
in angle brackets. For example, consider the following header field value:

"User Name" <user@domain.com> (This is a comment)

The ParseAddress method would return "user@domain.com" if passed the above string,
removing the name and any comments. Note that the ParseAddress method will only parse a
single address. If multiple addresses are specified, they must be comma delimited and split prior to
calling this method.

Example
The following example parses all of the recipient email addresses in the current message, storing
them in the strAddresses string array.

Dim strAddresses() As String, strAddress As String
Dim nIndex As Integer, nAddresses As Integer
    
nAddresses = 0
strAddresses = Split(MailMessage1.To & "," & MailMessage1.Cc, ",")

For nIndex = 0 To UBound(strAddresses)
    If Len(Trim(strAddresses(nIndex))) > 0 Then
        strAddress = MailMessage1.ParseAddress(strAddresses(nIndex))
        If Len(strAddress) > 0 Then
            strAddresses(nAddresses) = strAddress
            nAddresses = nAddresses + 1
        End If
    End If
Next

See Also
Cc Property, From Property, To Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ParseMessage Method  

 

Parse the specified string, adding the contents to the current message.

Syntax
object.ParseMessage( MessageText )

Parameters
MessageText

A string that contains the message text to be parsed.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ParseMessage method parses a string which contains message data, adding it to the current
message. This method is useful when the application needs to parse an arbitrary block of text and
add it to the current message. If the string contains header fields, the values will be added to the
message header. Once the end of the header block is detected, all subsequent text is added to
the body of the message.

Note that unlike the ImportMessage method, the ParseMessage method does not clear the
contents of the current message and may be called multiple times. Use the ClearMessage
method to clear the current message before calling ParseMessage if necessary.

Example
The following example demonstrates the use of ParseMessage to parse multiple blocks of data
from a file. This example effectively does the same thing as calling the ImportMessage method:

MailMessage1.ClearMessage
    
hFile = FreeFile()
Open strFileName For Input As hFile
nFileLength = LOF(hFile)
    
Do While nFileLength > 0
    '
    ' Read the contents of the file in 1K blocks; note that
    ' this is intentionally inefficient to demonstrate
    ' multiple calls to the ParseMessage method.
    '
    cbBuffer = nFileLength: If cbBuffer > 1024 Then cbBuffer = 1024
    nFileLength = nFileLength - cbBuffer
    strBuffer = Input(cbBuffer, hFile)
    '
    ' Parse the string, adding to the current message
    '
    nError = MailMessage1.ParseMessage(strBuffer)
    If nError > 0 Then
        MsgBox MailMessage1.LastErrorString, vbExclamation
        Exit Do
    End If
Loop
    

 



Close hFile

See Also
ClearMessage Method, ImportMessage Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PurgeStore Method  

 

Purge all deleted messages from the current message store.

Syntax
object.PurgeStore

Parameters
None.

Return Value
A value of zero is returned if the action was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PurgeStore method purges all deleted messages from the message store. If the storage file
has been opened in read-only mode or there are no messages marked for deletion, this method
will take no action.

When the CloseStore method is called, the storage file will automatically be purged. To prevent
deleted messages from being removed from the message store, use the Reset method.

See Also
StoreFile Property, CloseStore Method, DeleteMessage Method, OpenStore Method, ReadStore
Method, WriteStore Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadStore Method  

 

Retrieve a message from the message store, replacing the current message.

Syntax
object.ReadStore( MessageIndex )

Parameters
MessageIndex

An integer value which specifies the message that is to be removed from the message store. If
this parameter is omitted, the current message as specified by the value of the StoreIndex
property will be used.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ReadStore method reads the specified message from the message store, and the contents of
that message will replace the current message. This method will update the current message index
in the storage file.

See Also
StoreCount Property, StoreFile Property, StoreIndex Property, CloseStore Method, DeleteMessage
Method, FindMessage Method, ReplaceMessage Method, WriteStore Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReplaceMessage Method  

 

Replace the specified message in the current message store.

Syntax
object.ReplaceMessage( [MessageIndex] )

Parameters
MessageIndex

An integer value which specifies the message that is to be replaced in the message store. If this
parameter is omitted, the current message as specified by the value of the StoreIndex property
will be used.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The ReplaceMessage method replaces the specified message with a new message. The message
number may be a message that has been previously marked for deletion. It is important to note
that the change will not be reflected in the physical storage file until it has been closed. This
method will update the current message index in the storage file.

The message store must be opened with write access. This method will fail if you attempt to
replace a message from a storage file that has been opened for read-only access. If the
application needs to replace messages in the message store, it is recommended that the file be
opened for exclusive access using the mimeStoreLock option when calling the OpenStore
method.

See Also
StoreCount Property, StoreIndex Property, DeleteMessage Method, PurgeStore Method,
ReadStore Method, WriteStore Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults and any handles allocated by the control will be released. If a message store has
been opened, it will be closed. If messages had been flagged for deletion from the current
message store, they will not be purged.

See Also
Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SetHeader Method  

 

Set the value for the specified header in the current message part.

Syntax
object.SetHeader( HeaderField, HeaderValue )

Parameters
HeaderField

A string which specifies the name of the header field to create or modify. If the header field
does not exist, then it will be created. If the header field exists, the current value will be
overwritten.

HeaderValue

A string which specifies the value of the specified header field.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

See Also
AllHeaders Property, Part Property, GetFirstHeader Method, GetHeader Method, GetNextHeader
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and reset it to its default state.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method frees the memory allocated for the current message and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 WriteStore Method  

 

Store the current message in the message store.

Syntax
object.WriteStore

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The WriteStore method will always append the current message to the storage file. If you want to
replace a message in the message store, you should use the ReplaceMessage method. This
method will update the value of the StoreIndex property to specify the message number for the
new message that has been added to the storage file.

See Also
StoreCount Property, StoreFile Property, StoreIndex Property, CloseStore Method, DeleteMessage
Method, FindMessage Method, ReadStore Method, ReplaceMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Mail Message Control Events  

 Event Description

OnError This event is generated when a control error occurs
 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Message Character Sets  

Constant Value Name Code Page Description

mimeCharsetUSASCII 1 us-ascii 20127 A character set which defines 7-bit
printable characters with values
ranging from 20h to 7Eh. An
application that uses this character
set has the broadest compatibility
with most mail servers (MTAs)
because it does not require the
server to handle 8-bit characters
correctly when the message is
delivered.

mimeCharsetISO8859_1 2 iso-
8859-1

28591 A character set for most western
European languages such as
English, French, Spanish and
German. This character set is also
commonly referred to as Latin-1.
This character set is similar to
Windows code page 1252
(Windows-1252), however there are
differences such as the Euro
symbol.

mimeCharsetISO8859_2 3 iso-
8859-2

28592 A character set for most central and
eastern European languages such
as Czech, Hungarian, Polish and
Romanian. This character set is also
commonly referred to as Latin-2.
This character set is similar to
Windows code page 1250, however
the characters are arranged
differently.

mimeCharsetISO8859_3 12 iso-
8859-3

28593 A character set for southern
European languages such as
Maltese and Esperanto. This
character set was also used with the
Turkish language, but it was
superseded by ISO 8859-9 which is
the preferred character set for
Turkish. This character set is not
widely used in mail messages and it
is recommended that you use UTF-
8 instead.

mimeCharsetISO8859_4 13 iso-
8859-4

28594 A character set for northern
European languages such as
Latvian, Lithuanian and
Greenlandic. This character set is



not widely used in mail messages
and it is recommended that you
use UTF-8 instead.

mimeCharsetISO8859_5 4 iso-
8859-5

28595 A character set for Cyrillic
languages such as Russian,
Bulgarian and Serbian. This
character set was never widely
adopted and most mail messages
use either KOI8 or UTF-8 encoding.

mimeCharsetISO8859_6 5 iso-
8859-6

28596 A character set for Arabic
languages. Note that the
application is responsible for
displaying text that uses this
character set. In particular, any
display engine needs to be able to
handle the reverse writing direction
and analyze the context of the
message to correctly combine the
glyphs.

mimeCharsetISO8859_7 6 iso-
8859-7

28597 A character set for the Greek
language. This character set is also
commonly referred to as
Latin/Greek. This character set is no
longer widely used and has largely
been replaced with UTF-8 which
provides more complete coverage
of the Greek alphabet.

mimeCharsetISO8859_8 7 iso-
8859-8

28598 A character set for the Hebrew
language. Note that similar to
Arabic, Hebrew uses a reverse
writing direction. An application
which displays this character should
be capable of processing bi-
directional text where a single
message may include both right-to-
left and left-to-right languages,
such as Hebrew and English. In
most cases it is recommended that
you use UTF-8 instead of this
character set.

mimeCharsetISO8859_9 8 iso-
8859-9

28599 A character set for the Turkish
language. This character set is also
commonly referred to as Latin-5.
This character set is nearly identical
to ISO 8859-1, except that it
replaces certain Icelandic characters
with Turkish characters.



 

mimeCharsetISO8859_10 14 iso-
8859-10

28600 A character set for the Danish,
Icelandic, Norwegian and Swedish
languages. This character set is also
commonly referred to as Latin-6
and is similar to ISO 8859-4.

mimeCharsetISO8859_13 15 iso-
8859-13

28603 A character set for Baltic languages.
This character set is also commonly
referred to as Latin-7. This
character set is similar to ISO 8859-
4, except it adds certain Polish
characters and does not support
Nordic languages.

mimeCharsetISO8859_14 16 iso-
8859-14

28604 A character set for Gaelic languages
such as Irish, Manx and Scottish
Gaelic. This character set is also
commonly referred to as Latin-8.
This character set replaced ISO
8859-12 which was never fully
implemented.

mimeCharsetISO8859_15 17 iso-
8859-15

28605 A character set for western
European languages. This character
set is also commonly referred to as
Latin-9 and is nearly identical to
ISO8859-1 except that it replaces
lesser-used symbols with the Euro
sign and some letters.

mimeCharsetISO2022_JP 18 iso-
2022-jp

50222 A multi-byte character encoding for
Japanese that is widely used with
mail messages. This is a 7-bit
encoding where all characters start
with ASCII and uses escape
sequences to switch to the double-
byte character sets.

mimeCharsetISO2022_KR 19 iso-
2022-kr

50225 A multi-byte character encoding for
Korean which encodes both ASCII
and Korean double-byte characters.
This is a 7-bit encoding which uses
the shift in and shift out control
characters to switch to the double-
byte character set.

mimeCharsetISO2022_CN 20 x-
cp50227

50227 A multi-byte character encoding for
Simplified Chinese which encodes
both ASCII and Chinese double-
byte characters. This is a 7-bit
encoding which uses the shift in
and shift out control characters to
switch to the double-byte character

 



set.

mimeCharsetKOI8R 21 koi8-r 20866 A character set for Russian using
the Cyrillic alphabet. This character
set also covers the Bulgarian
language. Most mail messages in
the Russian language use this
character set or UTF-8 instead of
ISO 8859-5, which was never widely
adopted.

mimeCharsetKOI8U 22 koi8-u 21866 A character set for Ukrainian using
the Cyrillic alphabet. This character
set is similar to the KOI8-R
character set, but replaces certain
symbols with Ukrainian letters. Most
mail messages in the Ukrainian
language use this character set or
UTF-8 instead of ISO 8859-5, which
was never widely adopted.

mimeCharsetGB2312 23 x-
cp20936

20936 A multi-byte character encoding
which can represent ASCII and
simplified Chinese characters. It has
been superseded by GB18030,
however it remains widely used in
China.

mimeCharsetGB18030 24 gb18030 54936 A Unicode transformation format
which can represent all Unicode
code points and supports both
simplified and traditional Chinese
characters. It is backwards
compatible with GB2312 and
supersedes that character set.

mimeCharsetBIG5 25 big5 950 A multi-byte character set that
supports both ASCII characters and
traditional Chinese characters. It is
widely used in Taiwan, Hong Kong
and Macau. It is no longer
commonly used in China, which has
developed GB18030 as a standard
encoding. Microsoft's
implementation of Big5 on
Windows does not support all of
the extensions and is missing
certain code points.

mimeCharsetUTF7 9 utf-7 65000 A Unicode transformation format
that uses variable-length character
encoding to represent Unicode text
as a stream of ASCII characters that



are safe to transport between mail
servers that only support 7-bit
printable characters. It is primarily
used as an alternative to UTF-8
when quoted-printable or base64
encoding is not desired.

mimeCharsetUTF8 10 utf-8 65001 A Unicode transformation format
that uses multi-byte character
sequences to represent Unicode
text. It is backwards compatible with
the ASCII character set, however
because it uses 8-bit text, it is
recommended that you use either
quoted-printable or base64
encoding to ensure compatibility
with mail servers that do not
support 8-bit characters.

mimeCharsetUTF16 11 utf-16le N/A A 16-bit Unicode format that
represents each character as a 16-
bit value in little endian byte order.
This character set is not widely used
in mail messages and it is
recommended that you use UTF-8
instead. UTF-16 characters in big
endian byte order are not
supported.

Remarks
When composing a new message, it is recommended that you always use UTF-8 as the character
set encoding which ensures broad compatibility with most applications. The other character sets
are primarily used when parsing messages generated by other applications. Internally, all message
headers and text are processed as UTF-8 and returned as Unicode strings.

In addition to the character sets listed above, the control will recognize additional character sets
which correspond to specific Windows code pages, as well several variants. These additional
character sets are included for compatibility with other applications; they are not defined because
they should not be used when composing new messages.

It is important to note that while certain Windows character sets are similar to standard ISO
character sets, they are not identical. For example, although the Windows-1252 character set is
nearly identical to ISO 8859-1, they are not interchangeable. Some legacy applications make the
error of representing Windows ANSI character sets as 8-bit ISO character sets, which can result in
errors when converting them to Unicode. This is something to be aware of when encoding and
decoding text generated by older applications. Before the widespread adoption of UTF-8, it was
particularly common for legacy Windows mail clients to default to using Windows-1252 for text
and label it as using ISO 8859-1.

Although the control supports UTF-16, it is recommended you use UTF-8 instead. Text which uses
UTF-16 will always be base64 encoded, and some mail clients may not recognize it as a valid
character set. If the message does not specify if big endian or little endian byte order is used, the
library will default to little endian. When UTF-16 is used when composing a new message, it will



always use little endian byte order.

If you are using this control with Visual Basic 6.0, be aware that the IDE does not provide complete
support for Unicode text. Although the control uses Unicode internally, if a header or message
body contains characters which cannot be displayed using the current system ANSI code page,
the text can appear to be corrupted when examining the string using the debugger. If a message
contains text which uses a character set other than the system default, you must use controls
which are Unicode aware to display the text, such as the Microsoft InkEdit control. The standard
TextBox and other common controls in Visual Basic do not support Unicode.

See Also
ComposeMessage Method, CreatePart Method, DecodeText Method, EncodeText Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



News Feed Control

Retrieve and process the contents of a syndicated news feed.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name NewsFeedCtl.NewsFeed

File Name CSRSSX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.NewsFeed.11

ClassID D82CEE60-9C78-4F37-BD5A-E8A34B438AD9

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Overview
Really Simple Syndication (RSS) is a collection of standardized formats that are used to publish
information about content that is frequently changed. A news feed is published in XML format,
which contains one or more items that includes summary text, hyperlinks to source content and
additional metadata that is used to describe the item. News feeds can be used for a variety of
purposes, including providing updates for weblogs, news headlines, video and audio content. RSS
can also be used for other purposes, such as a software updates, where new updates are listed as
items in the feed.

News feeds can be accessed remotely from a web server, or locally as an XML formatted text file.
The source of the feed is determined by the URI scheme that is specified. If the http or https
scheme is specified, then the feed is retrieved from a web server. If the file scheme is used, the
feed is considered to be local and is accessed from the disk or local network. The News Feed
control provides an interface that enables you to open a feed by URL and iterate through each of
the items in the feed or search for a specific feed item. The control also includes a method that
can be used to parse a string that contains XML data in RSS format, where the feed may have
been retrieved from other sources such as a database.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the



desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 News Feed Control Properties  

 

Property Description

Category Gets the category or categories that the news feed channel belongs to

Copyright Gets the copyright notice for the news feed

Description Gets a description of the news feed channel

Editor Gets the email address of the person responsible for managing the content of the feed

FeedVersion Gets the version of the news feed

Generator Gets the name of the application that generated the news feed

ImageLink Gets the hyperlink for the image associated with the news feed

ImageTitle Gets the title for the image associated with the news feed

ImageUrl Gets the URL for the image associated with the news feed

IsInitialized Determine if the control has been initialized

ItemAuthor Gets the email address of the person who authored the current news item

ItemComments Gets the URL that links to further discussion about the current news item

ItemCount Gets the number of news items in the feed channel

ItemEnclosure Gets the URL that links to a file associated with the current news item

ItemGuid Gets a value that uniquely identifies the current news item in the feed channel

ItemId Gets the numeric ID for the current news item

ItemLink Gets the URL that links to additional information about the current news item

ItemPublished Gets the date and time that the current news item was published

ItemSource Gets a URL that links to the original news feed that contained the current item

ItemText Gets the text that describes the current news item

ItemTitle Gets the title of the current news item

Language Gets the language that the news feed channel is written in, using standard language codes

LastBuild Gets the date and time that the news feed was last modified

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

LinkUrl Gets the URL that links to the website corresponding to the news feed

LocalFeed Return whether the news feed was loaded from a file on the local system or a server

Published Gets the date and time that the news feed was published

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

TimeToLive Gets a value which specifies the frequency in seconds at which the feed should be refreshed

Title Gets the title of the news feed

Trace Enable or disable socket function level tracing

 

file:///C|/Projects/cstools11/pdf/rss/control/property/isinitialized.html


TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

URL Gets the URL for the current news feed

Version Gets the current version of the object

Webmaster Gets the email address of the person responsible for technical issues related to the news feed

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Category Property  

 

Gets a value which specifies the category or categories that the channel belongs to.

Syntax
object.Category

Remarks
The Category property is used to identify the category that the news feed channel belongs to.
This is an optional value that may not be defined, in which case the property will return an empty
string.

Data Type
String

See Also
Description Property, Language Property, LinkUrl Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Copyright Property  

 

Gets a value which specifies a copyright notice for the content.

Syntax
object.Copyright

Remarks
The Copyright property returns a string which contains a copyright notice for the news feed. If the
feed does not specify a copyright, then this property will return an empty string.

Data Type
String

See Also
Description Property, Language Property, LinkUrl Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Description Property  

 

Gets a value which describes the news feed channel.

Syntax
object.Description

Remarks
The Description property returns a string that provides an overview of the news feed and the
type of information that is provided. If a description of the feed has not been specified, this
property will return an empty string. Note that a news feed which conforms to the standard
specification requires a description.

Data Type
String

See Also
Language Property, LinkUrl Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Editor Property  

 

Gets a value which identifies the person responsible for managing the content of the news feed.

Syntax
object.Editor

Remarks
The Editor property returns a string that identifies the person responsible for managing the
content of the news feed. If this property is defined, it is typically the name and email address of
the feed editor. If an editor has not been specified, this property will return an empty string.

Data Type
String

See Also
Language Property, LinkUrl Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FeedVersion Property  

 

Gets a value which identifies the version of the news feed.

Syntax
object.FeedVersion

Remarks
The FeedVersion property returns a string that identifies the version of the news feed. This can be
used by an application to determine which version of the RSS specification was used to create the
feed. The current version of the specification is 2.0.

Data Type
String

See Also
Language Property, LinkUrl Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Generator Property  

 

Gets a value which identifies the application that was used to create the news feed.

Syntax
object.Generator

Remarks
The Generator property returns a string which identifies the application that was used to create
the news feed. If the feed does not specify a generator, then this property will return an empty
string.

Data Type
String

See Also
Description Property, Language Property, LinkUrl Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ImageLink Property  

 

Gets a value which specifies a URL to the website corresponding to the news feed.

Syntax
object.ImageLink

Remarks
The ImageLink property returns a string that specifies a URL to the website corresponding to the
channel. In most cases, this is the same URL that is specified by the LinkUrl property. If an image
link has not been specified, this property will return an empty string.

Data Type
String

See Also
ImageTitle Property, ImageUrl Property, LinkUrl Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ImageTitle Property  

 

Gets a value which describes the image associated with the news feed.

Syntax
object.ImageTitle

Remarks
The ImageTitle property returns a string that identifies the image associated with the channel.
This is usually a brief description of the image, and may be the same as the value specified by the
Title property. If an image title has not been specified, this property will return an empty string.

Data Type
String

See Also
ImageLink Property, ImageUrl Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ImageUrl Property  

 

Gets a value which specifies a URL for the image associated with the news feed.

Syntax
object.ImageUrl

Remarks
The ImageUrl property returns a string that specifies a URL for the image associated with the
channel. An application can download this image and display it with the contents of the news
feed. If an image URL has not been specified, this property will return an empty string.

Data Type
String

See Also
ImageLink Property, ImageTitle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemAuthor Property  

 

Gets a value which identifies the author of the current news feed item.

Syntax
object.ItemAuthor

Remarks
The ItemAuthor property returns a string which specifies an email address. If this property is
defined, it is typically the name and address of the person who created the content that the item
links to. If the author is not specified, this property will return an empty string.

Data Type
String

See Also
ItemGuid Property, ItemLink Property, ItemText Property, ItemTitle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemComments Property  

 

Gets a value which specifies a URL that links to further discussion about the current item.

Syntax
object.ItemComments

Remarks
The ItemComments property returns a string which specifies a URL that links to further discussion
about the item. Typically this is a link to the comment area of a weblog or a forum topic specific to
the item. If a comment link is not specified, this property will return an empty string.

Data Type
String

See Also
ItemAuthor Property, ItemGuid Property, ItemLink Property, ItemText Property, ItemTitle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemCount Property  

 

Gets value which specifies the number of news items in the channel.

Syntax
object.ItemCount

Remarks
The ItemCount property returns an integer value which specifies the number of items in the
current news feed channel. This property can be used in conjunction with the GetItem method to
enumerate through the available news feed items.

Data Type
Integer (Int32)

Example
The following example accesses a remote feed and enumerates each news item, populating the
contents of a ListBox control with its title.

Dim strFeed As String
Dim nIndex As Long
Dim nError As Long
    
strFeed = "http://sockettools.com/rss/news.xml"
ListBox1.Clear
    
nError = NewsFeed1.Open(strFeed)
If nError > 0 Then
    MsgBox NewsFeed1.LastErrorString, vbExclamation
    Exit Sub
End If
    
Label1.Caption = NewsFeed1.ItemCount & " news items, published on " & 
NewsFeed1.Published
    
For nIndex = 1 To NewsFeed1.ItemCount
    nError = NewsFeed1.GetItem(nIndex)
    If nError > 0 Then
        MsgBox NewsFeed1.LastErrorString, vbExclamation
        Exit For
    End If
    ListBox1.AddItem NewsFeed1.ItemTitle
Next

See Also
ItemGuid Property, ItemId Property, ItemText Property, GetItem Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemEnclosure Property  

 

Gets a value which specifies a URL that links to a file related to the item.

Syntax
object.ItemEnclosure

Remarks
The ItemEnclosure property returns a string which specifies a URL that links to an attached
document for the news feed item. This is similar to an attachment in an email message, however
instead of the item containing the contents of the attached file, it only specifies a link to the file.
Enclosures are most commonly used with podcasting where an item is linked to an audio or video
file, however the link may reference any type of file. If there is no enclosure specified for the
current item, this property will return an empty string.

Data Type
String

See Also
ItemAuthor Property, ItemGuid Property, ItemLink Property, ItemText Property, ItemTitle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemGuid Property  

 

Gets a value which uniquely identifies the current news item in the channel.

Syntax
object.ItemGuid

Remarks
The ItemGuid property returns a string which uniquely identifies the current news item. If this
property is defined, it is guaranteed to be a unique, persistent value. It is important to note that
this string does not have to be a standard GUID reference number, it can be any unique string. In
many cases it is the same value as the hyperlink returned by the ItemLink property, although an
application should never depend on this behavior. If there is no unique identifier associated with
the current item, this property will return an empty string.

Data Type
String

See Also
ItemAuthor Property, ItemId Property, ItemLink Property, ItemText Property, ItemTitle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemId Property  

 

Gets an numeric value which identifies the current news item in the channel.

Syntax
object.ItemId

Remarks
The ItemId property returns an integer that is an index into the list of available news items. It is
not persistent and the ID for a specific news item may change when the news feed is refreshed or
opened at a later point. To uniquely identify a news item in the channel, use the ItemGuid
property. To retrieve a news feed item, use the GetItem method.

Data Type
Integer (Int32)

See Also
ItemAuthor Property, ItemGuid Property, ItemText Property, GetItem Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemLink Property  

 

Gets a value which specifies a URL that links to additional information related to the current item.

Syntax
object.ItemLink

Remarks
The ItemLink property returns a string which specifies a URL that provides additional information
about a news item. If the news item summarizes the contents of an article, this property typically
provides a link to the complete article. If a link is not specified, this property will return an empty
string.

Data Type
String

See Also
ItemAuthor Property, ItemGuid Property, ItemText Property, ItemTitle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemPublished Property  

 

Gets a value which specifies the date and time the current news item was published.

Syntax
object.ItemPublished

Remarks
The ItemPublished property returns a string which specifies the date and time that the news item
was published. If the news item does not specify the publish date, this property will return an
empty string. The date and time value returned is in the standard format used by the current
locale.

Data Type
String

See Also
ItemAuthor Property, ItemGuid Property, ItemLink Property, ItemText Property, ItemTitle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemSource Property  

 

Gets a value which identifies the source of the current news item.

Syntax
object.ItemSource

Remarks
The ItemSource property returns a string which specifies a URL for the original feed that
contained the news item. This is typically used to propagate credit for news items that are
aggregated by a third-party and re-published in their own channel. If the source is not specified,
this property will return an empty string.

Data Type
String

See Also
ItemAuthor Property, ItemGuid Property, ItemLink Property, ItemText Property, ItemTitle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemText Property  

 

Gets a value which provides a summary or description of the current news item.

Syntax
object.ItemText

Remarks
The ItemText property returns a string that contains a summary of the current news item. This
may property may return either plain text or HTML formatted text. If no text has been specified for
the current item, this property will return an empty string. Although it is not required for a news
item to have a description, a feed that conforms to the standard must have either a description of
the item or a title, which is returned by the ItemTitle property.

Data Type
String

See Also
ItemAuthor Property, ItemGuid Property, ItemLink Property, ItemTitle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ItemTitle Property  

 

Gets a value which specifies the title for the current news item.

Syntax
object.ItemTitle

Remarks
The ItemTitle property returns a string which specifies a title for the news item. If no title has been
specified, this property will return an empty string. Although it is not required for a news item to
have a title, a feed that conforms to the standard must have either a title or a description of the
item, which is returned by the ItemText property.

Data Type
String

See Also
ItemAuthor Property, ItemGuid Property, ItemLink Property, ItemText Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Language Property  

 

Gets a value which identifies the language the news feed is written in.

Syntax
object.Language

Remarks
The Language property returns a string which defines the language the channel is written in,
using the standard language codes or an empty string if the language is not defined. This property
typically returns standardized language codes, however the value actually returned depends on
the content of the feed. If the news feed does not define this property, then it is generally
presumed to be written in English.

Data Type
String

See Also
Description Property, Language Property, LinkUrl Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastBuild Property  

 

Gets a value which specifies the date and time that the content of the news feed was last modified.

Syntax
object.LastBuild

Remarks
The LastBuild property returns a string which specifies the date and time that the feed was last
modified. If the feed does not define this value, this property will return an empty string. The date
and time value returned is in the standard format used by the current locale.

Data Type
String

See Also
Description Property, LinkUrl Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LinkUrl Property  

 

Gets a value which specifies a URL to the website corresponding to the channel.

Syntax
object.LinkUrl

Remarks
The LinkUrl property returns a string which specifies a URL to the website corresponding to the
channel. Note that this is not the URL of the news feed itself. Typically it is a link to the home page
of the site which owns the news feed. If a link has not been specified, this property will return an
empty string. Note that a strictly conforming news feed requires a valid link URL.

Data Type
String

See Also
Description Property, LastBuild Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalFeed Property  

 

Gets a value which specifies if the news feed was opened on the local system.

Syntax
object.LocalFeed

Remarks
This property will return true if the news feed was accessed from the local system by specifying a
file name to the Open method. If the news feed was accessed from a remote web server, this
property will return false.

Data Type
Boolean

See Also
Url Property, Open Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Published Property  

 

Gets a value which specifies the date and time that the news feed was published.

Syntax
object.Published

Remarks
The Published property returns a string which specifies the date and time that the feed was
published. For example, a feed that is associated with a weekly print publication may update this
value once per week. Note that this is not necessarily the date that the feed was last modified. If
the feed channel does not specify the publish date, this property will return an empty string. The
date and time value returned is in the standard format used by the current locale.

Data Type
String

See Also
Description Property, LastBuild Property, LinkUrl Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

NewsFeed1.ThrowError = False
nError = NewsFeed1.Open(strFeedUrl)

If nError > 0 Then
    MsgBox NewsFeed1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

NewsFeed1.ThrowError = True
NewsFeed1.Open strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TimeToLive Property  

 

Gets a value which specifies the frequency in seconds at which the feed should be refreshed.

Syntax
object.TimeToLive

Remarks
The TimeToLive property is an integer value that specifies the frequency in seconds at which the
feed should be refreshed to obtain updated information. Not all feeds specify a time-to-live, in
which case this property will have a value of zero.

The value of the TimeToLive property should be considered advisory, and not all news feeds will
provide this value. If the news feed does provide this value, it is recommended that you consider it
to be the minimum interval at which you will poll the site for updates to the feed.

Data Type
Integer (Int32)

See Also
Open Method, Refresh Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Title Property  

 

Gets a value which specifies the name of the news feed channel.

Syntax
object.Title

Remarks
The Title property returns a string which specifies the title of the news feed channel. If the content
of the news feed corresponds to a website, this is value returned by this property is typically the
same as the title of the website. If a title has not been specified, this property will return an empty
string. Note that a strictly conforming news feed requires a title.

Data Type
String

See Also
Description Property, LastBuild Property, Published Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 controlTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 controlTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 controlTraceWarning Only those function calls which fail, or return values
which indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 controlTraceHexDump All functions calls are written to the trace file, plus all
the data that is sent or received is displayed in both
ASCII and hexadecimal format. This is useful for
examining the actual byte stream that is exchanged
between the application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 URL Property  

 

Gets and sets a value which specifies the news feed URL.

Syntax
object.URL [= url ]

Remarks
The URL property returns a string which specifies a URL to the news feed. This may be either an
http:// or https:// URL to specify a news feed on a web server, or it may be a file:// URL that
specifies a local XML file that contains the news feed.

Data Type
String

See Also
Description Property, LastBuild Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

See Also
FeedVersion Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Webmaster Property  

 

Gets a value which identifies the person responsible for technical issues related to the news feed.

Syntax
object.Webmaster

Remarks
The Webmaster property returns a string which contains an email address. If this value is defined
in the news feed, it is typically the address of a system administrator responsible for the server that
hosts the news feed. If the webmaster is not specified, this property will return an empty string.

Data Type
String

See Also
Description Property, Language Property, LinkUrl Property, Published Property, Title Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 News Feed Control Methods  

 

Method Description

Close Close the current news feed

FindItem Search for an item in the news feed channel which matches the unique identifier

GetItem Set the current news item to the specified item number

GetProperty Get the value of a property for the specified item in the news feed

Initialize Initialize the control and validate the runtime license key

Open Open the specified news feed and load the first news item

Parse Parse the contents of a news feed and load the first news item

Refresh Refresh the current news feed, reloading the news channel items

Reset Reset the internal state of the control

Store Store the contents of the news feed in an XML formatted text file

Uninitialize Uninitialize the control and release any system resources that were allocated

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Close Method  

 

Close the current news feed.

Syntax
object.Close

Parameters
None.

Return Value
A value of zero is returned if the feed was closed successfully. Otherwise, a non-zero error code is
returned which indicates the cause of the failure. If the method fails, the value of the LastError
property can be used to determine cause of the failure.

Remarks
The Close method must be called whenever the application has completed processing the news
feed. Information about the current news feed item will be cleared whenever this method is called,
resetting the channel and item related properties back to their default values.

See Also
FindItem Method, GetItem Method, Open Method, Parse Method, Store Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FindItem Method  

 

Search for an item in the news feed channel which matches the unique identifier.

Syntax
object.FindItem( Value, [Options] )

Parameters
Value

A string which specifies the value of the news item being searched for. This value should
uniquely identify the item in the feed, and this parameter cannot be an empty string.

Options

An optional numeric parameter that specifies one or more options when searching for a news
item. This parameter is constructed by using a bitwise operator with any of the following values:

Value Constant Description

1 rssFindGuid Search the feed for an item with a matching GUID property
value. This is the default option, and is the only item property
that is guaranteed to be unique in the feed. The search is
case-sensitive, requiring that the Value parameter match the
GUID property value for the news item exactly.

2 rssFindLink Search the feed for items with a matching link property value.
For feeds that do not specify a GUID property, this is the
recommended option for searching for an item. The search is
not case-sensitive.

4 rssFindTitle Search the feed for items with a matching title. This option
should not be used if you must ensure that the item returned
is unique in the feed because there may be multiple items
with the same title in the feed. The search is not case-
sensitive.

8 rssFindPubDate Search the feed for items with a matching publishing date.
This option should not be used if you must ensure that the
item returned is unique in the feed because more than one
item may have the same publishing date. The format of the
date string must match the standard format used with the
RSS protocol and the match is not case-sensitive.

Return Value
A value of zero is returned if the news item was found. Otherwise, a non-zero error code is
returned which indicates the cause of the failure. If the method fails, the value of the LastError
property can be used to determine cause of the failure.

Remarks
The FindItem method searches for an item in the news feed channel which matches the unique
identifier (GUID) value and returns information about that item. If this method is successful, the
current news item is changed to the item that was found and property values such as ItemLink
and ItemText will be updated. If this method fails, the current news item is not changed.

 



It is recommended that you use this method with news feeds that are using version 2.0 or later of
the RSS specification. If the feed uses an earlier version, items may not include a GUID property. It
is also possible that a feed may omit the GUID property even though it is considered a
requirement for the current RSS specification. For the broadest compatibility with all news feeds,
an application should not depend on being able to search for a specific news feed item by its
GUID.

See Also
Close Method, GetItem Method, Open Method, Parse Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetItem Method  

 

Set the current news item to the specified item number.

Syntax
object.GetItem( ItemId )

Parameters
ItemId

An integer value which specifies item in the news feed channel.

Return Value
A value of zero is returned if the news item was selected. Otherwise, a non-zero error code is
returned which indicates the cause of the failure. If the method fails, the value of the LastError
property can be used to determine cause of the failure.

Remarks
The GetItem method is used to select the current news item in the feed. If this method is
successful, the current news item is changed to the specified value and property values such as
ItemLink and ItemText will be updated. If this method fails, the current news item is not changed.

The item number is an index into the list of available news items in the current news feed. The first
news item is one, and it increments for each additional item in the feed. If ItemId parameter is
zero or specifies a value larger than the number of items in the feed, this method will fail. The
ItemId property returns the value of the currently selected news item.

If this method fails, it typically indicates that the ItemId parameter is invalid or that the feed does
not contain any valid news items. The ItemCount property can be used to determine the number
of items contained in the news feed channel.

Example
The following example accesses a remote feed and enumerates each news item, populating the
contents of a ListBox control with its title.

Dim strFeed As String
Dim nIndex As Long
Dim nError As Long
    
strFeed = "http://sockettools.com/rss/news.xml"
ListBox1.Clear
    
nError = NewsFeed1.Open(strFeed)
If nError > 0 Then
    MsgBox NewsFeed1.LastErrorString, vbExclamation
    Exit Sub
End If
    
Label1.Caption = NewsFeed1.ItemCount & " news items, published on " & 
NewsFeed1.Published
    
For nIndex = 1 To NewsFeed1.ItemCount
    nError = NewsFeed1.GetItem(nIndex)
    If nError > 0 Then
        MsgBox NewsFeed1.LastErrorString, vbExclamation
        Exit For

 



    End If
    ListBox1.AddItem NewsFeed1.ItemTitle
Next

See Also
ItemCount Property, ItemId Property, Close Method, FindItem Method, Open Method, Parse
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetProperty Method  

 

Get the value of a property for the current item in the news feed.

Syntax
object.GetProperty( Property, Value )

Parameters
Property

A string which specifies the name of the custom property to retrieve the value for.

Value

A string that is passed by reference which will contain the property value when the method
returns.

Return Value
A value of zero is returned if the property was specified in the news item. Otherwise, a non-zero
error code is returned which indicates the cause of the failure. If the method fails, the value of the
LastError property can be used to determine cause of the failure.

Remarks
The GetProperty method is primarily used with custom item properties that may be used with
extensions to the news feed. The standard properties for an news feed item such as the title, link
and description can be access using properties such as ItemTitle, ItemLink and ItemText.
However, if items in the feed contain custom properties that are not part of the standard RSS
format, this method can be used to obtain those values.

See Also
Close Method, GetItem Method, Open Method, Parse Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set rssFeed = CreateObject("SocketTools.NewsFeed.11")

nError = rssFeed.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Open Method, Parse Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/rss/control/property/isinitialized.html


 Open Method  

 

Open the specified news feed and select the first news item.

Syntax
object.Open( FeedUrl, [Timeout], [Options] )

Parameters
FeedUrl

A string value which specifies the URL for the news feed. To access a news feed on a web
server, a standard http or https URL may be used. To access a file on the local system or
network share, a file name or file URL may be specified.

Timeout

The number of seconds that the client will wait for a response before failing the operation.This
parameter is ignored if the FeedUrl parameter specifies a local file name or URL.

Options

An optional numeric parameter that specifies one or more options when opening the news
feed. This parameter is constructed by using a bitwise operator with any of the following values:

Value Constant Description

0 rssOptionNone No additional options are specified and the news feed is
processed using relaxed rules when checking the validity of
the feed. The control will attempt to automatically
compensate for a feed that is malformed or does not strictly
conform to the RSS standard. This is the default value if the
Options parameter is omitted.

1 rssOptionStrict The news feed content should be processed using strict rules
to ensure that the feed meets the appropriate RSS standard
specification and all feed property values are case-sensitive.
By default, relaxed rules are used which allows the application
to open a feed that may not strictly conform to the standard
specification.

Return Value
A value of zero is returned if the news feed was opened successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure. If the method fails, the value of the
LastError property can be used to determine cause of the failure.

Remarks
A news feed may be local or remote, depending on the URL that is specified. If a local file name or
file URL is specified for the feed, then it is opened locally and no network access is required. If an
http or https URL is specified, then the Open method will attempt to download the feed from the
server and store it temporarily on the local system. Accessing a remote feed requires that the
application has permission to establish a connection with the server and will cause the application
to block until the feed has been downloaded, the operation times out or an error occurs.

Although the Open method will meet the needs of most applications, if you require more complex
functionality such as retrieving the feed asynchronously in the background or event notifications
for large transfers, you can use the SocketTools Hypertext Transfer Protocol control to download

 



the news feed and then use the Parse method to parse the contents.

Example
The following example accesses a remote feed and enumerates each news item, populating the
contents of a ListBox control with its title.

Dim strFeed As String
Dim nIndex As Long
Dim nError As Long
    
strFeed = "http://sockettools.com/rss/news.xml"
ListBox1.Clear
    
nError = NewsFeed1.Open(strFeed)
If nError > 0 Then
    MsgBox NewsFeed1.LastErrorString, vbExclamation
    Exit Sub
End If
    
Label1.Caption = NewsFeed1.ItemCount & " news items, published on " & 
NewsFeed1.Published
    
For nIndex = 1 To NewsFeed1.ItemCount
    nError = NewsFeed1.GetItem(nIndex)
    If nError > 0 Then
        MsgBox NewsFeed1.LastErrorString, vbExclamation
        Exit For
    End If
    ListBox1.AddItem NewsFeed1.ItemTitle
Next

See Also
Close Method, GetItem Method, Open Method, Parse Method, Store Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Parse Method  

 

Open the specified news feed and select the first news item.

Syntax
object.Parse( FeedXml, [Options] )

Parameters
FeedXml

A string value which contains the contents of the news feed to be parsed.

Options

An optional numeric parameter that specifies one or more options when opening the news
feed. This parameter is constructed by using a bitwise operator with any of the following values:

Value Constant Description

0 rssOptionNone No additional options are specified and the news feed is
processed using relaxed rules when checking the validity of
the feed. The control will attempt to automatically
compensate for a feed that is malformed or does not strictly
conform to the RSS standard. This is the default value if the
Options parameter is omitted.

1 rssOptionStrict The news feed content should be processed using strict rules
to ensure that the feed meets the appropriate RSS standard
specification and all feed property values are case-sensitive.
By default, relaxed rules are used which allows the application
to open a feed that may not strictly conform to the standard
specification.

Return Value
A value of zero is returned if the string contains a valid RSS feed and the contents were
successfully parsed. Otherwise, a non-zero error code is returned which indicates the cause of the
failure. If the method fails, the value of the LastError property can be used to determine cause of
the failure.

Remarks
The Parse method is an alternative to the Open method, enabling the application to process a
news feed from alternative sources such as a database or compressed file. It is important to note
that the string which contains the news feed XML must be properly formatted and conform to the
RSS standard specification.

Example
The following example opens a local file that contains a news feed, stores the contents in a string
variable and parses the contents. A ListBox control is populated with the title of each news item in
the feed. Note that this example was written to demonstrate the use of the Parse method,
however the Open method can also be used to open a local file and requires less code.

Dim hFile As Long
Dim strFileName As String
Dim strFeedXml As String
Dim nIndex As Long

 



Dim nError As Long
    
strFileName = "newsfeed.xml"
    
hFile = FreeFile()
Open strFileName For Input As #hFile
strFeedXml = Input(LOF(hFile), #hFile)
Close #hFile

nError = NewsFeed1.Parse(strFeedXml)
If nError > 0 Then
    MsgBox NewsFeed1.LastErrorString, vbExclamation
    Exit Sub
End If
    
ListBox1.Clear
Label1.Caption = NewsFeed1.ItemCount & " news items, published on " & 
NewsFeed1.Published
    
For nIndex = 1 To NewsFeed1.ItemCount
    nError = NewsFeed1.GetItem(nIndex)
    If nError > 0 Then
        MsgBox NewsFeed1.LastErrorString, vbExclamation
        Exit For
    End If
    ListBox1.AddItem NewsFeed1.ItemTitle
Next

See Also
Close Method, GetItem Method, Open Method, Store Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Refresh Method  

 

Refresh the current news feed.

Syntax
object.Refresh

Parameters
None.

Return Value
A value of zero is returned if the feed was refreshed successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure. If the method fails, the value of the
LastError property can be used to determine cause of the failure.

Remarks
When the Refresh method is called, the news feed is reloaded from the original source and the
items in the channel are updated. For news feeds that are frequently updated, the TimeToLive
property can provide a hint to the application as to how frequently the feed should be refreshed.

If the news feed was originally opened using an http or https URL, this function will download the
updated feed from the server and store it temporarily on the local system. Accessing a remote
feed requires that the application has permission to establish a connection with the server and will
cause the application to block until the feed has been downloaded, the operation times out or an
error occurs. The same timeout period and options will be used as when the feed was originally
opened.

The Refresh method should only be used if the feed was opened using the Open method,
otherwise the method will fail with an error indicating that the operation is not supported.

It is important that the application does not make any assumptions about the number of news
items in the channel, or the content associated with those items after the Refresh method has
been called. For example, never assume that the number of items in the news feed remains the
same, or that the item IDs for each item remains the same. If you need to find a specific item in
the news feed, use the FindItem method.

See Also
TimeToLive Property, FindItem Method, GetItem Method, Open Method, Parse Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Store Method  

 

Store the contents of the news feed in an XML formatted text file.

Syntax
object.Store( FileName, [Options] )

Parameters
FileName

A string value which specifies the name of the file on the local system. The contents of the news
feed will be stored in this file. If the file does not exist, it will be created; otherwise it will
overwrite the contents of the file.

Options

An optional parameter reserved for future use. It should either be omitted from the method call,
or passed with a value of 0.

Return Value
A value of zero is returned if the contents of the news feed has been successfully stored in the
specified file. Otherwise, a non-zero error code is returned which indicates the cause of the failure.
If the method fails, the value of the LastError property can be used to determine cause of the
failure.

See Also
Close Method, GetItem Method, Open Method, Parse Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Close Method, Initialize Method, Reset Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 News Feed Control Events  

 Event Description

OnError This event is generated when a control error occurs
 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Network News Transfer Protocol Control

Download and submit articles to a news server.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name NntpClientCtl.NntpClient

File Name CSNWSX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.NntpClient.11

ClassID DEC81A71-4F58-4E03-B601-E486822DBD1F

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 977, RFC 2980

Overview
The Network News Transfer Protocol (NNTP) is used with servers that provide news services. This
is similar in functionality to bulletin boards or message boards, where topics are organized
hierarchically into groups, called newsgroups. Users can browse and search for messages, called
news articles, which have been posted by other users. On many servers, they can also post their
own articles which can be read by others. The largest collection of public newsgroups available is
called USENET, a world-wide distributed discussion system. In addition, there are a large number
of smaller news servers. For example, Microsoft operates a news server which functions as a forum
for technical questions and announcements.

The control provides a comprehensive interface for accessing newsgroups, retrieving articles and
posting new articles. In combination with the Mail Message control to process the news articles,
SocketTools can be used to integrate newsgroup access with an existing email application, or you
can implement your own full-featured newsgroup client.

This control supports secure connections using the standard SSL and TLS protocols.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)



installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Network News Transfer Protocol Control Properties  

 

Property Description

Article Gets and sets the current article number

ArticleCount Return the number of available articles

AutoResolve Determines if host names and IP addresses are automatically resolved

Blocking Gets and sets the blocking state of the control

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the client certificate

CertificatePassword Gets and sets the password associated with the client certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the client certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was issued

CertificateUser Gets and sets the user that owns the client certificate

CipherStrength Return the length of the key used by the encryption algorithm

CurrentDate Return the current date in the standard format used by news articles

FirstArticle Return the first available article number

GroupCount Return the number of available groups

GroupName Gets and sets the current newsgroup name

GroupTitle Return a string describing the current newsgroup

HashStrength Return the length of the message digest that was selected

HostAddress Gets and sets the IP address of the server

HostName Gets and sets the name of the server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsReadable Return if data can be read from the server without blocking

IsWritable Return if data can be sent to the server without blocking

LastArticle Return the last available article number

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

LastUpdate Gets and sets the date the newsgroup list was last updated

MessageId Gets and sets the current article by message ID

Options Gets and sets the options that are used in establishing a connection

Password Gets and sets the password for the current user

 



RemotePort Gets and sets the port number for a remote connection

ResultCode Return the result code of the previous action

ResultString Return a string describing the results of the previous action

Secure Set or return if a connection to the server is secure

SecureCipher Return the encryption algorithm used to establish the secure connection with the server

SecureHash Return the message digest selected when establishing the secure connection with the server

SecureKeyExchange Return the key exchange algorithm used to establish the secure connection with the server

SecureProtocol Gets and sets the security protocol used to establish the secure connection with the server

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

UserName Gets and sets the current user name

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Article Property  

 

Gets and sets the current article number.

Syntax
object.Article [= number ]

Remarks
The Article property sets or returns the current news article number. Setting the Article property
updates the MessageId property to reflect the specified article's message ID.

Data Type
Integer (Int32)

See Also
ArticleCount Property, FirstArticle Property, LastArticle Property, MessageId Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ArticleCount Property  

 

Return the number of available articles in the current newsgroup.

Syntax
object.ArticleCount

Remarks
The ArticleCount property returns the number of articles that are available in the current
newsgroup. Note that this is a read-only property available at run-time. This value is only
meaningful after the SelectGroup method has been called.

Data Type
Integer (Int32)

See Also
Article Property, FirstArticle Property, LastArticle Property, ListArticles Method, SelectGroup
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnConnect, OnDisconnect,
OnRead and OnWrite are only fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, IsReadable Property, IsWritable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateExpires Property  

 

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssued Property  

 

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssuer Property  

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function
     End If



      nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the name of the company who issued the server
certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = NntpClient1.CertificateIssuer
If Len(strIssuer) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strCompanyName = GetCertNameValue(strIssuer, "O")
     MsgBox "This certificate was issued by " & strCompanyName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the client certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the certificate that should be used to
establish the connection with the server. It is only required that you set this property value if the
server requires a client certificate for authentication. If this property is not set, a client certificate
will not be provided to the server. If a certificate name is specified, the certificate must have a
private key associated with it, otherwise the connection attempt will fail because the control will be
unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the client certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStatus Property  

 

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property returns an integer value which identifies the status of the server
certificate. This property may return one of the following values:

Constant Value Description

stCertificateNone 0 No certificate information is available. A secure
connection was not established with the server.

stCertificateValid 1 The certificate is valid.

stCertificateNoMatch 2 The certificate is valid, however the domain name
specified in the certificate does not match the domain
name of the site that the client has connected to. This is
typically the case if the HostAddress property is used
rather than the HostName property. It is
recommended that the client examine the
CertificateSubject property to determine the domain
name of the site that the certificate was issued for.

stCertificateExpired 3 The certificate has expired and is no longer valid. The
client can examine the CertificateExpires property to
determine when the certificate expired.

stCertificateRevoked 4 The certificate has been revoked and is no longer valid.
It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateUntrusted 5 The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the local
host. It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateInvalid 6 The certificate is invalid. This typically indicates that the
internal structure of the certificate is damaged. It is
recommended that the client application immediately
terminate the connection if this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
Integer (Int32)

Example

 



The following example establishes a secure connection to a server:

'
' Initialize the control properties
'

NntpClient1.HostName = strHostName
NntpClient1.Secure = True

nError = NntpClient1.Connect()
If nError > 0 Then
     MsgBox "Unable to connect to server " & strHostName, vbExclamation
     Exit Sub
End If

If NntpClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          NntpClient1.Disconnect
          Exit Sub
     End If
End If

NntpClient1.Disconnect

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the client certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the client certificate that should
be used when establishing a secure connection with the server. The certificate may either be
stored in the registry or in a file. If the certificate is stored in the registry, then this property should
be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateSubject Property  

Returns information about the organization that the server certificate was issued to.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the subject's company or country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function



 

     End If

     nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the domain name that the server certificate was issued
for:

Dim strSubject As String
Dim strDomainName As String

strSubject = NntpClient1.CertificateSubject
If Len(strSubject) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strDomainName = GetCertNameValue(strSubject, "CN")
     MsgBox "This certificate was issued for " & strDomainName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus

 



Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the client certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the client certificate that will be used to establish
a secure connection with the server. If this property is not set, the certificate store for the current
user will be used when searching for the certificate. If this property is used to specify another user,
the process must have the appropriate permission to access the registry location that contains the
client certificate. On Windows Vista and later versions of the operating system, this requires that
the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CurrentDate Property  

 

Return the current date in the standard format used by news articles.

Syntax
object.CurrentDate

Remarks
The CurrentDate property returns the current date and time in a format that is commonly used in
news articles.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FirstArticle Property  

 

Return the first available article number.

Syntax
object.FirstArticle

Remarks
The FirstArticle property returns the first article number available in the current newsgroup. Note
that this is a read-only property available at run-time.

Data Type
Integer (Int32)

See Also
Article Property, ArticleCount Property, LastArticle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GroupCount Property  

 

Return the number of available groups.

Syntax
object.GroupCount

Remarks
The GroupCount property returns the number of newsgroups that have been returned by the
server. Note that this is a read-only property available at run-time and the value is only
meaningful after the ListGroups method has been called.

Data Type
Integer (Int32)

See Also
GroupName Property, GroupTitle Property, ListGroups Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GroupName Property  

 

Gets and sets the current newsgroup name.

Syntax
object.GroupName [= group ]

Remarks
The GroupName property sets or returns the current newsgroup. Setting this property causes the
related properties, such as FirstArticle and LastArticle, to be updated.

Data Type
String

See Also
GroupCount Property, GroupTitle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GroupTitle Property  

 

Return a string describing the current newsgroup.

Syntax
object.GroupTitle

Remarks
The GroupTitle property returns a string describing the current newsgroup. This property is read-
only and available only at run-time.

Data Type
String

See Also
GroupCount Property, GroupName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of true if the control is connected with a
server, otherwise the property has a value of false.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsReadable Property  

 

Return if data can be read from the server without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the server without blocking. For
non-blocking connections, this property can be checked before the application attempts to read
the data, preventing an error.

Data Type
Boolean

See Also
IsConnected Property, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Return if data can be sent to the server without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written without blocking. For non-blocking
connections, this property can be checked before the application attempts to send data to the
server, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
send data without an error. The next operation may result in an stErrorOperationWouldBlock or
stErrorOperationInProgress error. The application must treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
IsReadable Property, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastArticle Property  

 

Return the last available article number.

Syntax
object.LastArticle

Remarks
The LastArticle property returns the last article number available in the current newsgroup. Note
that this is a read-only property available at run-time.

Data Type
Integer (Int32)

See Also
Article Property, ArticleCount Property, FirstArticle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastUpdate Property  

 

Gets and sets the date the newsgroup list was last updated.

Syntax
object.LastUpdate [= date ]

Remarks
The LastUpdate property is used to specify the last date and time that a list of newsgroups was
retrieved from the server. When this property is set, only those newsgroups created after that date
will be returned when the server is asked for a list of groups. If this property is set to an empty
string, then the server will return all groups, regardless of when they were created.

This property should be used by client applications to reduce the amount of time needed to
update the list of available newsgroups, particularly if the server offers a large number of
newsgroups. For example, the first time that the client connects to the server, the LastUpdate
property should not be set. That will cause the server to return a list of all of the newsgroups that it
has available. The client should then store that list on the local system in a file, and record the date
and time that it created the list. Then, the next time that the client connects to the server, it should
set the LastUpdate property to the date that the local list of newsgroups was last updated. When
the list of newsgroups is requested again, the server will only return those newsgroups that were
created since the last time the list was updated rather than the complete list.

Data Type
String

See Also
GetFirstGroup Method, GetNextGroup Method, ListGroups Method, OnNewsGroup Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageID Property  

 

Gets and sets the current article by message ID.

Syntax
object.MessageId [= number ]

Remarks
The MessageId property sets or returns the current message ID string. Each news article has a
unique string which identifies that message. Setting the MessageId property causes the current
article number to change to the given message. An error is generated if the property is set to an
invalid message ID.

Data Type
String

See Also
Article Property, ArticleCount Property, FirstArticle Property, LastArticle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Options Property  

 

Gets and sets the options that are used in establishing a connection.

Syntax
object.Options [= value ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when connecting to the server. The property
value is created by using a bitwise operator with one or more of the following values:

Value Constant Description

0 nntpOptionNone No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used.

&H400 nntpOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 nntpOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This
option only affects connections using either the
SSL or TLS protocols.

&H1000 nntpOptionSecure This option specifies the client should attempt
to establish a secure connection with the
server. Note that the server must support
secure connections using either the SSL or TLS
protocol.

&H8000 nntpOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option
is specified, the client will allow connections
using TLS 1.0 and cipher suites that use RC4,
MD5 and SHA1.

&H40000 nntpOptionPreferIPv6 This option specifies the client should prefer
the use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the
server hostname can only be resolved to an

 



IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this
option has been specified.

Data Type
Integer (Int32)

See Also
Secure Property, Connect Method



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password used to authenticate the user. If a password is not
required by the server, this property is ignored.

Data Type
String

See Also
UserName Property, Authenticate Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultCode Property  

 

Return the result code of the previous action.

Syntax
object.ResultCode

Remarks
The ResultCode read-only property returns the result code of the last action performed by the
client. This property should be checked after the Command method is used to execute a
command on the server to determine if the operation was successful. Result codes are three-digit
numeric values returned by the server and may be broken down into the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being
initiated, and the client should expect another reply from the server before
proceeding.

200-
299

Positive completion result. This indicates that the server has successfully
completed the requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot
complete until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action
did not take place, but the error condition is temporary and may be attempted
again.

500-
599

Permanent negative completion result. This indicates that the requested action
did not take place.

It is important to note that while some result codes have become standardized, not all servers
respond to commands using the same result codes. For example, one server may respond with a
result code of 221 to indicate success, while another may respond with a value of 235. It is
recommended that applications check for ranges of values to determine if a command was
successful, not a specific value.

Data Type
Integer (Int32)

See Also
ResultString Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultString Property  

 

Return a string describing the results of the previous action.

Syntax
object.ResultString

Remarks
The ResultString read-only property returns the result string from the last action taken by the
client. This string is generated by the server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition
that caused the error.

Data Type
String

See Also
ResultCode Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if a connection to the server is secure.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application must set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may request files or
submit queries to the server as with standard connections.

It is strongly recommended that any application that sets this property True use error handling to
trap an errors that may occur. If the control is unable to initialize the security libraries, or otherwise
cannot create a secure session for the client, an error will be generated when this property value is
set.

Data Type
Boolean

Example
The following example establishes a secure connection to a server:

NntpClient1.HostName = strHostName
NntpClient1.UserName = strUserName
NntpClient1.Password = strPassword
NntpClient1.Secure = True

nError = NntpClient1.Connect()
If nError > 0 Then
    MsgBox "Unable to connect to server " & strHostName, vbExclamation
    Exit Sub
End If

If NntpClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          NntpClient1.Disconnect
          Exit Sub
     End If
End If

See Also
CertificateStatus Property, Connect Method

 



 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 stCipherNone No cipher has been selected. This is not a secure connection
with the server.

1 stCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

2 stCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

4 stCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 stCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 stCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 stCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 stCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 stCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 stCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Value Constant Description

1 stHashMD5 The MD5 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

2 stHashSHA1 The SHA-1 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

4 stHashSHA256 The SHA-256 algorithm has been selected.

8 stHashSHA384 The SHA-384 algorithm has been selected.

16 stHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 stKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 stKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 stKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 stKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 stKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange algorithm
was selected. This is a variant of the Diffie-Hellman
algorithm which uses elliptic curve cryptography. This
key exchange algorithm is only supported on Windows
XP SP3 and later versions of the operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

 



established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

NntpClient1.ThrowError = False
nError = NntpClient1.Connect(strHostName)

If nError > 0 Then
    MsgBox NntpClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

NntpClient1.ThrowError = True
NntpClient1.Connect strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 nntpTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 nntpTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 nntpTraceWarning Only those function calls which fail, or return values
which indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 nntpTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
nntps being used. If multiple nntps have tracing enabled, the TraceFlags property should be set
to the same value for each nntp. Changing the trace flags for any one instance of the nntp will
affect the logging performed for all nntps used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= username ]

Remarks
The UserName property specifies the user that is logging in to the server, and is required for
authentication purposes.

Data Type
String

See Also
Password Property, Authenticate Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Network News Transfer Protocol Control Methods  

 

Method Description

Authenticate Authenticate the client session

Cancel Cancels the current blocking network operation

CloseArticle Closes the current article that has been opened or created

Command Send a custom command to the server

Connect Establish a connection with a server

CreateArticle Creates a new article in the current newsgroup

Disconnect Terminate the connection with a server

GetArticle Retrieve a article from the server

GetFirstArticle Return the first available article in the currently selected newsgroup

GetFirstGroup Return the first available newsgroup from the server

GetHeaders Retrieves the headers for the specified article from the server

GetNextArticle Return the next available article in the currently selected newsgroup

GetNextGroup Return the next available newsgroup from the server

Initialize Initialize the control and validate the runtime license key

ListArticles Return a list of articles in the current newsgroup

ListGroups Return a list of newsgroups available on the server

OpenArticle Opens the specified article in the currently selected newsgroup

PostArticle Post a new article to the current newsgroup

Read Return data read from the server

Reset Reset the internal state of the control

SelectGroup Selects the specified newsgroup as the current newsgroup

StoreArticle Retrieve an article from the current newsgroup and store it in a local file

Uninitialize Uninitialize the control and release any system resources that were allocated

Write Write data to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Authenticate Method  

 

Authenticate the client session.

Syntax
object.Authenticate( [UserName], [Password] )

Parameters
UserName

An optional string argument which specifies the username used to authenticate the client
session. If the argument is omitted, the value assigned to the UserName property will be used
instead.

Password

An optional string argument which specifies the password used to authenticate the client
session. If the argument is omitted, the value assigned to the Password property will be used
instead.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Authenticate method identifies the client to the news server, which may be required to
access certain newsgroups or to post articles. If the user name or password is invalid, an error will
occur. This method should only be used if the server indicates that authentication is required by
returning an error.

See Also
Password Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CloseArticle Method  

 

Closes the current article that has been opened or created.

Syntax
object.CloseArticle

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CloseArticle method closes the current article that has been opened or created. If an article is
being created, this function actually submits the article to the server. Note that the client
application is responsible for generating the message headers as well as the body of the message.
News articles conform to the same general characteristics of an email message.

See Also
CreateArticle Method, OpenArticle Method, Read Method, Write Method

 



 Command Method  

 

Send a custom command to the server.

Syntax
object.Command( Command, [Parameters], [Options] )

Parameters
Command

A string which specifies the command to send. Valid commands vary based on the Internet
protocol and the type of server that the client is connected to. Consult the protocol standard
and/or the technical reference documentation for the server to determine what commands may
be issued by a client application.

Parameters

An optional string which specifies one or more parameters to be sent along with the command.
If more than one parameter is required, most Internet protocols require that they be separated
by a single space character. Consult the protocol standard and/or technical reference
documentation for the server to determine what parameters should be provided when issuing a
specific command. If no parameters are required for the command, this argument may be
omitted.

Options

A numeric value which specifies one or more options. If this argument is omitted, no command
options will be used. The following values may be specified:

Value Constant Description

1 nntpCommandMultiLine This option specifies the command will return
multiple lines of data. Unlike a single line response,
which consists of a result code and result string, a
multi-line response consists of one or more lines of
text, terminated by a special end-of-data marker.

Return Value
A value of zero is returned if the command was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure. To determine the result code returned by the
server in response to the command, read the value of the ResultCode property.

Remarks
The Command method sends a command to the server and processes the result code sent back
in response to that command. This method can be used to send custom commands to a server to
take advantage of features or capabilities that may not be supported internally by the control.

See Also
ResultCode Property, ResultString Property, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

 

Establish a connection with a server.

Syntax
object.Connect( [RemoteHost], [RemotePort], [UserName], [Password], [Timeout], [Options] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero indicates that the default
port number for this service should be used to establish the connection.

UserName

A string which specifies the name of the user used to authenticate access to the server. If this
argument is not specified, it defaults to the value of the UserName property.

Password

A string which specifies the password used to authenticate the user. If this argument is not
specified, it defaults to the value of the Password property.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

A numeric value which specifies one or more options. If this argument is omitted or a value of
zero is specified, a default, standard connection will be established. This argument is
constructed by using a bitwise operator with any of the following values:

Value Constant Description

0 nntpOptionNone No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used.

&H400 nntpOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 nntpOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This
option only affects connections using either the

 



SSL or TLS protocols.

&H1000 nntpOptionSecure This option specifies the client should attempt
to establish a secure connection with the
server. Note that the server must support
secure connections using either the SSL or TLS
protocol.

&H8000 nntpOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option
is specified, the client will allow connections
using TLS 1.0 and cipher suites that use RC4,
MD5 and SHA1.

&H40000 nntpOptionPreferIPv6 This option specifies the client should prefer
the use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this
option has been specified.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

See Also
HostAddress Property, HostName Property, Options Property, RemotePort Property, Disconnect
Method, OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreateArticle Method  

 

Creates a new article in the current newsgroup.

Syntax
object.CreateArticle

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CreateArticle method sends the POST command to the news server. Not all servers permit
clients to post articles. The client application is responsible for generating the message headers as
well as the body of the message. News articles conform to the same general characteristics of an
email message.

The CloseArticle method must be called once the contents of the article has been written to the
server.

See Also
GroupName Property, CloseArticle Method, OpenArticle Method, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
IsConnected Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetArticle Method  

 

Retrieve an article from the server.

Syntax
object.GetArticle( Article, Message, [Options] )

Parameters
Article

Number of the article to retrieve from the server, or a string that specifies the message ID of the
article to retrieve. If an article number is specified, this value must be greater than zero. The first
available article in the newsgroup can be determined by checking the value of the FirstArticle
property. The last available article in the newsgroup is returned by the LastArticle property.

Message

A string or byte array which will contain the data transferred from the server when the method
returns.

Options

An optional integer value which specifies one or more options. This argument is reserved for
future use and should be omitted.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The GetArticle method is used to retrieve an article from the server and copy it into a local buffer.
This method will cause the current thread to block until the article transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
FirstArticle Property, LastArticle Property, CreateArticle Method, GetHeaders Method, OpenArticle
Method, StoreArticle Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFirstArticle Method  

 

Return information about the first article available in the current newsgroup.

Syntax
object.GetFirstArticle( Article, [Subject], [Author], [Posted], [MessageId], [References],
[ByteCount], [LineCount] )

Parameters
Article

An integer value which specifies the article ID. This is the number that should be used to access
the article on the server. This parameter is required and must be passed by reference.

Subject

An optional string which specifies the subject of the article. This parameter must be passed by
reference, or it may be omitted if the program does not require this information.

Author

An optional string which specifies the author of the article. This is typically the name and email
address of the user who posted the article. This parameter must be passed by reference, or it
may be omitted if the program does not require this information.

Posted

An optional string which specifies the date that the article was posted. This parameter must be
passed by reference, or it may be omitted if the program does not require this information.

MessageId

An optional string which specifies the message ID for the article. Although it is more common to
reference an article by number, it is possible to reference an article by its message ID. To select
a message by its message ID string, set the MessageID property. This parameter must be
passed by reference, or it may be omitted if the program does not require this information.

References

An optional string which specifies references to the article. This can be used by an application to
create a list of cross references to the article so that related threads can be provided to the user.
This parameter must be passed by reference, or it may be omitted if the program does not
require this information.

ByteCount

An optional integer value which specifies the size of the message in bytes. This parameter must
be passed by reference, or it may be omitted if the program does not require this information.

LineCount

An optional integer value which specifies the number of lines of text in the message. This
parameter must be passed by reference, or it may be omitted if the program does not require
this information.

Return Value
A value of true is returned if the operation was successful, otherwise a return value of false
indicates that there are no articles available in the currently selected newsgroup.

Remarks
The GetFirstArticle method returns information about the first article in the currently selected

 



newsgroup. This method is used in conjunction with the GetNextArticle method to enumerate all
of the articles in the newsgroup. Typically this is used to provide the user with a list of articles to
access.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a
specific article. For example, the GetArticle method cannot be called while inside a loop calling
GetNextArticle. The client should store those articles which it wants to retrieve in an array, and
then once all of the articles have been listed, it can begin calling GetArticle for each article
number to retrieve the article text.

A program should use either the ListArticles method or the GetFirstArticle and GetNextArticle
methods, but never in combination with one another.

Example
Dim nArticleId As Long
Dim strSubject As String
Dim strAuthor As String
Dim datePosted As Date
Dim strMessageId As String
Dim strReferences As String
Dim nByteCount As Long
Dim nLineCount As Long
Dim bResult As Boolean;

' List each article in the current newsgroup, adding the subject to
' a ListBox control
bResult = NntpClient1.GetFirstArticle(nArticleId, strSubject, strAuthor, _
    datePosted, strMessageId, strReferences, _
    nByteCount, nLineCount);

Do While bResult
    List1.AddItem strSubject
    List1.ItemData(List1.NewIndex) = nArticleId

    bResult = NntpClient1.GetNextArticle(nArticleId, strSubject, strAuthor, _
        datePosted, strMessageId, strReferences, _
        nByteCount, nLineCount);
End Do

See Also
Article Property, MessageID Property, GetNextArticle Method, ListArticles Method,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFirstGroup Method  

 

Return information about the first available newsgroup.

Syntax
object.GetFirstGroup( GroupName, [FirstArticle], [LastArticle], [Access] )

Parameters
GroupName

An optional string which specifies the name of the newsgroup. This parameter is required and
must be passed by reference.

FirstArticle

An optional integer value which specifies the number for the first available article in the
newsgroup. This value corresponds to the FirstArticle property of a selected newsgroup. This
parameter must be passed by reference, or it may be omitted if the program does not require
this information.

LastArticle

An optional integer value which specifies the number for the last available article in the
newsgroup. This value corresponds to the LastArticle property of a selected newsgroup. This
parameter must be passed by reference, or it may be omitted if the program does not require
this information.

Access

AAn optional integer value which specifies the access rights for the newsgroup. This parameter
must be passed by reference, or it may be omitted if the program does not require this
information. It may be one of the following values:

Value Constant Description

0 nntpGroupReadOnly The group is read-only and cannot be modified.
Attempts to post articles to the newsgroup will result in
an error.

1 nntpGroupReadWrite Articles can be posted to the newsgroup. Even though
a newsgroup is read-write, it may require that the client
authenticate before being given permission to post
articles to the server.

2 nntpGroupModerated The newsgroup is moderated and articles can only be
posted by the group moderator. To request that an
article be posted to the newsgroup, you must email the
message to the moderator.

Return Value
A value of true is returned if the operation was successful, otherwise a return value of false
indicates that there are no newsgroups available on the server. Note that if no newsgroups are
returned by the server, it may indicate that it requires the client to authenticate itself prior to
requesting a list of groups or articles.

Remarks
The GetFirstGroup method returns information about the first newsgroup on the server. This

 



method is used in conjunction with the GetNextGroup method to enumerate all of the available
newsgroups. Typically this is used to provide the user with a list of newsgroups to select. If the
LastUpdate property is set, then only newsgroups that have been created since that date will be
returned.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

A program should use either the ListGroups method or the GetFirstGroup and GetNextGroup
methods, but never in combination with one another.

Example
Dim strGroupName As String
Dim bResult As Boolean;

' List each newsgroup available on the server, adding the group name
' to a ListBox control
bResult = NntpClient1.GetFirstGroup(strGroupName)

Do While bResult
    List1.AddItem strGroupName
    bResult = NntpClient1.GetNextGroup(strGroupName)
End Do

See Also
GroupName Property, GroupTitle Property, LastUpdate Property, GetNextGroup Method,
ListGroups Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetHeaders Method  

 

Retrieves the headers for the specified article from the server.

Syntax
object.GetHeaders( Article, Headers )

Parameters
Article

Number of article to retrieve from the server, or a string that specifies the message ID of the
article header to retrieve. If an article number is specified, this value must be greater than zero.
The first available article in the newsgroup can be determined by checking the value of the
FirstArticle property. The last available article in the newsgroup is returned by the LastArticle
property.

Headers

A string or byte array which will contain the data transferred from the server when the method
returns. This parameter must be passed by reference.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The GetHeaders method is used to retrieve an article header block from the server and copy it
into a local buffer. This method will cause the current thread to block until the article transfer
completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event
will fire periodically, enabling the application to update any user interface objects such as a
progress bar.

See Also
CreateArticle Method, GetArticle Method, OpenArticle Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetNextArticle Method  

 

Return information about the next article available in the current newsgroup.

Syntax
object.GetNextArticle( Article, [Subject], [Author], [Posted], [MessageId], [References],
[ByteCount], [LineCount] )

Parameters
Article

An integer value which specifies the article ID. This is the number that should be used to access
the article on the server. This parameter is required and must be passed by reference.

Subject

An optional string which specifies the subject of the article. This parameter must be passed by
reference, or it may be omitted if the program does not require this information.

Author

An optional string which specifies the author of the article. This is typically the name and email
address of the user who posted the article. This parameter must be passed by reference, or it
may be omitted if the program does not require this information.

Posted

An optional string which specifies the date that the article was posted. This parameter must be
passed by reference, or it may be omitted if the program does not require this information.

MessageId

An optional string which specifies the message ID for the article. Although it is more common to
reference an article by number, it is possible to reference an article by its message ID. To select
a message by its message ID string, set the MessageID property. This parameter must be
passed by reference, or it may be omitted if the program does not require this information.

References

An optional string which specifies references to the article. This can be used by an application to
create a list of cross references to the article so that related threads can be provided to the user.
This parameter must be passed by reference, or it may be omitted if the program does not
require this information.

ByteCount

An optional integer value which specifies the size of the message in bytes. This parameter must
be passed by reference, or it may be omitted if the program does not require this information.

LineCount

An optional integer value which specifies the number of lines of text in the message. This
parameter must be passed by reference, or it may be omitted if the program does not require
this information.

Return Value
A value of true is returned if the operation was successful, otherwise a return value of false
indicates that there are no more articles available in the currently selected newsgroup.

Remarks
The GetNextArticle method returns information about the next available article in the currently

 



selected newsgroup. This method is used in conjunction with the GetFirstArticle method to
enumerate all of the articles in the newsgroup. Typically this is used to provide the user with a list
of articles to access.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a
specific article. For example, the GetArticle method cannot be called while inside a loop calling
GetNextArticle. The client should store those articles which it wants to retrieve in an array, and
then once all of the articles have been listed, it can begin calling GetArticle for each article
number to retrieve the article text.

A program should use either the ListArticles method or the GetFirstArticle and GetNextArticle
methods, but never in combination with one another.

Example
Dim nArticleId As Long
Dim strSubject As String
Dim strAuthor As String
Dim datePosted As Date
Dim strMessageId As String
Dim strReferences As String
Dim nByteCount As Long
Dim nLineCount As Long
Dim bResult As Boolean;

' List each article in the current newsgroup, adding the subject to
' a ListBox control
bResult = NntpClient1.GetFirstArticle(nArticleId, strSubject, strAuthor, _
    datePosted, strMessageId, strReferences, _
    nByteCount, nLineCount);

Do While bResult
    List1.AddItem strSubject
    List1.ItemData(List1.NewIndex) = nArticleId

    bResult = NntpClient1.GetNextArticle(nArticleId, strSubject, strAuthor, _
        datePosted, strMessageId, strReferences, _
        nByteCount, nLineCount);
End Do

See Also
Article Property, MessageID Property, GetFirstArticle Method, ListArticles Method,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetNextGroup Method  

 

Return information about the next available newsgroup.

Syntax
object.GetNextGroup( GroupName, [FirstArticle], [LastArticle], [Access] )

Parameters
GroupName

An optional string which specifies the name of the newsgroup. This parameter is required and
must be passed by reference.

FirstArticle

An optional integer value which specifies the number for the first available article in the
newsgroup. This value corresponds to the FirstArticle property of a selected newsgroup. This
parameter must be passed by reference, or it may be omitted if the program does not require
this information.

LastArticle

An optional integer value which specifies the number for the last available article in the
newsgroup. This value corresponds to the LastArticle property of a selected newsgroup. This
parameter must be passed by reference, or it may be omitted if the program does not require
this information.

Access

AAn optional integer value which specifies the access rights for the newsgroup. This parameter
must be passed by reference, or it may be omitted if the program does not require this
information. It may be one of the following values:

Value Constant Description

0 nntpGroupReadOnly The group is read-only and cannot be modified.
Attempts to post articles to the newsgroup will result in
an error.

1 nntpGroupReadWrite Articles can be posted to the newsgroup. Even though
a newsgroup is read-write, it may require that the client
authenticate before being given permission to post
articles to the server.

2 nntpGroupModerated The newsgroup is moderated and articles can only be
posted by the group moderator. To request that an
article be posted to the newsgroup, you must email the
message to the moderator.

Return Value
A value of true is returned if the operation was successful, otherwise a return value of false
indicates that there are no more newsgroups available on the server. Note that if no newsgroups
are returned by the server, it may indicate that it requires the client to authenticate itself prior to
requesting a list of groups or articles.

Remarks
The GetNextGroup method returns information about the next available newsgroup on the

 



server. This method is used in conjunction with the GetFirstGroup method to enumerate all of the
available newsgroups. Typically this is used to provide the user with a list of newsgroups to select.
If the LastUpdate property is set, then only newsgroups that have been created since that date
will be returned.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

A program should use either the ListGroups method or the GetFirstGroup and GetNextGroup
methods, but never in combination with one another.

Example
Dim strGroupName As String
Dim bResult As Boolean;

' List each newsgroup available on the server, adding the group name
' to a ListBox control
bResult = NntpClient1.GetFirstGroup(strGroupName)

Do While bResult
    List1.AddItem strGroupName
    bResult = NntpClient1.GetNextGroup(strGroupName)
End Do

See Also
GroupName Property, GroupTitle Property, LastUpdate Property, GetFirstGroup Method,
ListGroups Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set nntpClient = CreateObject("SocketTools.NntpClient.11")

nError = nntpClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ListArticles Method  

 

Return a list of articles in the current newsgroup.

Syntax
object.ListArticles( [FirstArticle], [LastArticle] )

Parameters
FirstArticle

An optional integer argument which specifies the first article to list. If this argument is omitted,
the list will start with the first available article in the newsgroup.

LastArticle

An optional integer argument which specifies the last article to list. If this argument is omitted,
the list will end with the last available article in the newsgroup.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ListArticles method requests that the server return a list of news articles in the specified
range for the current newsgroup. The OnNewsArticle event will be fired for each article returned
by the server. When the last news article has been listed, the OnLastArticle event will be fired.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a
specific article. For example, the GetArticle method cannot be called while inside the
OnNewsArticle event. The client should store those articles which it wants to retrieve in an array,
and then once all of the articles have been listed, it can begin calling GetArticle for each article
number to retrieve the article text.

A program should use either the ListArticles method or the GetFirstArticle and GetNextArticle
methods, but never in combination with one another.

See Also
FirstArticle Property, LastArticle Property, GetFirstArticle Method, GetNextArticle Method,
SelectGroup Method, OnLastArticle Event, OnNewsArticle Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ListGroups Method  

 

Return a list of newsgroups available on the server.

Syntax
object.ListGroups( [LastUpdate] )

Parameters
LastUpdate

An optional string argument which specifies the date and time that the list of newsgroups were
last retrieved from the server. If this argument is omitted, then the value of the LastUpdate
property will be used. If the value is an empty string, all available newsgroups will be listed by
the server.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ListGroups method requests that the server return a list of available news groups. The
OnNewsGroup event will be fired for each group returned by the server. When the last news
group has been listed by the control, the OnLastGroup event will fire.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

A program should use either the ListGroups method or the GetFirstGroup and GetNextGroup
methods, but never in combination with one another.

See Also
GroupName Property, LastUpdate Property, GetFirstGroup Property, GetNextGroup Property,
OnLastGroup Event, OnNewsGroup Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OpenArticle Method  

 

Opens the specified article in the currently selected newsgroup.

Syntax
object.OpenArticle( Article, [Options] )

Parameters
Article

Number of the article to retrieve from the server. This value must be greater than zero. The first
available article in the newsgroup can be determined by checking the value of the FirstArticle
property. The last available article in the newsgroup is returned by the LastArticle property.

Options

An optional integer value which specifies one or more options. This argument is reserved for
future use and should be omitted.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The OpenArticle method opens the specified article in the currently selected newsgroup. The
article data can be read using the Read method, and once all of the data has been returned, the
CloseArticle method should be used to close the article on the server.

See Also
FirstArticle Property, LastArticle Property, CloseArticle Method, CreateArticle Method, Read
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PostArticle Method  

 

Post a new article to the current newsgroup.

Syntax
object.PostArticle( Message, [Options] )

Parameters
Message

A string or byte array which will contain the article to be posted to the server.

Options

An optional integer value which specifies one or more options. This argument is reserved for
future use and should be omitted.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The PostArticle method is used to submit the contents of the specified buffer to the server as a
new article in the current newsgroup. This method will cause the current thread to block until the
article transfer completes, a timeout occurs or the transfer is canceled. During the transfer, the
OnProgress event will fire periodically, enabling the application to update any user interface
objects such as a progress bar.

Not all newsgroups permit new articles to be posted, and some newsgroups may require that you
email the article to a moderator for approval instead of posting directly to the group. It may be
required that the client authenticate itself using the Authenticate method prior to posting the
article.

A news article is similar to an email message in that it contains one or more header fields, followed
by an empty line, followed by the body of the article. Each line of text should be terminated by a
carriage return/linefeed sequence of characters. The Mail Message control can be used to
compose a message if needed. Note that the article header must contain a header field named
"Newsgroups" with a value that specifies the newsgroup or newsgroups the article is being posted
to. If this header field is missing, the news server will reject the article.

See Also
Authenticate Method, GetArticle Method, GetHeaders Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Read Method  

 

Return data read from the server.

Syntax
object.Read( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. If the data returned by the server contains UTF-8 encoded text, it will
automatically be converted to standard UTF-16 Unicode text. If you wish to read the data
without conversion, provide a Byte array as the buffer. This parameter must be passed by
reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the server is returned by this method. If an error occurs,
NNTP_ERROR is returned.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will wait until data is returned by the server
or the connection is closed.

See Also
IsConnected Property, IsReadable Property, Write Method, OnRead Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SelectGroup Method  

 

Selects the specified newsgroup as the current newsgroup.

Syntax
object.SelectGroup( GroupName )

Parameters
GroupName

A string which specifies the name of the newsgroup to select.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The SelectGroup method selects a newsgroup and updates the control with information about
the group. The list of available newsgroups can be enumerated using the ListGroups method.

See Also
FirstArticle Property, GroupName Property, LastArticle Property, ListGroups Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StoreArticle Method  

 

Retrieve an article from the current newsgroup and store it in a local file.

Syntax
object.StoreArticle( Article, FileName )

Parameters
Article

Number of the article to retrieve from the server. This value must be greater than zero. The first
available article in the newsgroup can be determined by checking the value of the FirstArticle
property. The last available article in the newsgroup is returned by the LastArticle property.

FileName

Pointer to a string which specifies the file that the article will be stored in. If an empty string is
passed as an argument, the article is copied to the system clipboard.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The StoreArticle method retrieves an article from the server and stores it in a file on the local
system. The contents of the article is stored as a text file, using the specified file name. This
method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
GetArticle Method, OpenArticle Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the server.

Syntax
object.Write( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use because the server expects text data that consists of printable characters. If the
string contains Unicode characters, it will be automatically converted to use standard UTF-8
encoding prior to being sent. If you wish to send the data without conversion, use a Byte array
as the buffer instead of a String variable.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the server, or NNTP_ERROR if an error
was encountered.

Remarks
The Write method sends the data in buffer to the server. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is blocking, the application will wait until the data can be sent. If the control
is non-blocking and the write fails because it could not send all of the data to the server, the
OnWrite event will be fired when the server can accept data again.

See Also
IsConnected Property, IsWritable Property, Timeout Property, Read Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Network News Transfer Protocol Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnCommand This event is generated when the server processes a command issued by the client

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnLastArticle This event is generated after the last news article has been returned by the server

OnLastGroup This event is generated after the last newsgroup has been returned by the server

OnNewsArticle This event is generated when the server returns information about an article

OnNewsGroup This event is generated when the server returns information about a newsgroup

OnProgress This event is generated during data transfer

OnRead This event is generated when data is available to be read

OnWrite This event is generated when data can be written to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCommand Event  

 

The OnCommand event is generated when the client sends a command to the server and
receives a reply indicating the results of that command.

Syntax
Sub object_OnCommand( [Index As Integer], ByVal ResultCode As Variant, ByVal ResultString
As Variant )

Remarks
The OnCommand event is generated when the client receives a reply from the server after some
action has been taken. The ResultCode argument contains the numeric result code returned by
the server. The result codes returned from the server fall into one of the following categories:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being
initiated, and the client should expect another reply from the server before
proceeding.

200-
299

Positive completion result. This indicates that the server has successfully
completed the requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot
complete until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action
did not take place, but the error condition is temporary and may be attempted
again.

500-
599

Permanent negative completion result. This indicates that the requested action
did not take place.

The ResultString argument contains the descriptive string returned by the server which describes
the result. The string contents may vary depending on the type of server.

See Also
ResultCode Property, ResultString Property, Command Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a server as a result of a
Connect method call. This event is only triggered when the Blocking property is set to False.

See Also
Blocking Property, Connect Method, OnDisconnect Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server. This
event is only triggered when the Blocking property is set to False.

When the OnDisconnect event fires, it is possible that there may still be buffered data available to
read from the server. Before disconnecting from the server, the application should attempt to read
any remaining data until the Read method returns a value of zero, or returns an error indicating
that the operation would block.

See Also
Blocking Property, IsConnected Property, IsReadable Property, Connect Method, Disconnect
Method, Read Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the component correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnLastArticle Event  

 

The OnLastArticle event is generated after the last news article has been returned by the server.

Syntax
Sub object_OnLastArticle( [Index As Integer] )

Remarks
The OnLastArticle event is fired after the server has returned all of the articles in the current
newsgroup as a result of the application calling the ListArticles method.

See Also
ListArticles Method, OnNewsArticle Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnLastGroup Event  

 

The OnLastGroup event is generated after the last newsgroup has been returned by the server.

Syntax
Sub object_OnLastGroup( [Index As Integer] )

Remarks
The OnLastGroup event is fired after the server has returned all of the available newsgroups as a
result of the application calling the ListGroups method.

See Also
ListGroups Method, OnNewsGroup Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnNewsArticle Event  

 

The OnNewsArticle event is generated when the server returns information about an article.

Syntax
Sub object_OnNewsArticle( [Index As Integer,] ByVal Article As Variant, ByVal Subject As
Variant, ByVal Author As Variant, ByVal Posted As Variant, ByVal MessageId As Variant,
ByVal References As Variant, ByVal ByteCount As Variant, ByVal LineCount As Variant )

Remarks
The OnNewsArticle event is generated when the server returns information about an article in
the current newsgroup. Calling the ListArticles method causes this event to be generated for
each article in the newsgroup. The following arguments are passed to the event handler:

Article

An integer value which specifies the article ID. This is the number that should be used to access
the article on the server.

Subject

A string value which specifies the subject of the article.

Author

A string value which specifies the author of the article. This is typically the name and email
address of the user who posted the article.

Posted

A string value which specifies the date that the article was posted.

MessageId

A string value which specifies the message ID for the article. Although it is more common to
reference an article by number, it is possible to reference an article by its message ID. To select
a message by its message ID string, set the MessageID property.

References

A string which specifies references to the article. This can be used by an application to create a
list of cross references to the article so that related threads can be provided to the user.

ByteCount

An integer value which specifies the size of the message in bytes.

LineCount

An integer value which specifies the number of lines of text in the message.

See Also
Article Property, MessageID Property, ListArticles Method, OnLastArticle Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnNewsGroup Event  

 

The OnNewsGroup event is generated when the server returns information about a newsgroup.

Syntax
Sub object_OnNewsGroup( [Index As Integer,] ByVal GroupName As Variant, ByVal
FirstArticle As Variant, ByVal LastArticle As Variant, ByVal Access As Variant )

Remarks
The OnNewsGroup event is generated when the server returns information about a newsgroup.
Calling the ListGroups method causes this event to be generated for each newsgroup on the
server. The following arguments are passed to the event handler:

GroupName

An string value which specifies the name of the newsgroup.

FirstArticle

An integer value which specifies the number for the first available article in the newsgroup. This
value corresponds to the FirstArticle property of a selected newsgroup.

LastArticle

An integer value which specifies the number for the last available article in the newsgroup. This
value corresponds to the LastArticle property of a selected newsgroup.

Access

An integer value which specifies the access rights for the newsgroup. It may be one of the
following values:

Value Constant Description

0 nntpGroupReadOnly The group is read-only and cannot be modified.
Attempts to post articles to the newsgroup will result in
an error.

1 nntpGroupReadWrite Articles can be posted to the newsgroup. Even though
a newsgroup is read-write, it may require that the client
authenticate before being given permission to post
articles to the server.

2 nntpGroupModerated The newsgroup is moderated and articles can only be
posted by the group moderator. To request that an
article be posted to the newsgroup, you must email the
message to the moderator.

See Also
GroupName Property, GroupTitle Property, ListGroups Method, OnLastGroup Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnProgress Event  

 

The OnProgress event is generated during data transfer.

Syntax
Sub object_OnProgress ( [Index As Integer], ByVal Article As Variant, ByVal ArticleSize As
Variant, ByVal ArticleCopied As Variant, ByVal Percent As Variant )

Remarks
The OnProgress event is generated during the transfer of data between the client and server,
indicating the amount of data exchanged. For transfers of large amounts of data, this event can be
used to update a progress bar or other user-interface control to provide the user with some visual
feedback. The arguments to this event are:

Article

An integer value which specifies the number of the article being retrieved. If an article is being
posted, this argument will have a value of zero.

ArticleSize

The size of the article being transferred in bytes.

ArticleCopied

The number of bytes that have been transferred between the client and server.

Percent

The percentage of data that's been transferred, expressed as an integer value between 0 and
100, inclusive. If the size of the file on the server cannot be determined, this value will always be
100.

Note that this event is only generated when a news article is transferred using the GetArticle or
PostArticle methods. If the client is reading or writing the file data directly to the server using the
Read or Write methods then the application is responsible for calculating the completion
percentage and updating any user interface controls.

See Also
GetArticle Method, PostArticle Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ([Index As Integer] )

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only triggered when the Blocking
property is set to False.

See Also
IsReadable Property, Read Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property. This event is only triggered when the Blocking property is
set to True.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ( [Index As Integer] )

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
triggered when the Blocking property is set to False.

See Also
IsWritable Property, Read Method, Write Method, OnConnect Event, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Post Office Protocol Control

List and retrieve email messages from a mail server.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name PopClientCtl.PopClient

File Name CSPOPX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.PopClient.11

ClassID 74FE8C6C-4C7F-40DC-9BE7-23F049EF3948

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 1939

Overview
The Post Office Protocol (POP3) provides access to a user's new email messages on a mail server.
Methods are provided for listing available messages and then retrieving those messages, storing
them either in files or in memory. Once a user's messages have been downloaded to the local
system, they are typically removed from the server. This is the most popular email protocol used
by Internet Service Providers (ISPs) and the control provides a complete interface for managing a
user's mailbox. This control is typically used in conjunction with the Mail Message control, which is
used to process the messages that are retrieved from the server.

This control supports secure connections using the standard SSL and TLS protocols. Both implicit
and explicit SSL connections can be established, enabling the control to work with a wide variety
of servers.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires



the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Post Office Protocol Control Properties  

 

Property Description

AuthType Gets and sets the method used to authenticate the user

AutoResolve Determines if host names and IP addresses are automatically resolved

BearerToken Gets and sets the OAuth 2.0 bearer token used for authentication

Blocking Gets and sets the blocking state of the control

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the client certificate

CertificatePassword Gets and sets the password associated with the client certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the client certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was issued

CertificateUser Gets and sets the user that owns the client certificate

CipherStrength Return the length of the key used by the encryption algorithm

HashStrength Return the length of the message digest that was selected

HeaderField Gets and sets the current header field name

HeaderValue Return the value of the current header field

HostAddress Gets and sets the IP address of the mail server

HostName Gets and sets the host name of the mail server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsReadable Return if data can be read from the server without blocking

IsWritable Return if data can be sent to the server without blocking

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

LastMessage Return the number of the last message available on the server

MailboxSize Return the size of the current mailbox

Message Gets and sets the current message number

MessageCount Return the number of messages available in the current mailbox

MessageFrom Return the address of the user who sent the message

MessageUID Return the unique ID for the current message on the mail server

MessageSize Return the size of the current message in bytes

Options Gets and sets the options that are used in establishing a connection

 



Password Gets and sets the password for the current user

RemotePort Gets and sets the port number for a remote connection

ResultCode Return the result code of the previous action

ResultString Return a string describing the results of the previous action

Secure Set or return if a connection to the server is secure

SecureCipher Return the encryption algorithm used to establish the secure connection with the server

SecureHash Return the message digest selected when establishing the secure connection with the server

SecureKeyExchange Return the key exchange algorithm used to establish the secure connection with the server

SecureProtocol Gets and sets the security protocol used to establish the secure connection with the server

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

UserName Gets and sets the current user name

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AuthType Property  

 

Gets and sets the method used to authenticate the user.

Syntax
object.AuthType [= type ]

Remarks
The AuthType property specifies the type of authentication that should be used when the client
connects to the mail server. The following authentication methods are supported:

Value Constant Description

0 popAuthPass The username and password is sent to the server using the
USER and PASS commands. This authentication method is
supported by most servers and is the default authentication
type. The credentials are not encrypted and this method
should only be used over secure connections.

1 popAuthApop The APOP authentication method which uses an MD5
digest of the password. This method has been deprecated
is not supported by all servers. It should only be used if
required by legacy mail servers which do not support the
SASL authentication methods.

3 popAuthLogin This authentication type will use the AUTH LOGIN
command to authenticate the client session. This encodes
the username and password in a specific format, but the
credentials are not encrypted. It should be used over a
secure connection. The server must support the Simple
Authentication and Security Layer (SASL) mechanism as
defined in RFC 4422.

4 popAuthPlain This authentication type will use the AUTH PLAIN
command to authenticate the client session. This encodes
the username and password in a specific format, but the
credentials are not encrypted. It should be used over a
secure connection. The server must support the PLAIN
Simple Authentication and Security Layer (SASL)
mechanism as defined in RFC 4616.

6 popAuthXOAuth2 This authentication type will use the AUTH XOAUTH2
command to authenticate the client session. This
authentication method does not require the user password,
instead the BearerToken property must specify the bearer
token issued by the service provider.

7 popAuthBearer This authentication type will use the AUTH OAUTHBEARER
command to authenticate the client session as defined in
RFC 7628. This authentication method does not require the
user password, instead the BearerToken property must
specify the bearer token issued by the service provider.

 



Data Type
Integer (Int32)

Remarks
The popAuthLogin and popAuthPlain authentication methods require the mail server support
the Simple Authentication and Security Layer (SASL) AUTH command as defined in RFC 5034.
Most modern mail servers do support one or both of these methods, and they are generally
preferred over the popAuthPass method when possible. However, for backwards compatibility
with legacy servers, the API will default to using popAuthPass for client authentication.

The popAuthXOAuth2 and popAuthBearer authentication methods are similar, but they are not
interchangeable. Both use an OAuth 2.0 bearer token to authenticate the client session, but they
differ in how the token is presented to the server. It is currently preferable to use the XOAUTH2
method because it is more widely available and some service providers do not yet support the
OAUTHBEARER method.

Changing the value of the BearerToken property will automatically set the current authentication
method to use OAuth 2.0.

See Also
BearerToken Property, Password Property, UserName Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 BearerToken Property  

 

Gets and sets the OAuth 2.0 bearer token for the current user.

Syntax
object.BearerToken [= token ]

Remarks
The BearerToken property specifies the OAuth 2.0 bearer token used to authenticate the user.
This property is used as the default value for the Connect method if the token is not provided as
an parameter.

Assigning a value to this property will change the current authentication method to use OAuth 2.0
if necessary.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an bearer token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the token using the appropriate scope for the service. Obtaining
the initial token will typically involve interactive confirmation on the part of the user, requiring they
grant permission to your application to access their mail account.

Your application should not store an OAuth 2.0 bearer token for later use. They have a relatively
short lifespan, typically about an hour, and are designed to be used with that session. You should
specify offline access as part of the OAuth 2.0 scope if necessary and store the refresh token
provided by the service. The refresh token has a much longer validity period and can be used to
obtain a new bearer token when needed.

If the current authentication method does not use OAuth 2.0, this property will return an empty
string and you should check the value of the Password property to obtain the current user's
password. Refer to the AuthType property for more information on the available authentication
methods.

Data Type
String

See Also
AuthType Property, Password Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnConnect, OnDisconnect,
OnRead and OnWrite are only fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, IsReadable Property, IsWritable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateExpires Property  

 

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssued Property  

 

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssuer Property  

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function
     End If



      nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the name of the company who issued the server
certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = PopClient1.CertificateIssuer
If Len(strIssuer) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strCompanyName = GetCertNameValue(strIssuer, "O")
     MsgBox "This certificate was issued by " & strCompanyName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the client certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the certificate that should be used to
establish the connection with the server. It is only required that you set this property value if the
server requires a client certificate for authentication. If this property is not set, a client certificate
will not be provided to the server. If a certificate name is specified, the certificate must have a
private key associated with it, otherwise the connection attempt will fail because the control will be
unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the client certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStatus Property  

 

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property returns an integer value which identifies the status of the server
certificate. This property may return one of the following values:

Constant Value Description

stCertificateNone 0 No certificate information is available. A secure
connection was not established with the server.

stCertificateValid 1 The certificate is valid.

stCertificateNoMatch 2 The certificate is valid, however the domain name
specified in the certificate does not match the domain
name of the site that the client has connected to. This is
typically the case if the HostAddress property is used
rather than the HostName property. It is
recommended that the client examine the
CertificateSubject property to determine the domain
name of the site that the certificate was issued for.

stCertificateExpired 3 The certificate has expired and is no longer valid. The
client can examine the CertificateExpires property to
determine when the certificate expired.

stCertificateRevoked 4 The certificate has been revoked and is no longer valid.
It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateUntrusted 5 The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the local
host. It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateInvalid 6 The certificate is invalid. This typically indicates that the
internal structure of the certificate is damaged. It is
recommended that the client application immediately
terminate the connection if this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
Integer (Int32)

Example

 



The following example establishes a secure connection to a server:

'
' Initialize the control properties
'

PopClient1.HostName = strHostName
PopClient1.Secure = True

nError = PopClient1.Connect()
If nError > 0 Then
     MsgBox "Unable to connect to server " & strHostName, vbExclamation
     Exit Sub
End If

If PopClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          PopClient1.Disconnect
          Exit Sub
     End If
End If

PopClient1.Disconnect

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the client certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the client certificate that should
be used when establishing a secure connection with the server. The certificate may either be
stored in the registry or in a file. If the certificate is stored in the registry, then this property should
be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateSubject Property  

Returns information about the organization that the server certificate was issued to.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the subject's company or country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function



 

     End If

     nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the domain name that the server certificate was issued
for:

Dim strSubject As String
Dim strDomainName As String

strSubject = PopClient1.CertificateSubject
If Len(strSubject) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strDomainName = GetCertNameValue(strSubject, "CN")
     MsgBox "This certificate was issued for " & strDomainName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus

 



Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the client certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the client certificate that will be used to establish
a secure connection with the server. If this property is not set, the certificate store for the current
user will be used when searching for the certificate. If this property is used to specify another user,
the process must have the appropriate permission to access the registry location that contains the
client certificate. On Windows Vista and later versions of the operating system, this requires that
the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HeaderField Property  

 

Gets and sets the current header field name.

Syntax
object.HeaderField [= header ]

Remarks
The HeaderField property returns the name of the current header field. Setting this property
causes the control to determine if that header field exists, and if it does, to update the
HeaderValue property with its value. This property can be used to obtain the value of any header
in the current message.

Note that the server must support the XTND XLST command in order to retrieve the header value.
If the command is not supported, the HeaderValue property will return an empty string.

Data Type
String

See Also
HeaderValue Property, Message Property, MessageUID Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HeaderValue Property  

 

Return the value of the current header field.

Syntax
object.HeaderValue

Remarks
The HeaderValue property returns the value of the header field specified by the HeaderField
property. This property can be used to obtain the value of any header in the current message.

Note that the server must support the XTND XLST command in order to retrieve the header value.
If the command is not supported, the HeaderValue property will return an empty string.

Data Type
String

See Also
HeaderField Property, Message Property, MessageUID Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of true if the control is connected with a
server, otherwise the property has a value of false.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsReadable Property  

 

Return if data can be read from the server without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the server without blocking. For
non-blocking connections, this property can be checked before the application attempts to read
the data, preventing an error.

Data Type
Boolean

See Also
IsConnected Property, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Return if data can be sent to the server without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written without blocking. For non-blocking
connections, this property can be checked before the application attempts to send data to the
server, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
send data without an error. The next operation may result in an stErrorOperationWouldBlock or
stErrorOperationInProgress error. The application must treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
IsReadable Property, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastMessage Property  

 

Return the number of the last message available on the server.

Syntax
object.LastMessage

Remarks
The LastMessage property returns the last message available on the server. Note that unlike the
MessageCount property, this value remains constant even when a message is deleted.

Data Type
Integer (Int32)

See Also
Message Property, MessageCount Property, MessageSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MailboxSize Property  

 

Return the size of the current mailbox.

Syntax
object.MailboxSize

Remarks
The MailboxSize property returns the combined size in bytes of all of the available messages in
the current mailbox. Note that as messages are deleted from the mailbox, this property value will
decrease.

Data Type
Integer (Int32)

See Also
Message Property, MessageCount Property, MessageSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Message Property  

 

Gets and sets the current message number.

Syntax
object.Message [= value ]

Remarks
The Message property sets or returns the message number for the currently selected mailbox.
Message numbers range from 1 through the number of messages available on the server, as
returned by the MessageCount property. Setting the Message property to an invalid message
number will generate an error.

Data Type
Integer (Int32)

See Also
MessageCount Property, MessageSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageCount Property  

 

Return the number of messages available in the current mailbox.

Syntax
object.MessageCount

Remarks
The MessageCount property returns the number of messages available to be retrieved from the
currently selected mailbox.

Data Type
Integer (Int32)

See Also
Message Property, MessageSize Property, MessageUID Property, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageFrom Property  

 

Return the address of the user who sent the message.

Syntax
object.MessageFrom

Remarks
The MessageFrom property returns the address of the user who sent the current message. This
property uses either the XSENDER or the XTND XLST command in order to determine who the
sender is. The XSENDER command returns an authenticated address, as used with the Netscape
SMTP authentication method. If this command is not supported, or the sender's address was not
authenticated, then the XTND XLST command is used to return the value of the "From" header
field in the message. If this command is not supported by the server, the method will attempt to
retrieve the entire message header and return the value for the specified header field. This enables
an application to use this property even if the server does not support command extensions.

Data Type
String

See Also
Message Property, MessageCount Property, MessageSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageSize Property  

 

Return the size of the current message in bytes.

Syntax
object.MessageSize

Remarks
The MessageSize property returns the size of the current message in bytes. The size includes the
header and body portion of the message.

Data Type
Integer (Int32)

See Also
Message Property, MessageCount Property, MessageUID Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MessageUID Property  

 

Return the unique ID for the current message on the mail server.

Syntax
object.MessageUID

Remarks
The MessageID property returns a string which uniquely identifies the message on the server. The
identifier is assigned by the mail server, and retains the same value across multiple client sessions.
This value is typically used when the client wants to leave a message on the mail server, but does
not wish to retrieve the message contents multiple times. For example, the client can store the
unique ID for each message that it retrieves, but does not delete from the server. The next time
that it connects to the mail server, it compares the unique ID of a message against the stored
values. If there is a match, the client knows that the message has already been retrieved, and does
not need to do so again. 

This property requires that the server support the optional UIDL command. If the command is not
supported, this property will always return an empty string. Note that the unique ID for the
message is not the same as the Message-ID header field in the message itself.

Data Type
String

See Also
Message Property, MessageCount Property, MessageSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Options Property  

 

Gets and sets the options that are used in establishing a connection.

Syntax
object.Options [= value ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when connecting to the server. The property
value is created by using a bitwise operator with one or more of the following values:

Value Constant Description

0 popOptionNone No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used.

1 popOptionLineBreak Message data that is received from the server is
read as individual lines of text terminated by a
carriage return and linefeed control sequence.
This option can be useful for applications that
need to use the lower level network I/O
functions and must process the message text
on a line-by-line basis. This option is not
recommended for most applications because it
can have a negative impact on performance
when retrieving large messages from the server.

&H400 popOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 popOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

&H1000 popOptionSecureExplicit This option specifies that a secure connection
should be established with the server and
requires that the server support either the SSL
or TLS protocol. This option initiates the secure
session using the STLS command.

&H2000 popOptionSecureImplicit This option specifies the client should attempt
to establish a secure connection with the server.
It should only be used when the server expects

 



an implicit SSL connection or does not
implement RFC 2595 where the STLS command
is used to negotiate a secure connection with
the server.

&H8000 popOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option is
specified, the client will allow connections using
TLS 1.0 and cipher suites that use RC4, MD5
and SHA1.

&H40000 popOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this option
has been specified.

Data Type
Integer (Int32)

See Also
Secure Property, Connect Method



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password used to authenticate the user. This property is
used as the default value for the Connect method if no password is specified as an argument.

Refer to the AuthType property for more information on the available authentication methods. If
you are using the OAuth 2.0 authentication method, this property should not be set to the user's
password. Instead, you should set the BearerToken property to the bearer token issued by the
mail service provider. Note that these access tokens can be much larger than your typical
password and are only valid for a limited period of time.

You can use the Password property to specify an OAuth 2.0 bearer token. However, it is
recommended that you use the BearerToken property instead of assigning it to this property. It
will ensure compatibility with future versions of the control and make it clear in your code you are
using a bearer token and not a password. If the AuthType property specifies one of the OAuth
2.0 authentication methods, this property will return the bearer token.

Data Type
String

See Also
AuthType Property, BearerToken Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultCode Property  

 

Return the result code of the previous action.

Syntax
object.ResultCode

Remarks
The ResultCode read-only property returns the result of the last action performed by the client.
This property should be checked after the Command method is used to execute a command on
the server to determine if the operation was successful.

If the ResultCode property returns a value of true, that corresponds to an OK response from the
server which indicates that the command was successful. If the property returns a value of false,
that corresponds to an ERR response from the server which indicates that the command failed.
The ResultString property typically returns more detailed information as to why the command
failed.

Data Type
Boolean

See Also
ResultString Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultString Property  

 

Return a string describing the results of the previous action.

Syntax
object.ResultString

Remarks
The ResultString read-only property returns the result string from the last action taken by the
client. This string is generated by the server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition
that caused the error.

Data Type
String

See Also
ResultCode Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if a connection to the server is secure.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application must set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may request files or
submit queries to the server as with standard connections.

It is strongly recommended that any application that sets this property True use error handling to
trap an errors that may occur. If the control is unable to initialize the security libraries, or otherwise
cannot create a secure session for the client, an error will be generated when this property value is
set.

Data Type
Boolean

Example
The following example establishes a secure connection to a server:

PopClient1.HostName = strHostName
PopClient1.RemotePort = 110
PopClient1.UserName = strUserName
PopClient1.Password = strPassword
PopClient1.Secure = True

nError = PopClient1.Connect()
If nError > 0 Then
    MsgBox "Unable to connect to server " & strHostName, vbExclamation
    Exit Sub
End If

If PopClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          PopClient1.Disconnect
          Exit Sub
     End If
End If

See Also
CertificateStatus Property, Connect Method

 



 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 stCipherNone No cipher has been selected. This is not a secure connection
with the server.

1 stCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

2 stCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

4 stCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 stCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 stCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 stCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 stCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 stCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 stCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Value Constant Description

1 stHashMD5 The MD5 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

2 stHashSHA1 The SHA-1 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

4 stHashSHA256 The SHA-256 algorithm has been selected.

8 stHashSHA384 The SHA-384 algorithm has been selected.

16 stHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 stKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 stKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 stKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 stKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 stKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange algorithm
was selected. This is a variant of the Diffie-Hellman
algorithm which uses elliptic curve cryptography. This
key exchange algorithm is only supported on Windows
XP SP3 and later versions of the operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

 



established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

PopClient1.ThrowError = False
nError = PopClient1.Connect(strHostName)

If nError > 0 Then
    MsgBox PopClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

PopClient1.ThrowError = True
PopClient1.Connect strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 popTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 popTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 popTraceWarning Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 popTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= username ]

Remarks
The UserName property specifies the user that is logging in to the server, and is required for
authentication purposes. This property is used as the default value for the Connect method if no
password is specified as an argument.

Data Type
String

See Also
AuthType Property, BearerToken Property, Password Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Post Office Protocol Control Methods  

 

Method Description

Cancel Cancels the current blocking network operation

ChangePassword Change the mailbox password for the current user

CloseMessage Closes the current message

Command Send a custom command to the server

Connect Establish a connection with a server

DeleteMessage Marks a message for deletion from the mailbox

Disconnect Terminate the connection with a server

GetHeader Returns the value of a header field from the specified message

GetHeaders Retrieves the headers for the specified message from the server

GetMessage Retrieve a message from the server

Initialize Initialize the control and validate the runtime license key

OpenMessage Open a message on the server

Read Return data read from the server

Reset Reset the internal state of the control

SendMessage Submits the contents of a specified file to the mail server for delivery

StoreMessage Retrieve a message from the server and store it in a local file

Uninitialize Uninitialize the control and release any system resources that were allocated

Write Write data to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Disconnect Method, Reset Method, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ChangePassword Method  

 

Change the mailbox password for the current user.

Syntax
object.ChangePassword( OldPassword, NewPassword )

Parameters
OldPassword

A string which specifies the user's current mailbox password.

NewPassword

A string which specifies the user's new password. An error will be returned if the old password
and the new password are the same value.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ChangePassword method changes the password that will be used to authenticate the user.
This method requires that the UserName property be set, but it is not required that the user be
logged into the POP3 server. Once the password has been changed, the Password property will
be updated with the new password.

Note that in order to change the user's mailbox password, the server must be running the
'poppass' service on port 106, on the same server. Because passwords are transmitted as clear text
(unencrypted), this service is not considered secure and may not be available.

See Also
Password Property, UserName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CloseMessage Method  

 

Closes the current message.

Syntax
object.CloseMessage

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CloseMessage method closes the current message. If there is any remaining data left to be
read from the message, it will be read and discarded.

See Also
OpenMessage Method, Read Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Command Method  

 

Send a custom command to the server.

Syntax
object.Command( Command, [Parameters], [Options] )

Parameters
Command

A string which specifies the command to send. Valid commands vary based on the Internet
protocol and the type of server that the client is connected to. Consult the protocol standard
and/or the technical reference documentation for the server to determine what commands may
be issued by a client application.

Parameters

An optional string which specifies one or more parameters to be sent along with the command.
If more than one parameter is required, most Internet protocols require that they be separated
by a single space character. Consult the protocol standard and/or technical reference
documentation for the server to determine what parameters should be provided when issuing a
specific command. If no parameters are required for the command, this argument may be
omitted.

Options

A numeric value which specifies one or more options. Currently this argument is reserved and
should either be omitted, or a value of zero should always be used.

Return Value
A value of zero is returned if the command was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure. To determine the result code returned by the
server in response to the command, read the value of the ResultCode property.

Remarks
The Command method sends a command to the server and processes the result code sent back
in response to that command. This method can be used to send custom commands to a server to
take advantage of features or capabilities that may not be supported internally by the control.

See Also
ResultCode Property, ResultString Property, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

Establish a connection with a server.

Syntax
object.Connect( [RemoteHost], [RemotePort], [UserName], [Password], [Timeout], [Options] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero specifies that the default
port number should be used. For standard connections, the default port number is 110. For
secure connections, the default port number is 995. If the secure port number is specified, an
implicit SSL/TLS connection will be established by default.

UserName

A string which specifies the name of the user used to authenticate access to the server. If this
argument is not specified, it defaults to the value of the UserName property.

Password

A string which specifies the password used to authenticate the user. If you are using the OAuth
2.0 authentication method, this property should specify the bearer token provided by the mail
service and not the user password. Refer to the AuthType property for more information about
the supported authentication methods. If this argument is not specified, it defaults to the value
of the BearerToken or Password property, depending on the authentication method specified.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

A numeric value which specifies one or more options. If this argument is omitted or a value of
zero is specified, a default, standard connection will be established. This argument is
constructed by using a bitwise operator with any of the following values:

Value Constant Description

0 popOptionNone No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used.

1 popOptionLineBreak Message data that is received from the server is
read as individual lines of text terminated by a
carriage return and linefeed control sequence.
This option can be useful for applications that
need to use the lower level network I/O
functions and must process the message text
on a line-by-line basis. This option is not



 

recommended for most applications because it
can have a negative impact on performance
when retrieving large messages from the server.

&H400 popOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 popOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

&H1000 popOptionSecureExplicit This option specifies that a secure connection
should be established with the server and
requires that the server support either the SSL
or TLS protocol. This option initiates the secure
session using the STLS command.

&H2000 popOptionSecureImplicit This option specifies the client should attempt
to establish a secure connection with the server.
It should only be used when the server expects
an implicit SSL connection or does not
implement RFC 2595 where the STLS command
is used to negotiate a secure connection with
the server.

&H8000 popOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option is
specified, the client will allow connections using
TLS 1.0 and cipher suites that use RC4, MD5
and SHA1.

&H40000 popOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this option
has been specified.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is

 



returned which indicates the cause of the failure.

See Also
AuthType Property, HostAddress Property, HostName Property, Options Property, RemotePort
Property, Disconnect Method, OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteMessage Method  

 

Marks a message for deletion from the mailbox.

Syntax
object.DeleteMessage( MessageNumber )

Parameters
MessageNumber

Number of message to delete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The DeleteMessage method only flags the message for deletion. The message is not actually
removed from the mailbox until the client disconnects from the server, however it will no longer
be accessible by the client. To prevent deleted messages from actually being removed from the
mailbox, call the Reset method.

See Also
Reset Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
IsConnected Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetHeader Method  

 

Returns the value of a header field from the specified message.

Syntax
object.GetHeader( MessageNumber, HeaderField, HeaderValue )

Parameters
MessageNumber

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

HeaderField

A string which specifies the message header to retrieve. The colon should not be included in
this string.

HeaderValue

A string variable which will contain the value of the specified message header if the method is
successful.

Return Value
A value of true is returned if the header was present and could be retrieved, otherwise a value of
false is returned.

Remarks
The GetHeader method returns the value of a header field from the specified message. This
allows an application to be able to easily determine the value of a header such as the sender, or
the subject of the message. Any header field, including non-standard extensions, may be returned
by this method.

This method uses the XTND XLST command, which is an extension to the POP3 protocol. If this
command is not supported by the server, the method will attempt to retrieve the entire message
header and return the value for the specified header field. This enables an application to use this
method even if the server does not support command extensions.

See Also
HeaderField Property, HeaderValue Property, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetHeaders Method  

 

Retrieves the headers for the specified message from the server.

Syntax
object.GetHeaders( MessageNumber, Headers )

Parameters
MessageNumber

Number of the message to retrieve from the server. This value must be greater than zero. The
last available message number is returned by the LastMessage property.

Headers

A string or byte array which will contain the data transferred from the server when the method
returns.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The GetHeaders method is used to retrieve an message header block from the server and copy it
into a local buffer. This method will cause the current thread to block until the article transfer
completes, a timeout occurs or the transfer is canceled. During the transfer, the OnProgress event
will fire periodically, enabling the application to update any user interface objects such as a
progress bar.

See Also
GetMessage Method, OpenMessage Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetMessage Method  

 

Retrieve a message from the server.

Syntax
object.GetMessage( MessageNumber, Message, [Options] )

Parameters
MessageNumber

Number of message to retrieve from the server. This value must be greater than zero. The first
message in the mailbox is message number one and the last message can be determined by
checking the value of the LastMessage property.

Message

A string or byte array which will contain the data transferred from the server when the method
returns.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local
buffer. This method will cause the current thread to block until the message transfer completes, a
timeout occurs or the transfer is canceled. During the transfer, the OnProgress event will fire
periodically, enabling the application to update any user interface objects such as a progress bar.

See Also
DeleteMessage Method, GetHeaders Method, OpenMessage Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set popClient = CreateObject("SocketTools.PopClient.11")

nError = popClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OpenMessage Method  

 

Open a message on the server.

Syntax
object.OpenMessage( [MessageNumber], [Options] )

Parameters
MessageNumber

Number of message to retrieve. This value must be greater than zero. The first message in the
mailbox is message number one. If this argument is omitted, the current message selected by
the Message property will be opened.

Options

An optional integer value which specifies one or more options. This argument is reserved for
future use and should be omitted.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The OpenMessage method opens a message for reading from the server. The client can read the
contents of the message using the Read method, and once all of the data has been read, the
message should be closed by calling the CloseMessage method.

See Also
Message Property, CloseMessage Method, GetMessage Method, Read Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Read Method  

 

Return data read from the server.

Syntax
object.Read( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. If the data returned by the server contains UTF-8 encoded text, it will
automatically be converted to standard UTF-16 Unicode text. If you wish to read the data
without conversion, provide a Byte array as the buffer. This parameter must be passed by
reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the server is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will wait until data is returned by the server
or the connection is closed.

See Also
IsConnected Property, IsReadable Property, Write Method, OnRead Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released. Calling this method will also prevent any messages which have been
marked for deletion from being removed from the mailbox.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendMessage Method  

 

Submits the contents of a specified file to the mail server for delivery.

Syntax
object.SendMessage( Message, [Options] )

Parameters
Message

A string or byte array which contains the message to be delivered. The To:, Cc: and Bcc: header
fields will be scanned for recipient addresses, and the Bcc: line will be deleted before the
message is delivered.

Options

An optional integer value which specifies one or more options. This argument is reserved for
future use and should be omitted.

Return Value
A value of zero is returned if the message was submitted successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The SendMessage method submits the messages to the mail server for delivery. The message
format must comply with the RFC 822 standard, with the header and body separated by a blank
line, and each line terminated with carriage-return/linefeed characters.

This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

This method requires that the server support the XTND XMIT command. Although using this
method to send mail has the advantage that the sender is authenticated (because the user must
first login to the server), it is not widely supported. For general purpose mail delivery service, it is
recommended that an application use the Simple Mail Transfer Protocol (SMTP).

See Also
StoreMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StoreMessage Method  

 

Retrieve a message from the server and store it in a local file.

Syntax
object.StoreMessage( MessageNumber, FileName )

Parameters
MessageNumber

An integer that specifies the message to retrieve. This value must be greater than zero. The first
message in the mailbox is message number one.

FileName

A string which specifies the file that the message will be stored in. If an empty string is passed as
an argument, the message is copied to the system clipboard.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The StoreMessage method retrieves a message from the server and stores it in a file on the local
system. The contents of the message is stored as a text file, using the specified file name. This
method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

See Also
GetMessage Method, OpenMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the server.

Syntax
object.Write( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use because the server expects text data that consists of printable characters. If the
string contains Unicode characters, it will be automatically converted to use standard UTF-8
encoding prior to being sent. If you wish to send the data without conversion, use a Byte array
as the buffer instead of a String variable.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the server, or -1 if an error was
encountered.

Remarks
The Write method sends the data in buffer to the server. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is blocking, the application will wait until the data can be sent. If the control
is non-blocking and the write fails because it could not send all of the data to the server, the
OnWrite event will be fired when the server can accept data again.

See Also
IsConnected Property, IsWritable Property, Timeout Property, Read Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Post Office Protocol Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnCommand This event is generated when the server processes a command issued by the client

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnProgress This event is generated during data transfer

OnRead This event is generated when data is available to be read

OnTimeout This event is generated when a blocking operation times out

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCommand Event  

 

The OnCommand event is generated when the client sends a command to the server and
receives a reply indicating the results of that command.

Syntax
Sub object_OnCommand( [Index As Integer], ByVal ResultCode As Variant, ByVal ResultString
As Variant )

Remarks
The OnCommand event is generated when the client receives a reply from the server after some
action has been taken. If the ResultCode argument has a value of true, that corresponds to an OK
response from the server which indicates that the command was successful. If the argument has a
value of false, that corresponds to an ERR response from the server which indicates that the
command failed.

The ResultString argument contains the descriptive string returned by the server which describes
the result. The string contents may vary depending on the type of server.

See Also
ResultCode Property, ResultString Property, Command Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a server as a result of a
Connect method call. This event is only triggered when the Blocking property is set to False.

See Also
Blocking Property, Connect Method, OnDisconnect Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server. This
event is only triggered when the Blocking property is set to False.

When the OnDisconnect event fires, it is possible that there may still be buffered data available to
read from the server. Before disconnecting from the server, the application should attempt to read
any remaining data until the Read method returns a value of zero, or returns an error indicating
that the operation would block.

See Also
Blocking Property, IsConnected Property, IsReadable Property, Connect Method, Disconnect
Method, Read Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnProgress Event  

 

The OnProgress event is generated during data transfer.

Syntax
Sub object_OnProgress ( [Index As Integer], ByVal MessageNumber As Variant, ByVal
MessageSize As Variant, ByVal MessageCopied As Variant, ByVal Percent As Variant )

Remarks
The OnProgress event is generated during the transfer of data between the client and server,
indicating the amount of data exchanged. For transfers of large amounts of data, this event can be
used to update a progress bar or other user-interface control to provide the user with some visual
feedback. The arguments to this event are:

MessageNumber

The number of the message that is being retrieved.

MessageSize

The size of the file being transferred in bytes. This value may be zero if the control cannot
obtain the size of the file from the server.

MessageCopied

The number of bytes that have been transferred between the client and server.

Percent

The percentage of data that's been transferred, expressed as an integer value between 0 and
100, inclusive. If the size of the file on the server cannot be determined, this value will always be
100.

Note that this event is only generated when message data is retrieved using the GetHeaders or
GetMessage method. If the client is reading the message data directly from the server using the
Read method, the application is responsible for calculating the completion percentage and
updating any user interface controls.

See Also
GetHeaders Method, GetMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ([Index As Integer] )

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only triggered when the Blocking
property is set to False.

See Also
IsReadable Property, Read Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property. This event is only triggered when the Blocking property is
set to True.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ( [Index As Integer] )

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
triggered when the Blocking property is set to False.

See Also
IsWritable Property, Read Method, Write Method, OnConnect Event, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Internet Dialer Control

Create and monitor dial-up networking connections to an Internet service provider.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name RasDialerCtl.Dialer

File Name CSRASX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.Dialer.11

ClassID CF645AD7-3F40-4C1A-8E8A-ABCA925A4BF7

Threading Model Apartment

Help File CSW11HLP.CHM

Dependencies None

Standards RFC 1055, RFC 1661

Overview
This control provides a way for client applications to connect to a server using Microsoft Windows
Remote Access Services (RAS). To use this control, the dial-up networking software must be
installed on the local system. For access to the Internet, the TCP/IP protocol must be installed and
configured. The control may configured to use either the SLIP or PPP protocols, depending on the
requirements of the service provider. Refer to your system documentation for information about
installing and configuring dial-up networking on your system.

For those applications which may be used in a mobile environment, or otherwise require remote
network access, the Dialer control provides a convenient interface to this service. Connections can
be established and discontinued under the direct control of the program, rather than requiring
that the user execute another program before starting your application.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires



the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Dialer Control Properties  

 

Property Description

AreaCode Gets and sets the area code for the current phonebook entry

AutoConnect Automatically detect connections established by another process

AutoDial Determine if autodialing has been enabled on the local system

AutoDisconnect Automatically disconnect from the server when the control is unloaded

Available Determine if the Remote Access Service is available

Blocking Gets and sets the blocking state of the control

BytesIn Returns the number of bytes that have been received by the dial-up networking device

BytesOut Returns the number of bytes that have been transmitted by the dial-up networking device

Callback Specifies that the server should call the system back

CallbackNumber Specifies the telephone number for the server to call back on

Connection Return the handle for the specified dial-up networking session

Connections Return the number of active dial-up networking sessions

ConnectSpeed Returns the line speed for the current dial-up networking connection

CountryCode Gets and sets the country code for the current phonebook entry

CountryName Gets and sets the country name for the current phonebook entry

DefaultGateway Set the default route for IP packets through the dial-up adapter

DeviceCount Returns the number of dial-up networking devices available

DeviceEntry Return the name of the specified device entry

DeviceName Gets and sets the device name for the current dial-up networking connection

DeviceType Gets and sets the device type for the current dial-up networking connection

DynamicAddress Configure the current phonebook entry to use a dynamic IP address

DynamicNameServers Configure the current phonebook entry to use dynamic nameservers

FramingProtocol Gets and sets the framing protocol for the current phonebook entry

InternetAddress Return the IP address assigned to the current dial-up networking session

Interval Gets and sets the interval at which the connection is monitored

IpHeaderCompression Configure the current phonebook entry to enable IP header compression

IsConnected Determine if the control is connected to a service provider

IsInitialized Determine if the control has been initialized

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error that occurred

LcpExtensions Configure the current phonebook entry to use PPP LCP extensions

LocalNumber Gets and sets the local phone number specified in the phonebook entry

ModemLights Enable or disable the dial-up networking system tray icon

ModemSpeaker Enable or disable the modem speaker

NameServer Gets and sets the IP addresses of the nameservers assigned to the current phonebook entry

 



NetworkLogon Configure the current phonebook entry to logon to the network

NetworkProtocol Gets and sets the network protocol for the current phonebook entry

Password The password required to establish a connection with the server

PhoneBook Sets the file name of the Remote Access phone book to use

PhoneBookEntries Return the number of entries in the current phone book

PhoneBookEntry Return the name for the specified phone book entry

PhoneEntry Specify the phone book entry to use to establish a connection with a server

PhoneNumber Specifies the telephone number of the server

RequireEncryption Configure the current phonebook entry to require secure authentication

ScriptFile Gets and sets the name of the script file for the current phonebook entry

ServerAddress Return the IP address of the dial-up networking server

SoftwareCompression Configure the current phonebook entry to negotiate software compression

Status Return the current status of the control

Terminal Determine if a terminal window is displayed during the connection process

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the number of seconds until a connection attempt fails

UserDomain Specifies the NT domain on which user authentication is to occur

UserName Set the user name that is required to establish a connection with the server

UserPhoneBook Returns the name of the default user phonebook

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AreaCode Property  

 

Gets and sets the area code for the current phonebook entry.

Syntax
[form].object.AreaCode [= areacode ]

Remarks
The AreaCode property is used to set or return the current phonebook entry's area code. If no
area code has been specified, then this property will return an empty string. The value of this
property is ignored unless the CountryCode property is also set to a valid country code.

Data Type
String

See Also
CountryCode Property, CountryName Property, LoadEntry Method, SaveEntry Method

 



 AutoConnect Property  

 

Automatically detect connections established by another process.

Syntax
object.AutoConnect = { True | False }

Remarks
The AutoConnect property determines if the control automatically detects if a connection has
been established by another process. When enabled, the control will periodically check for any
connections that have been established. The Interval property controls the frequency in which the
control performs this check.

If the control detects that a connection has been made, it will immediately fire the OnConnect
event, followed by the OnStatus event, to indicate that a connection has been established. The
control then begins to monitor that connection as usual, until that connection is dropped or the
control is unloaded.

To periodically check to see if a connection has been established by another process without using
the AutoConnect property, read the value of the Connections property, which returns the
number of active dial-up networking connections. A value greater than zero indicates that a dial-
up networking connection has been established.

If there are multiple dial-up networking devices on the system, it may be possible for more than
one connection to be active at a time. If this is the case, setting the AutoConnect property to
True will cause the control to inherit the first active connection. To manage multiple dial-up
connections, use the Connection property array to enumerate the available connections and set
the Handle property to take control of a specific session.

Data Type
Boolean

See Also
AutoDisconnect Property, Connection Property, Connections Property, IsConnected Property,
Connect Method, Disconnect Method, Interval Property, OnConnect Event, OnDisconnect Event,
OnStatus Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoDial Property  

 

Determine if autodialing has been enabled on the local system.

Syntax
[form].object.AutoDial [= { True | False } ]

Remarks
The AutoDial property can be used to determine if autodialing is enabled or disabled on the
current system. When autodialing is enabled and an application attempts to establish a connection
over the Internet, a dialog box will be displayed asking the user if they want to connect to their
default service provider. This property will return True if autodialing is currently enabled, or False if
it has been disabled.

Setting the AutoDial property allows an application to change the autodial settings for the current
user. Setting the property value to True specifies that you wish to enable autodialing, and the
system will prompt the user to establish a dial-up connection when necessary. Setting the property
to False disables autodialing, and prevents the system from prompting the user. This can be
beneficial if your application needs to run in an unattended mode. If you change the autodial
settings for the user, it is recommended that you restore them to their original value before the
application terminates.

This property can only be changed by applications running under Windows 98, Windows NT 4.0
and later versions. If the autodial settings cannot be changed by the current user, an error will be
generated.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoDisconnect Property  

 

Automatically disconnect from the server when the control is unloaded.

Syntax
object.AutoDisconnect = { True | False }

Remarks
The AutoDisconnect property determines if the control should automatically disconnect from a
server when the control is unloaded, typically when the application terminates. The default value
for this property is True.

If a dial-up connection was already established at the time the control was loaded, this property
will be reset to False, preventing it from automatically disconnecting from the host when it is
unloaded. Therefore, to always force the control to automatically terminate a connection when it is
unloaded, you must explicitly set the property value to True in your application.

Data Type
Boolean

See Also
AutoConnect Property, IsConnected Property, Connect Method, Disconnect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Available Property  

 

Determine if the Remote Access Service is available.

Syntax
object.Available

Remarks
This read-only property returns True if the Remote Access Service (RAS) software has been
installed on the system. Note that this property does not indicate that the required hardware is
available or that a specific protocol has been configured.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
[form].object.Blocking [= { True | False } ]

Remarks
The Blocking property determines how the control establishes a dial-up connection. If set to True,
the control will wait until a connection has been established or the connection attempt fails before
returning control to the application. If set to False, the control will begin the connection process
and return control immediately to the application. For a non-blocking connection, the application
should monitor the OnStatus event to determine the progress of the connection attempt. The
default value for this property is False.

Data Type
Boolean

See Also
IsConnected Property, Status Property, Connect Method, OnStatus Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 BytesIn Property  

 

Returns the number of bytes that have been received by the dial-up networking device.

Syntax
[form].object.BytesIn

Remarks
The BytesIn property returns the number of bytes that have been received by the dial-up
networking device. If the control is unable to determine the number of bytes received, it will return
a value of zero.

This property is only supported with applications running under Windows 98 and Windows 2000.
A general purpose application designed to run on all of the common Windows platforms should
expect that this property may return zero as a value.

Data Type
Integer (Int32)

See Also
BytesOut Property, ConnectSpeed Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 BytesOut Property  

 

Returns the number of bytes that have been transmitted by the dial-up networking device.

Syntax
[form].object.BytesOut

Remarks
The BytesOut property returns the number of bytes that have been transmitted by the dial-up
networking device. If the control is unable to determine the number of bytes transmitted, it will
return a value of zero.

This property is only supported with applications running under Windows 98 and Windows 2000.
A general purpose application designed to run on all of the common Windows platforms should
expect that this property may return zero as a value.

Data Type
Integer (Int32)

See Also
BytesIn Property, ConnectSpeed Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Callback Property  

 

Specifies that the server should call the system back.

Syntax
[form.]object.Callback [ = { True | False } ]

Remarks
Setting the Callback property specifies that the server should call the user back at the telephone
number specified by the CallbackNumber property. This property is ignored unless the user has
"Set By Caller" callback permission on the server.

Data Type
Boolean

See Also
CallbackNumber Property, PhoneEntry Property, PhoneNumber Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CallbackNumber Property  

 

Specifies the telephone number for the server to call back on.

Syntax
[form.]object.CallbackNumber [ = number ]

Remarks
Setting the CallbackNumber property specifies that the server should call the user back at the
given telephone number. This property is ignored unless the user has "Set By Caller" callback
permission on the server. Assigning an asterisk to this property causes the number stored in the
phone book entry to be used for callback.

Data Type
String

See Also
Callback Property, PhoneEntry Property, PhoneNumber Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connection Property  

 

Return the handle for the specified dial-up networking session.

Syntax
[form.]object.Connection(Index)

Remarks
The Connection property array can be used to enumerate the active dial-up networking sessions
on the local system. The index is zero-based, and the number of connections is returned by the
Connections property. The property returns a long integer value which represents the handle to
the session. Setting the Handle property to this value will cause the control to inherit the session
and the control's properties will be updated with information about the connection.

Specifying an index greater than the number of available connections will generate an error.

Data Type
Integer (Int32)

See Also
AutoConnect Property, Connections Property, IsConnected Property

 



 Connections Property  

 

Return the number of active dial-up networking sessions.

Syntax
[form.]object.Connections

Remarks
The Connections property returns the number of active dial-up networking connections on the
local system. A value of zero indicates that there is no dial-up networking connection. This
property is used in conjunction with the Connection property array to enumerate the connections
on the current system.

Data Type
Integer (Int32)

See Also
AutoConnect Property, Connection Property, IsConnected Property

 



 ConnectSpeed Property  

 

Returns the line speed for the current dial-up networking connection.

Syntax
[form].object.ConnectSpeed

Remarks
The ConnectSpeed property returns the speed, in bytes per second, at which the current dial-up
networking device has established a connection. If the control is unable to determine the
connection speed, it will return a value of zero.

This property is only supported with applications running under Windows 98, Windows NT 4.0 and
later versions. A general purpose application designed to run on all of the common Windows
platforms should expect that this property may return zero as a value.

Data Type
Integer (Int32)

See Also
BytesIn Property, BytesOut Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CountryCode Property  

 

Gets and sets the country code for the current phonebook entry.

Syntax
[form].object.CountryCode [= code ]

Remarks
The CountryCode property specifies the numeric country code for the current phonebook entry.
If this value is zero, then the country and area code information is not used when dialing the
phone number. The country code for the United States is 1.

Data Type
Integer (Int32)

See Also
AreaCode Property, CountryName Property, LoadEntry Method, SaveEntry Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CountryName Property  

 

Gets and sets the country name for the current phonebook entry.

Syntax
[form].object.CountryName [= country ]

Remarks
The CountryName property returns the name of the country associated with the country code
used when dialing the current phonebook entry. If no country code has been specified, this
property will return an empty string. Setting this property to the name of a country will change the
current country code. If no area code has been defined, and the country code specifies the current
dialing location, the AreaCode property will be updated to the current area code.

Data Type
String

See Also
AreaCode Property, CountryCode Property, LoadEntry Method, SaveEntry Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DefaultGateway Property  

 

Set the default route for IP packets through the dial-up adapter.

Syntax
[form].object.DefaultGateway [= { True | False } ]

Remarks
The DefaultGateway property is used to determine the default route for IP packets. If set to True,
then packets are routed through the dial-up networking adapter when the connection is active.
The value of this property corresponds to the "Use Default Gateway" checkbox on the TCP/IP
configuration dialog.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeviceCount Property  

 

Returns the number of dial-up networking devices available.

Syntax
[form].object.DeviceCount

Remarks
The DeviceCount property returns the number of dial-up networking devices available. This
property can be used in conjunction with the DeviceEntry property array to enumerate the
devices.

Data Type
Integer (Int32)

See Also
DeviceEntry Property, DeviceName Property, DeviceType Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeviceEntry Property  

 

Return the name of the specified device entry.

Syntax
[form].object.DeviceEntry( Index )

Remarks
The DeviceEntry property array can be used in conjunction with the DeviceCount property to
enumerate the available dial-up networking devices. Typically this is used to provide a user with a
selection of dial-up devices. The device used by the current phonebook entry can be changed by
setting the DeviceName property to one of the device entry values.

Note that you should first set the DeviceType property to the type of device which you wish to
enumerate. The default device type is "modem", for serial analog modems or other devices which
recognize the AT command set.

Data Type
String

See Also
DeviceCount Property, DeviceName Property, DeviceType Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeviceName Property  

 

Gets and sets the device name for the current dial-up networking connection.

Syntax
[form.]object.DeviceName [= devicename ]

Remarks
The DeviceName property returns a description of the device that the connection was established
on. For example, the string "US Robotics Sportster 28000" may be returned for a modem. Note
that this property value may change if the DeviceType property is modified. Setting this property
will change the device used to establish the dial-up networking connection. Changes to this
property value should be made after changes to the DeviceType property.

To enumerate a list of available devices for a given device type, use the DeviceCount property
and DeviceEntry property array.

Data Type
String

See Also
DeviceCount Property, DeviceEntry Property, DeviceType Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeviceType Property  

 

Gets and sets the device type for the current dial-up networking connection.

Syntax
[form.]object.DeviceType [= devicetype ]

Remarks
The DeviceType property returns the type of device that the connection was established with.
Setting this property will change the type of device that will be used to establish the connection.
Valid device names are:

Constant Value Description

rasDeviceModem modem An internal or external serial analog modem device, or other serial
communications device which supports the AT command set

rasDeviceISDN isdn An ISDN terminal adapter. Note that some ISDN devices, such as
the 3Com ImpactIQ are considered modem devices.

rasDeviceX25 x25 An X25 device adapter.

rasDeviceVPN vpn A virtual private network connection.

RasDevicePad pad A packet assembler/disassembler.

Because changing the device type can change the current device name, it is recommended that
applications change this property value before changing the value of the DeviceName property.

Data Type
String

See Also
DeviceCount Property, DeviceEntry Property, DeviceName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DynamicAddress Property  

 

Configure the current phonebook entry to use a dynamic IP address.

Syntax
[form].object.DynamicAddress [= { True | False } ]

Remarks
The DynamicAddress property determines if the current phonebook entry should use a
dynamically assigned IP address. If this property is set to True, then an IP address is assigned to
the dial-up adapter when the connection is established. If set to False, then the dial-up adapter IP
address is set to the value of the InternetAddress property.

Data Type
Boolean

See Also
DynamicNameServers Property, InternetAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DynamicNameServers Property  

 

Configure the current phonebook entry to use dynamic nameservers.

Syntax
[form].object.DynamicNameServers [= { True | False } ]

Remarks
The DynamicNameServers property determines if the current phonebook entry should use
dynamically assigned nameservers. If this property is set to True, then one or more nameservers
are assigned to the dial-up adapter when the connection is established. If set to False, then the
dial-up adapter nameservers are set to the values specified by the NameServer property array.

Data Type
Boolean

See Also
DynamicAddress Property, InternetAddress Property, NameServer Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FramingProtocol Property  

 

Gets and sets the framing protocol for the current phonebook entry.

Syntax
[form].object.FramingProtocol [= protocol ]

Remarks
The FramingProtocol property is used to set or return the framing protocol used for the current
phonebook entry. The following values may be specified:

Value Constant Description

1 rasFramingProtocolPpp Point-to-Point Protocol (PPP). This is the most common
protocol used by Internet Service Providers (ISPs).

2 rasFramingProtocolSlip Serial Line Internet Protocol (SLIP). This is a protocol
commonly used when connecting to older UNIX systems.

4 rasFramingProtocolRas A proprietary Microsoft protocol implemented in Windows for
Workgroups 3.11 and Windows NT 3.1

Note that unless there is a specific need for the application to use SLIP or the Microsoft protocol, it
is recommended that PPP always be selected as the framing protocol.

Data Type
Integer (Int32)

See Also
NetworkProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Handle Property  

 

Gets and sets the handle for the current dial-up networking connection.

Syntax
object.Handle [= hrasconn ]

Remarks
The Handle property returns the handle to the current dial-up networking connection, or a value
of zero if the control has not been used to establish a connection. Setting the value of this
property to a valid handle causes the control to inherit the specified connection, and the control's
properties will be updated with information about that connection. This enables an application to
monitor and control a connection that was established by the user or another program.

Setting the Handle property to a value of zero causes the control to release the current
connection, however it will not cause the dial-up networking session to terminate. To disconnect
from the server, the Disconnect method must be called by the application. Setting the property to
a non-zero value which does not specify a valid handle will generate an error.

Data Type
Integer (Int32)

See Also
AutoConnect Property, Connection Property, Connections Property, IsConnected Property

 



 InternetAddress Property  

 

Return the IP address assigned to the current dial-up networking session.

Syntax
object.InternetAddress [= ipaddress ]

Remarks
The InternetAddress property returns the IP address assigned to the current dial-up networking
session. If no connection has been established, or the connection has not been made with a PPP
server, then this property will return an empty string. If the DynamicAddress property is set to
False, changing this property value will update the IP address assigned to the current phonebook
entry.

The IP address may only be changed before a connection is established.

Data Type
String

See Also
DynamicAddress Property, ServerAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Interval Property  

 

Gets and sets the interval at which the connection is monitored.

Syntax
[form.]object.Interval [= milliseconds ]

Remarks
The Interval property specifies the interval, in milliseconds, at which the connection is monitored
by the control. The minimum value of 0 indicates that the control should not monitor the
connection.The maximum interval value is 65536 milliseconds, which is slightly more than one
minute. The default value is 1000, which causes the control to check the connection status every
second.

Note that setting the property value to zero will prevent the control from detecting certain
conditions, such as a disconnected telephone line or a modem that is turned off.

Data Type
Integer (Int32)

See Also
OnStatus Event, OnTimeout Event, Timeout Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IpHeaderCompression Property  

 

Configure the current phonebook entry to enable IP header compression.

Syntax
[form].object.DynamicAddress [= { True | False } ]

Remarks
The IpHeaderCompression property is used to enable or disable IP header compression. If set to
True, when a connection is established, RAS will negotiate with the dial-up server to use header
compression. If set to False, header compression will not be negotiated. This property corresponds
to the "Use IP Header Compression" checkbox on the TCP/IP configuration dialog.

Data Type
Boolean

See Also
DynamicNameServers Property, InternetAddress Property, SoftwareCompression Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The read-only IsConnected property is used to determine if the control has connected to the
server. A value of true indicates that the connection has been established.

Note that the IsConnected property should not be used to determine if an active dial-up
networking connection has been established by another application. The property will only return
True if the control has been used to establish the connection itself, or if a connection is inherited
by setting either the AutoConnect or Handle properties. To determine if there are any active
dial-up networking connections, check the value of the Connections property.

Data Type
Boolean

See Also
AutoConnect Property, AutoDisconnect Property, Connection Property, Connections Property,
PhoneEntry Property, Connect Method, Disconnect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero (to clear the error) or a valid error code
for the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, ThrowError Property, OnError Event

 



 LastErrorString Property  

 

Return a description of the last error that occurred.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a string that contains a description of the last error that
occurred.

Data Type
String

See Also
LastError Property, ThrowError Property, OnError Event

 



 LcpExtensions Property  

 

Configure the current phonebook entry to use PPP LCP extensions.

Syntax
[form].object.LcpExtensions [= { True | False } ]

Remarks
The LcpExtensions property determines if the PPP LCP extensions defined in RFC 1570 will be
used. If the PPP framing protocol is being used for the dial-up connection, it is recommended that
this property be set to True. However, some older implementations of PPP may require that this
property be set to False in order to establish a connection.

Data Type
Boolean

See Also
FramingProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalNumber Property  

 

Gets and sets the local phone number specified in the phonebook entry.

Syntax
[form].object.LocalNumber [= number ]

Remarks
The LocalNumber property sets or returns the local phone number that is specified in the current
phonebook entry. If the CountryCode property has a value of zero, then the local number is
dialed to connect to the server. If the CountryCode property is set to a valid country code, then
RAS will also use the country and area code values when dialing the phone number.

Note that this property only determines the local phone number for the phonebook entry, and
can be overridden by setting the PhoneNumber property to a specific value.

Data Type
String

See Also
AreaCode Property, CountryCode Property, CountryName Property, PhoneNumber Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ModemLights Property  

 

Enable or disable the dial-up networking system tray icon.

Syntax
[form].object.ModemLights [= { True | False } ]

Remarks
The ModemLights property determines if the dial-up networking icon in the system tray is
displayed when a connection is established.

Data Type
Boolean

See Also
ModemSpeaker Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ModemSpeaker Property  

 

Enable or disable the modem speaker.

Syntax
[form].object.ModemSpeaker [= { True | False } ]

Remarks
The ModemSpeaker property determines if the modem speaker is enabled when dialing the
server. If the property is set to False, the modem will be silent when dialing the telephone number
and establishing the connection. Note that setting this property to True will not force the speaker
on if the modem hardware has been configured to explicitly disable the speaker.

To disable the speaker, the modem must support changes to the speaker volume. Disabling the
speaker is typically done by instructing the modem to set the speaker volume to zero.

Data Type
Boolean

See Also
ModemLights Property

 



 NameServer Property  

 

Gets and sets the IP addresses of the nameservers assigned to the current phonebook entry.

Syntax
[form].object.NameServer( Index ) [= ipaddress ]

Remarks
The NameServer property array is used to set or return the nameserver IP addresses assigned to
the current phonebook entry. The index value may range from 0 to 3:

Index Description

0 Primary DNS nameserver IP address

1 Alternate DNS nameserver IP address

2 Primary WINS nameserver IP address

3 Alternate WINS nameserver IP address

Setting the property array to an IP address changes the corresponding address assigned to the
phonebook entry. Note that assigned nameserver addresses are only used if the
DynamicNameServers property has been set to False. If dynamic nameservers are assigned to
the session, this property array will not return those addresses, it will return empty strings.

Data Type
String

See Also
DynamicNameServers Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NetworkLogon Property  

 

Configure the current phonebook entry to logon to the network.

Syntax
[form].object.NetworkLogon [= { True | False } ]

Remarks
The NetworkLogon property determines if RAS automatically logs on to the network after a
connection has been established. This property currently has no effect under Windows NT.

Data Type
Boolean

See Also
DynamicNameServers Property, InternetAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NetworkProtocol Property  

 

Gets and sets the network protocol for the current phonebook entry.

Syntax
[form].object.NetworkProtocol [= protocol ]

Remarks
The NetworkProtocol property is used to set or return the network protocol used for the current
phonebook entry. The following values may be specified:

Value Constant Description

1 rasNetworkProtocolNetBEUI Negotiate the NetBEUI protocol.

2 rasNetworkProtocolIpx Negotiate the IPX protocol.

4 rasNetworkProtocolIp Negotiate the TCP/IP protocol.

These values may be combined if multiple protocols should be negotiated when the connection is
established. Note that unless there is a specific need for the application to use the NetBEUI or IPX
protocols, it is recommended that only the TCP/IP protocol be specified.

Data Type
Integer (Int32)

See Also
FramingProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Password Property  

 

The password required to establish a connection with the server.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password required to establish a connection with the server.
Note that this may not be the same password that is used to login to the server using terminal
emulation software.

Data Type
String

See Also
UserName Property, UserDomain Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PhoneBook Property  

 

Sets the file name of the Remote Access phone book to use.

Syntax
[form.]object.PhoneBook [= filename ]

Remarks
The PhoneBook property specifies the file name of the Remote Access phone book. Setting this
property to an empty string causes the default phone book to be used.

Data Type
String

See Also
PhoneBookEntry Property, PhoneBookEntries Property, UserPhoneBook Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PhoneBookEntries Property  

 

Return the number of entries in the current phone book.

Syntax
[form.]object.PhoneBookEntries

Remarks
The PhoneBookEntries property returns the number of entries in the current phone book. A
value of zero indicates that no phone book entries are available.

Data Type
Integer (Int32)

See Also
PhoneBookEntry Property, PhoneEntry Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PhoneBookEntry Property  

 

Return the name for the specified phone book entry.

Syntax
[form.]object.PhoneBookEntry(Index)

Remarks
The PhoneBookEntry property array contains a list of the entries in the current phone book, and
may be used to establish a connection with a server. Specifying an index greater than the number
of available entries in the phone book will generate an error.

Data Type
String

See Also
PhoneBookEntries Property, PhoneEntry Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PhoneEntry Property  

 

Specify the phone book entry to use to establish a connection with a server.

Syntax
[form.]object.PhoneEntry [= entry ]

Remarks
The PhoneEntry property can be used to specify a phone book entry to use to connect with a
server. The entry name identifies a communications profile which includes the telephone number,
callback number and domain name of the server. Setting the PhoneEntry property to an empty
string indicates that a telephone number will be provided to establish the connection.

Data Type
String

See Also
PhoneBookEntries Property, PhoneBookEntry Property, PhoneNumber Property, LoadEntry
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PhoneNumber Property  

 

Specifies the telephone number of the server.

Syntax
[form.]object.PhoneNumber [= value ]

Remarks
The PhoneNumber property specifies the telephone number of the server. If this property is not
set, then the PhoneEntry property must be set to a valid phone book entry. If both the
PhoneNumber and PhoneEntry properties are defined, the PhoneNumber property will
override the value specified in the phone book.

Data Type
String

See Also
PhoneEntry Property, CallbackNumber Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RequireEncryption Property  

 

Configure the current phonebook entry to require secure authentication.

Syntax
[form].object.RequireEncryption [= { True | False } ]

Remarks
The RequireEncryption property determines if encryption is required during PPP authentication.
If the property is set to True, then only secure password schemes can be used to authenticate the
client. If the property is set to False, the client can use the PAP plain-text authentication protocol
to authenticate the client. Some older PPP implementations may require that this property be set
to False in order to establish a connection.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ScriptFile Property  

 

Gets and sets the name of the script file for the current phonebook entry.

Syntax
[form].object.ScriptFile [= filename ]

Remarks
The ScriptFile property specifies the name of the login script used to establish a connection with
the server. This property must be set to the full pathname of the script file. If a script file is not
required, then this property should be set to an empty string.

Data Type
String

See Also
Terminal Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerAddress Property  

 

Return the IP address of the dial-up networking server.

Syntax
[form.]object.ServerAddress

Remarks
The ServerAddress property returns the IP address of the dial-up networking server that the local
host has connected to. If no connection has been established, or the connection has not been
made with a PPP server, then this property will return an empty string. This property may also
return an empty string if the server did not provide this information during the connection
process.

Data Type
String

See Also
InternetAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SoftwareCompression Property  

 

Configure the current phonebook entry to negotiate software compression.

Syntax
[form].object.SoftwareCompression [= { True | False } ] ]

Remarks
The SoftwareCompression property determines if data compression is negotiated during the
connection. If the property is set to True, then the client will negotiate a compatible compression
protocol. Software compression should only be disabled if the client is unable to establish a
connection with the server.

Data Type
Boolean

See Also
IpHeaderCompression Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 State Property  

 

Return the current status of the control.

Syntax
object.Status

Remarks
This read-only property returns the status of the control. It may be one of the following values:

Value Constant Description

-1 rasStatusUnused No connection has been established

0 rasStatusOpenPort The communications port is about to be opened

1 rasStatusPortOpened The communications port has been opened

2 rasStatusConnectDevice A device is about to be connected

3 rasStatusDeviceConnected A device has been connected successfully

4 rasStatusAllDevicesConnected All devices have been connected

5 rasStatusAuthenticate Authenticating username and password

6 rasStatusAuthNotify An authentication event has occurred

7 rasStatusAuthRetry Requesting authentication with new credentials

8 rasStatusAuthCallback The server has requested a callback number

9 rasStatusAuthChangePassword The user has requested to change the password

10 rasStatusAuthProject Registering computer on the network

11 rasStatusAuthLinkSpeed The link speed calculation phase is starting

12 rasStatusAuthAck An authentication request is being acknowledged

13 rasStatusReAuthenticate Authenticating username and password

14 rasStatusAuthenticated The user has been authenticated

15 rasStatusPrepareForCallback The line is about to be disconnected in preparation for
callback

16 rasStatusWaitForModemReset The modem is resetting itself in preparation for
callback

17 rasStatusWaitForCallback Waiting for callback from server

18 rasStatusProjected Protocol specific information has been negotiated

19 rasStatusStartAuthentication User authentication is being initiated

20 rasStatusCallbackComplete Callback completed and resuming authentication

21 rasStatusLogonNetwork Logging on to the network

22 rasStatusSubEntryConnected A subentry has been connected

23 rasStatusSubEntryDisconnected A subentry has been disconnected

 



4096 rasStatusInteractive Initiating interactive login session

4097 rasStatusRetryAuthentication Retrying user authentication

4098 rasStatusCallbackSetByCaller Callback has been set by caller

4099 rasStatusPasswordExpired Password has expired

8192 rasStatusConnected Connected to server

8193 rasStatusDisconnected Disconnected from server

Data Type
Integer (Int32)

See Also
AutoConnect Property, AutoDisconnect Property, Interval Property, IsConnected Property,
OnStatus Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Terminal Property  

 

Determine if a terminal window is displayed during the connection process.

Syntax
[form].object.Terminal [= value ]

Remarks
The Terminal property array is used to control if a terminal window is displayed during the dial-up
networking connection process. The property may be set to one of the following values:

Value Description

0 No terminal window is displayed

1 Terminal window is displayed before dialing

2 Terminal window is displayed after dialing. Do not use if scripting has been enabled.

3 Terminal window is display before and after dialing. Do not use if scripting has been
enabled.

The terminal window can be used to allow user input before and/or after the dial-up networking
connection has been established. If scripting has been enabled by setting the ScriptFile property,
no terminal window should be displayed after the connection. This is because scripting has it's
own terminal implementation.

Note that this property is only supported on Windows NT 4.0 and later versions of the operating
system. Displaying a terminal window also imposes several restrictions on the behavior of the
control. Because of how the Remote Access Services API is implemented by Microsoft, a
connection dialog will be displayed after the Connect method is called if the Terminal property is
non-zero. Setting this property to a non-zero value will also disable any asynchronous event
notifications. It is not recommended that you set this property unless it is absolutely necessary.

Data Type
Integer (Int32)

See Also
ScriptFile Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError [= { True | False } ]

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, methods will not raise an exception if an error occurs.
Instead, the application should check the return value of the method and report any errors based
on that value. It is the responsibility of the application to interpret the error code and take an
appropriate action. This is the default value for the property.

If the ThrowError property is set to True, any method which generates an error will cause the
component to raise an exception which must be handled or the application will terminate.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of this property. This property only controls how errors are handled when
calling methods.

Data Type
Boolean

See Also
LastError Property, LastErrorString Property, OnError Event

 



 Timeout Property  

 

Gets and sets the number of seconds until a connection attempt fails.

Syntax
[form.]object.Timeout [= seconds ]

Remarks
This property specifies the number of seconds that the control has to establish a connection with a
server. If a connection is not established within that time period, the OnTimeout event is fired and
the control is reset. The default value for this property is 20 seconds.

Data Type
Integer (Int32)

See Also
Interval Property, OnStatus Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserDomain Property  

 

Specifies the NT domain on which user authentication is to occur.

Syntax
[form.]object.UserDomain [= domain ]

Remarks
The UserDomain property is used to specify the NT domain on which the user name and
password will be authenticated. An empty string specifies the domain in which the Remote Access
server is a member. An asterisk specifies the domain stored in the phone book entry.

Data Type
String

See Also
Password Property, UserName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Set the user name that is required to establish a connection with the server.

Syntax
[form.]object.UserName [= name ]

Remarks
The UserName property specifies the user that is logging into the server, and is required for
authentication purposes.

Data Type
String

See Also
Password Property, UserDomain Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserPhoneBook Property  

 

Returns the name of the default user phonebook.

Syntax
[form].object.UserPhoneBook

Remarks
The UserPhoneBook property returns the name of the default user phonebook. The value
returned depends on how the user has configured dial-up networking, specifically whether the
system, user or alternate phonebook has been selected. The current phonebook can be changed
by setting the PhoneBook property.

Note that this property always returns an empty string under Windows 98 since phonebooks are
not used (entries are stored in the system registry).

Data Type
String

See Also
PhoneBook Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes.

Data Type
String

 



 Internet Dialer Control Methods  

 

Method Description

Connect Establish a connection with a server

CreateEntry Create a new entry in the current phonebook

DeleteEntry Delete a phonebook entry from the local system

Disconnect Terminate the connection with a server

EditEntry Edit an existing phonebook entry on the local system

Initialize Initialize the component and load the Remote Access Services library

LoadEntry Load the specified entry from the current phonebook

RenameEntry Rename an existing phonebook entry

Reset Resets the control state and disconnects the current session

SaveEntry Save the specified entry to the current phonebook

Uninitialize Uninitialize the component and unload the Remote Access Services library

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

 

Establish a connection with a server.

Syntax
object.Connect( [EntryName] )

Parameters
EntryName

An optional string value that specifies the name of the phonebook entry to use to establish the
connection. If this argument is not provided, the value of the PhoneEntry property is used.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Connect method establishes a dial-up networking connection with a service provider using
the specified phonebook entry. If this method is called without any arguments and PhoneEntry
property has not been set, then the current values of the PhoneNumber, UserName,
UserDomain, and Password properties will be used to create a temporary phonebook entry.

See Also
Disconnect Method, CallbackNumber Property, Password Property, PhoneEntry Property,
PhoneNumber Property, UserName Property, UserDomain Property

 



 CreateEntry Method  

 

Create a new entry in the current phonebook.

Syntax
object.CreateEntry

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The CreateEntry method displays a dialog box which allows the user to create a new phonebook
entry on the system. If you do not wish to display a dialog box, use the SaveEntry method
instead.

See Also
DeleteEntry Method, EditEntry Method, RenameEntry Method, SaveEntry Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteEntry Method  

 

Delete a phonebook entry from the local system.

Syntax
object.DeleteEntry( [EntryName] )

Parameters
EntryName

An optional string value which specifies specifies the phonebook entry to delete. If this
argument is not provided, the value of the PhoneEntry property will be used.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

See Also
CreateEntry Method, EditEntry Method, RenameEntry Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the dial-up networking connection.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 EditEntry Method  

 

Edit an existing phonebook entry on the local system.

Syntax
object.EditEntry( [EntryName] )

Parameters
EntryName

An optional string value which specifies the phonebook entry to edit. If this argument is not
provided, the value of the PhoneEntry property will be used.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The EditEntry method edits the specified entry from the local phonebook. This will cause a dialog
box to be displayed from which the user can change the connection information. If you do not
want to display a dialog, then use the SaveEntry method instead.

See Also
CreateEntry Method, DeleteEntry Method, RenameEntry Method, SaveEntry Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set rasDialer = CreateObject("SocketTools.Dialer.11")

nError = rasDialer.Initialize(strLicenseKey)
If nError > 0 Then
    MsgBox "Unable to initialize the SocketTools component"
End If

See Also
IsInitialized Property, Uninitialize Method

 



 LoadEntry Method  

 

Load the specified entry from the current phonebook.

Syntax
object.LoadEntry( [EntryName] )

Parameters
EntryName

An optional string value which specifies the phonebook entry to load. If this argument is not
provided, the current entry is reloaded from the phonebook, abandoning any changes that
have been made.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The LoadEntry method loads the specified entry from the current phonebook and sets the control
properties to match the configuration.

See Also
PhoneBook Property, PhoneEntry Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RenameEntry Method  

 

Rename an existing phonebook entry.

Syntax
object.RenameEntry( OldName, NewName )

Parameters
OldName

A string value that specifies the name of the phonebook entry to be renamed.

NewName

A string value that specifies the new name of the phonebook entry. This name must not already
exist for another connectoid in the current phonebook.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

See Also
CreateEntry Method, DeleteEntry Method, EditEntry Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, active dial-up connections will be terminated and any handles allocated by the
control will be released. Any property changes to the current phonebook entry will be ignored,
reverting to their previous values.

See Also
Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SaveEntry Method  

 

Save the specified entry to the current phonebook.

Syntax
object.SaveEntry( [EntryName] )

Parameters
EntryName

An optional string value that specifies the name of phonebook entry. If this argument is not
provided, the current value of the PhoneEntry property is used.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The SaveEntry method saves the specified entry to the current phonebook, based on the current
control properties. If the entry does not exist, it will be created. If an entry by that name already
exists, it will be overwritten. Note that unlike the CreateEntry method, this method does not
display any dialogs.

See Also
PhoneBook Property, PhoneEntry Property, CreateEntry Method, EditEntry Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the component and unload the Remote Access Services library.

Syntax
object.Uninitialize

Parameters
None.

Return Type
None.

Remarks
The Uninitialize method terminates any active dial-up networking connection established by the
control and unloads the Remote Access Services (RAS) library. This method is not typically used
because any resources that have been allocated by an instance of the control will automatically be
released when it is destroyed. To prevent the connection from being terminated when the control
is uninitialized, set the AutoDisconnect property to False or set the Handle property to a value of
zero before calling this method.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
AutoDisconnect Property, Handle Property, Connect Method, Disconnect Method, Initialize
Method

 



 Internet Dialer Control Events  

 

Event Description

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnStatus This event is generated when the control state changes

OnTimeout This event is generated when the control is unable to establish a connection

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a successful connection has been established with the
server. To monitor the progress of the connection attempt, use the OnStatus event.

See Also
OnDisconnect Event, OnStatus Event

 



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server.

See Also
OnConnect Event

 



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control operation. The OnError event is
typically fired when a method is called which results in an error, or an error occurs during the
connection or authentication process.

The ErrorCode argument specifies the numeric error code. The Remote Access Services subsystem
returns errors in the range of 600 to 800. These are automatically converted to 10600 through
10800 to avoid conflicts with standard error codes. For example, error 10676 corresponds to the
RAS error 676, which indicates that the line is busy.

The Description argument contains a description of the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnStatus Event  

 

The OnStatus event is generated when the control state changes.

Syntax
Sub object_OnStatus ( [Index As Integer,] ByVal State As Variant, ByVal Description As
Variant )

Remarks
This event is generated when the status of the control changes. Typically this occurs when a
connection is being established with a server.

The State argument is a numeric code which identifies the state of the control. This is the same
value as returned by the State property.

The Description argument contains a string which describes the new state. Applications may use
this value to provide feedback to the user or for logging purposes.

See Also
AutoConnect Property, AutoDisconnect Property, IsConnected Property, Status Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is generated when the control is unable to establish a connection.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
This event is generated when the control is unable to establish a connection with a server in the
number of seconds specified by the Timeout property.

See Also
Timeout Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Internet Dialer Control Errors  

Value Constant Description

10600 rasErrorPending An operation is pending

10601 rasErrorInvalidPortHandle An invalid port handle was detected

10602 rasErrorPortAlreadyOpen The specified port is already open

10603 rasErrorBufferTooSmall The caller's buffer is too small

10604 rasErrorWrongInfoSpecified Incorrect information was specified

10605 rasErrorCannotSetPortInfo The port information cannot be set

10606 rasErrorPortNotConnected The specified port is not connected

10607 rasErrorEventInvalid An invalid event was detected

10608 rasErrorDeviceDoesNotExist A device was specified that does not exist

10609 rasErrorDevicetypeDoesNotExist A device type was specified that does not exist

10610 rasErrorBufferInvalid An invalid buffer was specified

10611 rasErrorRouteNotAvailable A route was specified that is not available

10612 rasErrorRouteNotAllocated A route was specified that is not allocated

10613 rasErrorInvalidCompressionSpecified An invalid compression was specified

10614 rasErrorOutOfBuffers There were insufficient buffers available

10615 rasErrorPortNotFound The specified port was not found

10616 rasErrorAsyncRequestPending An asynchronous request is pending

10617 rasErrorAlreadyDisconnecting The modem or other connecting device is already
disconnecting

10618 rasErrorPortNotOpen The specified port is not open

10619 rasErrorPortDisconnected A connection to the remote computer could not be
established

10620 rasErrorNoEndpoints No endpoints could be determined

10621 rasErrorCannotOpenPhonebook The system could not open the phone book file

10622 rasErrorCannotLoadPhonebook The system could not load the phone book file

10623 rasErrorCannotFindPhonebookEntry The system could not find the phone book entry for this
connection

10624 rasErrorCannotWritePhonebook The system could not update the phone book file

10625 rasErrorCorruptPhonebook The system found invalid information in the phone book
file

10626 rasErrorCannotLoadString A string could not be loaded

10627 rasErrorKeyNotFound A key could not be found

10628 rasErrorDisconnection The connection was terminated by the remote computer



before it could be completed

10629 rasErrorRemoteDisconnection The connection was closed by the remote computer

10630 rasErrorHardwareFailure The modem or other connecting device was
disconnected due to hardware failure

10631 rasErrorUserDisconnection The user disconnected the modem or other connecting
device

10632 rasErrorInvalidSize An incorrect structure size was detected

10633 rasErrorPortNotAvailable The modem or other connecting device is already in use
or is not configured properly

10634 rasErrorCannotProjectClient Your computer could not be registered on the remote
network

10635 rasErrorUnknown There was an unknown error

10636 rasErrorWrongDeviceAttached The device attached to the port is not the one expected

10637 rasErrorBadString A string was detected that could not be converted

10638 rasErrorRequestTimeout The request has timed out

10639 rasErrorCannotGetLana No asynchronous net is available

10640 rasErrorNetBIOSError An error has occurred involving NetBIOS

10641 rasErrorServerOutOfResources The server cannot allocate NetBIOS resources needed to
support the client

10642 rasErrorNameExistsOnNet One of your computer's NetBIOS names is already
registered on the remote network

10643 rasErrorServerGeneralNetFailure A network adapter at the server failed

10644 rasErrorMsgAliasNotAdded You will not receive network message popups

10645 rasErrorAuthInternal There was an internal authentication error

10646 rasErrorRestrictedLogonHours The account is not permitted to log on at this time of
day

10647 rasErrorAcctDisabled The account is disabled

10648 rasErrorPasswdExpired The password for this account has expired

10649 rasErrorNoDialInPermission The account does not have permission to dial in

10650 rasErrorServerNotResponding The remote access server is not responding

10651 rasErrorFromDevice The modem or other connecting device has reported an
error

10652 rasErrorUnrecognizedResponse There was an unrecognized response from the modem
or other connecting device

10653 rasErrorMacroNotFound A macro required by the modem or other connecting
device was not found in the configuration file

10654 rasErrorMacroNotDefined A command or response in the configuration file refers
to an undefined macro



10655 rasErrorMessageMacroNotFound The message macro was not found in the configuration
file

10656 rasErrorDefaultOffMacroNotFound The configuration file contains an undefined macro

10657 rasErrorFileCouldNotBeOpened The configuration file could not be opened

10658 rasErrorDevicenameTooLong The device name in the configuration file is too long

10659 rasErrorDevicenameNotFound The configuration file refers to an unknown device name

10660 rasErrorNoResponses The configuration file contains no responses for the
command

10661 rasErrorNoCommandFound The configuration file is missing a command

10662 rasErrorWrongKeySpecified There was an attempt to set a macro not listed in
configuration file

10663 rasErrorUnknownDeviceType The configuration file refers to an unknown device type

10664 rasErrorAllocatingMemory The system has run out of memory

10665 rasErrorPortNotConfigured The modem or other connecting device is not properly
configured

10666 rasErrorDeviceNotReady The modem or other connecting device is not
functioning

10667 rasErrorReadingIniFile The system was unable to read the configuration file

10668 rasErrorNoConnection The connection was terminated

10669 rasErrorBadUsageInIniFile The usage parameter in the configuration file is invalid

10670 rasErrorReadingSectionname The system was unable to read the section name from
the configuration file

10671 rasErrorReadingDeviceType The system was unable to read the device type from the
configuration file

10672 rasErrorReadingDeviceName The system was unable to read the device name from
the configuration file

10673 rasErrorReadingUsage The system was unable to read the usage from the
configuration file

10674 rasErrorReadingMaxconnectbps The system was unable to read the maximum connection
BPS rate from the configuration file

10675 rasErrorReadingMaxcarrierbps The system was unable to read the maximum carrier
connection speed from the configuration file

10676 rasErrorLineBusy The phone line is busy

10677 rasErrorVoiceAnswer A person answered instead of a modem or other
connecting device

10678 rasErrorNoAnswer The remote computer did not respond

10679 rasErrorNoCarrier The system could not detect the carrier

10680 rasErrorNoDialtone There was no dial tone



 

10681 rasErrorInCommand The modem or other connecting device reported a
general error

10682 rasErrorWritingSectionname There was an error in writing the section name

10683 rasErrorWritingDevicetype There was an error in writing the device type

10684 rasErrorWritingDevicename There was an error in writing the device name

10685 rasErrorWritingMaxconnectbps There was an error in writing the maximum connection
speed.

10686 rasErrorWritingMaxCarrierBps There was an error in writing the maximum carrier speed

10687 rasErrorWritingUsage There was an error in writing the usage

10688 rasErrorWritingDefaultOff There was an error in writing the default-off

10689 rasErrorReadingDefaultOff There was an error in reading the default-off

10690 rasErrorEmptyIniFile The configuration file is empty

10691 rasErrorAuthenticationFailure Access was denied because the username and/or
password was invalid on the domain

10692 rasErrorPortOrDevice There was a hardware failure in the modem or other
connecting device

10693 rasErrorNotBinaryMacro An internal error has occurred

10694 rasErrorDcbNotFound An internal error has occurred

10695 rasErrorStateMachinesNotStarted The state machines are not started

10696 rasErrorStateMachinesAlreadyStarted The state machines are already started

10697 rasErrorPartialResponseLooping The response looping did not complete

10698 rasErrorUnknownResponseKey A response keyname in the configuration file is not in the
expected format

10699 rasErrorRecvBufFull The modem or other connecting device response caused
a buffer overflow

10700 rasErrorCmdTooLong The expanded command in the configuration file is too
long

10701 rasErrorUnsupportedBps The modem moved to a connection speed not
supported by the COM driver

10702 rasErrorUnexpectedResponse Device response received when none expected

10703 rasErrorInteractiveMode The connection needs information from you, but the
application does not allow user interaction

10704 rasErrorBadCallbackNumber The callback number is invalid

10705 rasErrorInvalidAuthState The authorization state is invalid

10706 rasErrorWritingInitbps An internal error has occurred

10707 rasErrorX25Diagnostic There was an error related to the X.25 protocol

10708 rasErrorAcctExpired The account has expired

 



10709 rasErrorChangingPassword There was an error changing the password on the
domain

10710 rasErrorOverrun Serial overrun errors were detected while communicating
with the modem

10711 rasErrorRasmanCannotInitialize A configuration error on this computer is preventing this
connection

10712 rasErrorBiplexPortNotAvailable The two-way port is initializing, wait a few seconds and
redial

10713 rasErrorNoActiveIsdnLines No active ISDN lines are available

10714 rasErrorNoIsdnChannelsAvailable No ISDN channels are available to make the call

10715 rasErrorTooManyLineErrors Too many errors occurred because of poor phone line
quality

10716 rasErrorIpConfiguration The Remote Access Service IP configuration is unusable

10717 rasErrorNoIpAddresses No IP addresses are available in the static pool of
Remote Access Service IP addresses

10718 rasErrorPppTimeout The connection was terminated because the remote
computer did not respond in a timely manner

10719 rasErrorPppRemoteTerminated The connection was terminated by the remote computer

10720 rasErrorPppNoProtocolsConfigured A connection to the remote computer could not be
established

10721 rasErrorPppNoResponse The remote computer did not respond

10722 rasErrorPppInvalidPacket Invalid data was received from the remote computer

10723 rasErrorPhoneNumberTooLong The phone number, including prefix and suffix, is too
long

10724 rasErrorIpxcpNoDialoutConfigured The IPX protocol cannot dial out on the modem because
this computer is not configured for dialing out

10725 rasErrorIpxcpNoDialinConfigured The IPX protocol cannot dial in on the modem because
this computer is not configured for dialing in

10726 rasErrorIpxcpDialoutAlreadyActive The IPX protocol cannot be used for dialing out on more
than one modem

10727 rasErrorAccessingTcpcfgDll Cannot access TCPCFG.DLL

10728 rasErrorNoIpRasAdapter The system cannot find an IP adapter

10729 rasErrorSlipRequiresIp SLIP cannot be used unless the IP protocol is installed

10730 rasErrorProjectionNotComplete Computer registration is not complete

10731 rasErrorProtocolNotConfigured The protocol is not configured

10732 rasErrorPppNotConverging Your computer and the remote computer could not
agree on PPP control protocols

10733 rasErrorPppCpRejected A connection to the remote computer could not be
completed



10734 rasErrorPppLcpTerminated The PPP link control protocol was terminated

10735 rasErrorPppRequiredAddressRejected The requested address was rejected by the server

10736 rasErrorPppNcpTerminated The remote computer terminated the control protocol

10737 rasErrorPppLoopbackDetected Loopback was detected

10738 rasErrorPppNoAddressAssigned The server did not assign an address

10739 rasErrorCannotUseLogonCredentials The authentication protocol required by the server
cannot use the stored password

10740 rasErrorTapiConfiguration An invalid dialing rule was detected

10741 rasErrorNoLocalEncryption The local computer does not support the required data
encryption type

10742 rasErrorNoRemoteEncryption The remote computer does not support the required
data encryption type

10743 rasErrorRemoteRequiresEncryption The remote computer requires data encryption

10744 rasErrorIpxcpNetNumberConflict The system cannot use the IPX network number assigned
by the remote computer

10745 rasErrorInvalidSmm An internal error has occurred

10746 rasErrorSmmUninitialized An internal error has occurred

10747 rasErrorNoMacForPort An internal error has occurred

10748 rasErrorSmmTimeout An internal error has occurred

10749 rasErrorBadPhoneNumber An invalid telephone number has been specified

10750 rasErrorWrongModule An internal error has occurred

10751 rasErrorInvalidCallbackNumber The callback number contains an invalid character

10752 rasErrorScriptSyntax A syntax error was encountered while processing a script

10753 rasErrorHangupFailed The connection could not be disconnected because it
was created by the multi-protocol router

10754 rasErrorBundleNotFound The system could not find the multi-link bundle

10755 rasErrorCannotDoCustomdial The system cannot perform automated dial because this
connection has a custom dialer specified

10756 rasErrorDialAlreadyInProgress This connection is already being dialed

10757 rasErrorRasautoCannotInitialize Remote Access Services could not be started
automatically

10758 rasErrorConnectionAlreadyShared Internet Connection Sharing is already enabled on the
connection

10759 rasErrorSharingChangeFailed An error occurred while the existing Internet Connection
Sharing settings were being changed

10760 rasErrorSharingRouterInstall An error occurred while routing capabilities were being
enabled

10761 rasErrorShareConnectionFailed An error occurred while Internet Connection Sharing was



being enabled for the connection

10762 rasErrorSharingPrivateInstall An error occurred while the local network was being
configured for sharing

10763 rasErrorCannotShareConnection Internet Connection Sharing cannot be enabled

10764 rasErrorNoSmartCardReader No smart card reader is installed

10765 rasErrorSharingAddressExists Internet Connection Sharing cannot be enabled

10766 rasErrorNoCertificate A certificate could not be found

10767 rasErrorSharingMultipleAddresses Internet Connection Sharing cannot be enabled

10768 rasErrorFailedToEncrypt The connection attempt failed because of failure to
encrypt data

10769 rasErrorBadAddressSpecified The specified destination is not reachable

10770 rasErrorConnectionReject The remote computer rejected the connection attempt

10771 rasErrorCongestion The connection attempt failed because the network is
busy

10772 rasErrorIncompatible The remote computer's network hardware is
incompatible with the type of call requested

10773 rasErrorNumberChanged The connection attempt failed because the destination
number has changed

10774 rasErrorTempfailure The connection attempt failed because of a temporary
failure

10775 rasErrorBlocked The call was blocked by the remote computer

10776 rasErrorDonotdisturb The call could not be connected because the remote
computer has invoked the Do Not Disturb feature

10777 rasErrorOutOfOrder The connection attempt failed because the modem on
the remote computer is out of order

10778 rasErrorUnableToAuthenticateServer It was not possible to verify the identity of the server

10779 rasErrorSmartCardRequired To dial out using this connection you must use a smart
card

10780 rasErrorInvalidFunctionForEntry An attempted function is not valid for this connection

10781 rasErrorCertForEncryptionNotFound The connection requires a certificate, and no valid
certificate was found

10782 rasErrorSharingRrasConflict Network Address Translation must be removed before
enabling Internet Connection Sharing

10783 rasErrorSharingNoPrivateLan Internet Connection Sharing cannot be enabled

10784 rasErrorNoDiffUserAtLogon You cannot dial using this connection at logon time

10785 rasErrorNoRegCertAtLogon You cannot dial using this connection at logon time

10786 rasErrorOakleyNoCert The L2TP connection attempt failed because there is no
valid machine certificate on your computer for security
authentication



10787 rasErrorOakleyAuthFail The L2TP connection attempt failed because the security
layer could not authenticate the remote computer

10788 rasErrorOakleyAttribFail The L2TP connection attempt failed because the security
layer could not negotiate compatible parameters with
the remote computer

10789 rasErrorOakleyGeneralProcessing The L2TP connection attempt failed because the security
layer encountered a processing error during initial
negotiations with the remote computer

10790 rasErrorOakleyNoPeerCert The L2TP connection attempt failed because certificate
validation on the remote computer failed

10791 rasErrorOakleyNoPolicy The L2TP connection attempt failed because security
policy for the connection was not found

10792 rasErrorOakleyTimedOut The L2TP connection attempt failed because security
negotiation timed out

10793 rasErrorOakleyError The L2TP connection attempt failed because an error
occurred while negotiating security

10794 rasErrorUnknownFramedProtocol The Framed Protocol RADIUS attribute for this user is not
PPP

10795 rasErrorWrongTunnelType The Tunnel Type RADIUS attribute for this user is not
correct

10796 rasErrorUnknownServiceType The Service Type RADIUS attribute for this user is neither
Framed nor Callback Framed

10797 rasErrorConnectingDeviceNotFound A connection to the remote computer could not be
established because the modem was not found or was
busy

10798 rasErrorNoEaptlsCertificate A certificate could not be found that can be used with
this Extensible Authentication Protocol

10799 rasErrorSharingHostAddressConflict Internet Connection Sharing cannot be enabled

10800 rasErrorAutomaticVpnFailed Unable to establish the VPN connection

10801 rasErrorValidatingServerCert Unable to verify the digital certificate sent by the server



Remote Command Control

Execute commands on a server or establish an interactive terminal session.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name RshClientCtl.RshClient

File Name CSRSHX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.RshClient.11

ClassID D82CEE60-9C78-4F37-BD5A-E8A34B438AD9

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 1282

Overview
The Remote Command control is used to execute a command on a server and return the output
of that command to the client. This is most commonly used with UNIX based servers, although
there are implementations of remote command servers for the Windows operating system. The
control supports both the rcmd and rshell remote execution protocols and provides functions
which can be used to search the data stream for specific sequences of characters. This makes it
extremely easy to write Windows applications which serve as light-weight client interfaces to
commands being executed on a UNIX server or another Windows system. The control can also be
used to establish a remote terminal session using the rlogin protocol, which is similar to the Telnet
protocol.

This control should not be used when connecting to a server over the Internet because the user
credentials are sent as unencrypted text. For secure remote command execution and interactive
terminal sessions, it is recommended that you use the SocketTools Secure Shell (SSH) control
instead.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)



installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Remote Command Control Properties  

 

Property Description

AutoResolve Determines if host names and IP addresses are automatically resolved

Blocking Gets and sets the blocking state of the control

CodePage Gets and sets the code page used when reading and writing text

Command Gets and sets the command to be executed on the server

HostAddress Gets and sets the IP address of the server

HostName Gets and sets the name of the server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsReadable Return if data can be read from the server without blocking

IsWritable Return if data can be sent to the server without blocking

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

Password Gets and sets the password for the current user

RemotePort Gets and sets the port number for a remote connection

Terminal Gets and sets the terminal type used by the control

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

UserName Gets and sets the current user name

Version Return the current version of the object

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnConnect, OnDisconnect,
OnRead and OnWrite are only fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, IsReadable Property, IsWritable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CodePage Property  

 

Gets and sets the code page used when reading and writing text.

Syntax
object.CodePage [= value ]

Remarks
The CodePage property is an integer value which specifies how strings are encoded when data is
sent or received. Any valid code page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale. This is the default encoding type.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. It is not recommended that you use this code page unless
you know that the remote host is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available  code page identifiers can be found in Microsoft's documentation for
the Win32 API.

All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to
as "octets" in networking terminology. However, the internal string type used by ActiveX controls
are Unicode where each character is represented by 16 bits. To send and receive data using
strings, these Unicode strings are converted to a stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale,
mapping the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into

 

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers


a string buffer, the stream of bytes received from the remote host are converted to Unicode
before they are returned to your application.

If you are exchanging text with another system and it appears to corrupted or characters are
being replaced with question marks or other symbols, it is likely the system is sending text which is
using a different character encoding. Most services use UTF-8 encoding to represent non-ASCII
characters and selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a
string data type is not recommended when reading or writing binary data to a
socket. If possible, you should always use a byte array as the buffer parameter for the
Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, the control defaults to using the code page for the current locale.
This property value directly corresponds to Windows code page identifiers, and will accept any
valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Data Type
Integer (Int32)

See Also
Read Method, Write Method



 Command Property  

 

Gets and sets the command to be executed on the server.

Syntax
object.Command [= command ]

Remarks
The Command property sets the default command string that will be sent to the server when the
Execute method is called and no command is explicitly specified as an argument.

Data Type
String

See Also
Password Property, RemotePort Property, UserName Property, Execute Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of true if the control is connected with a
server, otherwise the property has a value of false.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsReadable Property  

 

Return if data can be read from the server without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the server without blocking. For
non-blocking connections, this property can be checked before the application attempts to read
the data, preventing an error.

Data Type
Boolean

See Also
IsConnected Property, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Return if data can be sent to the server without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written without blocking. For non-blocking
connections, this property can be checked before the application attempts to send data to the
server, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
send data without an error. The next operation may result in an stErrorOperationWouldBlock or
stErrorOperationInProgress error. The application must treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
IsReadable Property, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password used to authenticate the user. This property is
used as the default value for the Connect method if no password is specified as an argument.

Data Type
String

See Also
UserName Property, Execute Method, Login Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

The following values are the default port numbers used by the control:

Value Constant Description

512 rshPortExec A connection is established with the server using port 512, the
rexec service. This service requires that the client provide a
username and password to execute the specified command.

513 rshPortLogin A connection is established with the server using port 513, the
rlogin service. This service is similar Telnet in that it provides an
interactive login session. The client is provided with a command
prompt and can enter commands which are executed on the
server.

514 rshPortRshell A connection is established with the server using port 514, the
rshell service. This service uses host equivalence to authenticate
the user. With host equivalence, the server considers the client
to be equivalent to itself, and as long as the specified user exists
on the server, the client is permitted to execute commands on
behalf of the user without requiring a password. Host
equivalence is configured by the server administrator.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property, Execute Method, Login Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Terminal Property  

 

Gets and sets the terminal type used by the control.

Syntax
object.Terminal [= termtype ]

Remarks
The Terminal property specifies the terminal type of the server for display purposes. On UNIX
based systems, the terminal name corresponds to a termcap or terminfo entry as set in the TERM
environment variable. On Windows based systems which implement the rlogin service, this
property may be ignored and the server will assume that the client is capable of displaying ANSI
escape sequences. On VMS systems, the terminal name should correspond to the terminal type
used with the SET TERMINAL/DEVICE command.

If this property is set to an empty string and no terminal type is specified when the Login method
is called, a default terminal type named "unknown" will be used. On most UNIX and VMS systems
this defines a terminal which is not capable of cursor positioning using control or escape
sequences. This terminal type may not be recognized and an error may be displayed when the
user logs in indicating that the terminal type is invalid.

Refer to the documentation for the server system to determine what terminal type names are
available to you. Remember that on UNIX systems, the terminal type is case-sensitive. Some of the
more common terminal types are:

Terminal Type Description

ansi This terminal type is usually available on UNIX based servers. This
specifies that the client is capable of displaying standard ANSI escape
sequences for cursor control.

dumb This terminal type typically specifies a terminal display which does not
support control or escape sequences for cursor positioning. If you do
not want escape sequences embedded in the data stream and the
server returns an error if the terminal type is not specified, try using this
terminal type.

pcansi This terminal type is usually available on UNIX based servers. This
specifies that the client is a using a PC terminal emulator that supports
basic ANSI escape sequences for cursor control. This may also enable
escape sequences which can set the display colors.

vt100 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT100. This specifies that the client is capable of emulating a DEC
VT100 terminal. The VT100 supports many of the same cursor control
sequences as an ANSI terminal.

vt220 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT220. This specifies that the client is capable of emulating a DEC
VT220 terminal, which is a later version of the VT100.

vt320 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-

 



VT320. This specifies that the client is capable of emulating a DEC
VT320 terminal, which is similar to the VT100 and VT220 and provides
advanced features such as the ability to set display colors.

xterm This terminal type is may be available on UNIX based servers which
have X Windows installed. This specifies that the client is a using the X
Windows xterm emulator which supports standard ANSI escape
sequences for cursor control.

Data Type
String

See Also
UserName Property, Login Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

RshClient1.ThrowError = False
nError = RshClient1.Connect(strHostName)

If nError > 0 Then
    MsgBox RshClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

RshClient1.ThrowError = True
RshClient1.Connect strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 controlTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 controlTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 controlTraceWarning Only those function calls which fail, or return values
which indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 controlTraceHexDump All functions calls are written to the trace file, plus all
the data that is sent or received is displayed in both
ASCII and hexadecimal format. This is useful for
examining the actual byte stream that is exchanged
between the application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= username ]

Remarks
The UserName property specifies the user that is logging in to the server, and is required for
authentication purposes. This property is used as the default value for the Connect method if no
password is specified as an argument.

Data Type
String

See Also
Password Property, Execute Method, Login Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Remote Command Control Methods  

 

Method Description

Cancel Cancels the current blocking network operation

Disconnect Terminate the connection with a server

Execute Execute the specified command on the server

Initialize Initialize the control and validate the runtime license key

Login Establish an interactive terminal session for the specified user

Read Return data read from the server

Reset Reset the internal state of the control

Search Search for a specific character sequence in the data stream

SendKey Send a key code to the server

Uninitialize Uninitialize the control and release any system resources that were allocated

Write Write data to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Disconnect Method, Reset Method, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
IsConnected Property, Execute Method, Login Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Execute Method  

 

Execute the specified command on the server.

Syntax
object.Execute( [RemoteHost], [RemotePort], [UserName], [Password], [Command], [Timeout],
[Options] )

Parameters
RemoteHost

A optional string argument which specifies the name of the server to connect to. The string may
either be an IP address or a fully qualified domain name. If the argument is omitted, the value of
the HostAddress or HostName property will be used.

RemotePort

An optional integer argument which specifies the port number to connect to. This method may
be used to either connect to the rexec service or the rshell service, and which service is selected
depends on the port number provided. If this argument is omitted, the value of the
RemotePort property will be used.

Value Constant Description

512 rshPortExec A connection is established with the server using port 512, the
rexec service. This service requires that the client provide a
username and password to execute the specified command.

514 rshPortRshell A connection is established with the server using port 514, the
rshell service. This service uses host equivalence to authenticate
the user. With host equivalence, the server considers the client
to be equivalent to itself, and as long as the specified user exists
on the server, the client is permitted to execute commands on
behalf of the user without requiring a password. Host
equivalence is configured by the server administrator.

UserName

An optional string argument which specifies the username which used to authenticate the client
session. If this argument is omitted, the value of the UserName property will be used.

Password

An optional string argument which specifies the password to be used to authenticate the user. If
this argument is omitted, the value of the Password property will be used. A password is only
used if the client is connecting to the rexec service. The rshell service uses host equivalence to
authenticate the user and this argument will be ignored.

Command

An optional string argument which specifies the command to be executed on the server. If this
argument is omitted, the value of the Command property will be used.

Timeout

An optional integer argument which specifies the number of seconds that the client will wait for
a response from the server. If this argument is omitted, the value of the Timeout property will
be used. This value is only used for synchronous connections where the Blocking property is
set to True.

 



Options

An optional integer argument which specifies one or more connection options. This argument is
reserved for future use and should be omitted.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Execute method executes the specified command on a server. Output from the command
may be read using the Read method. Input can be supplied to the program using the Write
method. To search for a specific sequence of bytes in the output returned by the server, use the
Search method.

See Also
Disconnect Method, Login Method, Read Method, Search Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set rshClient = CreateObject("SocketTools.RshClient.11")

nError = rshClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Login Method  

 

Establish an interactive terminal session for the specified user.

Syntax
object.Login( [RemoteHost], [RemotePort], [UserName], [Timeout], [Options] )

Parameters
RemoteHost

A optional string argument which specifies the name of the server to connect to. The string may
either be an IP address or a fully qualified domain name. If the argument is omitted, the value of
the HostAddress or HostName property will be used.

RemotePort

An optional integer argument which specifies the port number to connect to. If this argument is
omitted, the value of the RemotePort property will be used. A remote port of zero specifies
that port 513 should be used, which is the standard port number for the rlogin service.

UserName

An optional string argument which specifies the username which should be used to authenticate
the client session. If this argument is omitted, the value of the UserName property will be used.

Timeout

An optional integer argument which specifies the number of seconds that the client will wait for
a response from the server. If this argument is omitted, the value of the Timeout property will
be used. This value is only used for synchronous connections where the Blocking property is
set to True.

Options

An optional integer argument which specifies one or more connection options. This argument is
reserved for future use and should be omitted.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Login method logs the specified user in on the server. Note that no password is provided to
the server. This is because the remote login service uses user equivalence. If the client system is
recognized by the server as being equivalent, the login will proceed directly. If the client system is
not recognized, the server will prompt the user for a password. For more information about user
equivalence and the remote login service, refer to your server's operating system documentation.

Output from the command may be read using the Read method. Input can be supplied to the
program using the Write method. To search for a specific sequence of bytes in the output
returned by the server, use the Search method.

See Also
Disconnect Method, Execute Method, Read Method, Search Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Read Method  

 

Return data read from the server.

Syntax
object.Read( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned as
a string of characters. This is the most appropriate data type to use if the server is sending data
that consists of printable characters. If the server is sending binary data, it is recommended that
a Byte array be used instead.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the server is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will stop until data is returned by the server
or the connection is closed. Note that it is possible for the returned data to contain embedded null
characters.

See Also
IsConnected Property, IsReadable Property, Write Method, OnRead Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Search Method  

 

Search for a specific character sequence in the data stream.

Syntax
object.Search( String, [Buffer], [Length], [Options] )

Parameters
String

A string argument which specifies the sequence of characters to search for in the data stream.
When the control encounters this sequence, the method will return.

Buffer

An optional string or byte array buffer that will contain the output sent by the server, up to and
including the search string character sequence. If this argument is omitted, the control will still
search for the character sequence but any output sent by the server will be discarded.

Length

An optional integer value which specifies the maximum number of bytes of data to store in the
buffer. If this argument is omitted, no limit will be placed on the amount of output buffered by
the control.

Options

An optional integer argument which is reserved for future use. This argument should be
omitted.

Return Value
This method returns a Boolean value. A return value of true indicates that the search string was
found in the data stream. A return value of False indicates that the search string was not found in
the amount of time specified by the Timeout property or that the server closed the connection.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when
it is found. This is useful when the client wants to automate responses to the server, such as
executing a command and processing the output. The function collects the output from the server
and stores it in a buffer provided by the caller. When the function returns, the buffer will contain
everything sent by the server up to and including the search string.

See Also
IsReadable Property, Timeout Property, Execute Method, Login Method, Read Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendKey Method  

 

Send a key code to the server.

Syntax
object.SendKey( Key )

Parameters
Key

A value which specifies the key code to send to the server. This may be a single byte, in which
case it is sent to the server as-is. If a numeric value is specified, then this is considered to be an
ASCII character value and it is sent to the server as a single byte. The value must be between 1
and 255. If the key code value is 0, then the method returns without sending any data. If the
value is greater than 255, an error will be raised. If the Key argument is a string, then the
method will send that string to the server. An empty string is ignored and the method will return
without sending any data. An error will be returned if the string is longer than 128 bytes.

Return Value
This method will return a value of true if the key code was successfully sent to the server. If the key
cannot be sent, the method will return False and the LastError property will contain the error
code that indicates the reason for the failure. This method will also return False if the key code
value is zero or an empty string is passed by the caller.

Remarks
The SendKey method sends a key code to the server. This method is useful if the application
needs to send a single character to the server, as opposed to using the Write method which
should be used for sending large amounts of data.

The strings sent by the SendKey method are typically short escape sequences which are
generated by a terminal emulator when the user presses a special key, such as a function key. For
example, a DEC VT100 terminal sends the escape sequence <ESC>[M when the user presses the
F1 function key. To simulate this, those three bytes could be passed as the Key value.

Example
The following example demonstrates how to use the SendKey method in conjunction with the
KeyMapped and KeyPress events in the Terminal Emulator control:

Private Sub Terminal1_KeyMapped(KeyIndex As Integer, Shift As Integer, KeyString 
As String)
    RshClient1.SendKey KeyString
End Sub

Private Sub Terminal1_KeyPress(KeyAscii As Integer)
    RshClient1.SendKey KeyAscii
End Sub

See Also
IsWritable Property, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the server.

Syntax
object.Write( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the server is
expecting binary data, it is recommended that a Byte array be used instead.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the server, or -1 if an error was
encountered.

Remarks
The Write method sends the data in buffer to the server. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is blocking, the application will wait until the data can be sent. If the control
is non-blocking and the write fails because it could not send all of the data to the server, the
OnWrite event will be fired when the server can accept data again.

See Also
IsConnected Property, IsWritable Property, Timeout Property, Read Method, SendKey Method,
OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Remote Command Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnRead This event is generated when data is available to be read

OnTimeout This event is generated when a blocking operation times out

OnWrite This event is generated when data can be written to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a server as a result of a
Connect method call. This event is only triggered when the Blocking property is set to False.

See Also
Blocking Property, Execute Method, Login Method, OnDisconnect Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server. This
event is only triggered when the Blocking property is set to False.

When the OnDisconnect event fires, it is possible that there may still be buffered data available to
read from the server. Before disconnecting from the server, the application should attempt to read
any remaining data until the Read method returns a value of zero, or returns an error indicating
that the operation would block.

See Also
Blocking Property, IsConnected Property, IsReadable Property, Disconnect Method, Read Method,
OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ([Index As Integer] )

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only triggered when the Blocking
property is set to False.

See Also
IsReadable Property, Read Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property. This event is only triggered when the Blocking property is
set to True.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ( [Index As Integer] )

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
triggered when the Blocking property is set to False.

See Also
IsWritable Property, Read Method, SendKey Method, Write Method, OnConnect Event, OnRead
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Simple Mail Transfer Protocol Control

Submit email messages for delivery to one or more recipients.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name SmtpClientCtl.SmtpClient

File Name CSMTPX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.SmtpClient.11

ClassID 87388321-699D-4E44-8088-E6D6F7ACB8E8

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 821, RFC 1425, RFC 1869, RFC 2821

Overview
The Simple Mail Transfer Protocol (SMTP) enables applications to deliver email messages to one or
more recipients. The control provides an interface for addressing and delivering messages, and
extended features such as user authentication and delivery status notification. Unlike Microsoft's
Messaging API (MAPI) or Collaboration Data Objects (CDO), there is no requirement to have
certain third-party email applications installed or specific types of servers installed on the local
system. The control can be used to deliver mail through a wide variety of systems, from standard
UNIX based mail servers to Windows systems running Exchange or Lotus Notes and Domino.

Using this control, messages can be delivered directly to the recipient, or they can be routed
through a relay server, such as an Internet service provider's mail system. The SocketTools
MailMessage control can be integrated with this library in order to provide an extremely simple,
yet flexible interface for composing and delivering messages.

This control supports secure connections using the standard SSL and TLS protocols. Both implicit
and explicit SSL connections are supported, as well as client certificates used for authentication.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)



installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Simple Mail Transfer Protocol Control Properties  

 

Property Description

AuthType Gets and sets the method used to authenticate the user

AutoResolve Determines if host names and IP addresses are automatically resolved

BearerToken Gets and sets the OAuth 2.0 bearer token used for authentication

Blocking Gets and sets the blocking state of the control

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the client certificate

CertificatePassword Gets and sets the password associated with the client certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the client certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was issued

CertificateUser Gets and sets the user that owns the client certificate

CipherStrength Return the length of the key used by the encryption algorithm

CurrentDate Return the current date in the standard format used by email messages

Extended Enable support for extended SMTP commands

HashStrength Return the length of the message digest that was selected

HostAddress Gets and sets the IP address of the server

HostName Gets and sets the name of the server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsWritable Return if data can be sent to the server without blocking

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

LocalDomain Gets and sets the local domain name

Options Gets and sets the options that are used in establishing a connection

Password Gets and sets the password for the current user

RemotePort Gets and sets the port number for a remote connection

ResultCode Return the result code of the previous action

ResultString Return a string describing the results of the previous action

ReturnReceipt Enable or disable delivery status notification

Secure Set or return if a connection to the server is secure

SecureCipher Return the encryption algorithm used to establish the secure connection with the server

 



SecureHash Return the message digest selected when establishing the secure connection with the server

SecureKeyExchange Return the key exchange algorithm used to establish the secure connection with the server

SecureProtocol Gets and sets the security protocol used to establish the secure connection with the server

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

UserName Gets and sets the current user name

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AuthType Property  

 

Gets and sets the method used to authenticate the user.

Syntax
object.AuthType [= type ]

Remarks
The AuthType property specifies the type of authentication that should be used when the client
connects to the mail server. The following authentication methods are supported:

Value Constant Description

0 smtpAuthLogin The client will authenticate using the AUTH LOGIN
command. This encodes the username and password,
however the credentials are not encrypted and it is
recommended you use a secure connection. This is the
default method accepted by most mail servers and is the
preferred authentication type for most clients.

1 smtpAuthPlain The client will authenticate using the AUTH PLAIN
command. This encodes the username and password,
however the credentials are not encrypted and it is
recommended you use a secure connection. The server
must support the PLAIN Simple Authentication and
Security Layer (SASL) mechanism as defined in RFC 4616.

3 smtpAuthXOAuth2 The client will authenticate using the AUTH XOAUTH2
command. This authentication method does not require
the user password, instead the BearerToken property
must specify the OAuth 2.0 bearer token issued by the
service provider. The application must provide a valid
access token which has not expired or the user
authentication will fail.

4 smtpAuthBearer The client will authenticate using the AUTH
OAUTHBEARER command as defined in RFC 7628. This
authentication method does not require the user
password, instead the BearerToken property must specify
the OAuth 2.0 bearer token issued by the service provider.
The application must provide a valid access token which
has not expired or the user authentication will fail.

Data Type
Integer (Int32)

Remarks
The default authentication method is smtpAuthLogin and this is accepted by most mail servers. If
you attempt to use an authentication method which is not supported by the server, the
Authenticate method will fail and the last error code will be set to
stErrorInvalidAuthenticationType.

All authentication methods require the mail server to support the standard service extensions for

 



authentication as specified in the RFC 4954. The server must support the ESMTP protocol
extensions and the AUTH command. A user name and password are required for authentication. If
you wish to authenticate without a user password, you must use one of the OAuth 2.0
authentication methods.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an access token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the access token using the appropriate scope for the service.
Obtaining the initial token will typically involve interactive confirmation on the part of the user,
requiring they grant permission to your application to access their mail account.

The smtpAuthXOAuth2 and smtpAuthBearer authentication methods are similar, but they are
not interchangeable. Both use an OAuth 2.0 bearer token to authenticate the client session, but
they differ in how the token is presented to the server. It is currently preferable to use the
XOAUTH2 method because it is more widely available and some service providers do not yet
support the OAUTHBEARER method.

Changing the value of the BearerToken property will automatically set the current authentication
method to use OAuth 2.0.

See Also
BearerToken Property, Password Property, UserName Property, Authenticate Method, Connect
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 BearerToken Property  

 

Gets and sets the OAuth 2.0 bearer token for the current user.

Syntax
object.BearerToken [= token ]

Remarks
The BearerToken property specifies the OAuth 2.0 bearer token used to authenticate the user.
This property is used as the default value for the Authenticate method if the token is not
provided as an parameter.

Assigning a value to this property will change the current authentication method to use OAuth 2.0
if necessary.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an bearer token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the token using the appropriate scope for the service. Obtaining
the initial token will typically involve interactive confirmation on the part of the user, requiring they
grant permission to your application to access their mail account.

Your application should not store an OAuth 2.0 bearer token for later use. They have a relatively
short lifespan, typically about an hour, and are designed to be used with that session. You should
specify offline access as part of the OAuth 2.0 scope if necessary and store the refresh token
provided by the service. The refresh token has a much longer validity period and can be used to
obtain a new bearer token when needed.

If the current authentication method does not use OAuth 2.0, this property will return an empty
string and you should check the value of the Password property to obtain the current user's
password. Refer to the AuthType property for more information on the available authentication
methods.

Data Type
String

See Also
AuthType Property, Password Property, UserName Property, Authenticate Method, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnConnect, OnDisconnect
and OnWrite are only fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, IsWritable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateExpires Property  

 

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssued Property  

 

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssuer Property  

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function
     End If



      nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the name of the company who issued the server
certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = SmtpClient1.CertificateIssuer
If Len(strIssuer) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strCompanyName = GetCertNameValue(strIssuer, "O")
     MsgBox "This certificate was issued by " & strCompanyName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the client certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the certificate that should be used to
establish the connection with the server. It is only required that you set this property value if the
server requires a client certificate for authentication. If this property is not set, a client certificate
will not be provided to the server. If a certificate name is specified, the certificate must have a
private key associated with it, otherwise the connection attempt will fail because the control will be
unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the client certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStatus Property  

 

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property returns an integer value which identifies the status of the server
certificate. This property may return one of the following values:

Constant Value Description

stCertificateNone 0 No certificate information is available. A secure
connection was not established with the server.

stCertificateValid 1 The certificate is valid.

stCertificateNoMatch 2 The certificate is valid, however the domain name
specified in the certificate does not match the domain
name of the site that the client has connected to. This is
typically the case if the HostAddress property is used
rather than the HostName property. It is
recommended that the client examine the
CertificateSubject property to determine the domain
name of the site that the certificate was issued for.

stCertificateExpired 3 The certificate has expired and is no longer valid. The
client can examine the CertificateExpires property to
determine when the certificate expired.

stCertificateRevoked 4 The certificate has been revoked and is no longer valid.
It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateUntrusted 5 The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the local
host. It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateInvalid 6 The certificate is invalid. This typically indicates that the
internal structure of the certificate is damaged. It is
recommended that the client application immediately
terminate the connection if this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
Integer (Int32)

Example

 



The following example establishes a secure connection to a server:

SmtpClient1.HostName = strHostName
SmtpClient1.Secure = True

nError = SmtpClient1.Connect()
If nError > 0 Then
     MsgBox "Unable to connect to server " & strHostName, vbExclamation
     Exit Sub
End If

If SmtpClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          SmtpClient1.Disconnect
          Exit Sub
     End If
End If

SmtpClient1.Disconnect

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the client certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the client certificate that should
be used when establishing a secure connection with the server. The certificate may either be
stored in the registry or in a file. If the certificate is stored in the registry, then this property should
be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateSubject Property  

Returns information about the organization that the server certificate was issued to.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the subject's company or country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function



 

     End If

     nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the domain name that the server certificate was issued
for:

Dim strSubject As String
Dim strDomainName As String

strSubject = SmtpClient1.CertificateSubject
If Len(strSubject) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strDomainName = GetCertNameValue(strSubject, "CN")
     MsgBox "This certificate was issued for " & strDomainName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus

 



Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the client certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the client certificate that will be used to establish
a secure connection with the server. If this property is not set, the certificate store for the current
user will be used when searching for the certificate. If this property is used to specify another user,
the process must have the appropriate permission to access the registry location that contains the
client certificate. On Windows Vista and later versions of the operating system, this requires that
the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CurrentDate Property  

 

Return the current date in the standard format used by email messages.

Syntax
object.CurrentDate

Remarks
The CurrentDate property returns the current date and time in a format that is commonly used in
email messages.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Extended Property  

 

Enable support for extended SMTP commands.

Syntax
object.Extended [= { True | False } ] ]

Remarks
The Extended property determines if the control should attempt to use extended SMTP
commands. This is required to support options such as authentication, delivery status notification
and message sizing.

Note that this property should be set before establishing a connection with the server using the
Connect method. If the server does not support extended (ESMTP) features, the property value
will be reset to False after the connection has been made.

Data Type
Boolean

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of true if the control is connected with a
server, otherwise the property has a value of false.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Return if data can be sent to the server without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written without blocking. For non-blocking
connections, this property can be checked before the application attempts to send data to the
server, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
send data without an error. The next operation may result in an stErrorOperationWouldBlock or
stErrorOperationInProgress error. The application must treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalDomain Property  

 

Gets and sets the local domain name.

Syntax
object.LocalDomain [= domain ]

Remarks
The LocalDomain returns the local domain name used when the client identifies itself to the mail
server. If this property is an empty string, then the control will attempt to automatically determine
the appropriate domain name to use based on the system configuration. Setting this property will
cause the control to use that value when identifying itself to the server.

This property should only be set if it is absolutely necessary. In most cases, it is preferable to leave
this property undefined and allow the control to automatically determine the correct domain
name to use. Setting an invalid domain name may cause the mail server to reject the connection.

Data Type
String

See Also
HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Options Property  

 

Gets and sets the options that are used in establishing a connection.

Syntax
object.Options [= options ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when connecting to the server. The property
value is created by using a bitwise operator with one or more of the following values:

Value Constant Description

0 smtpOptionNone No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used
and the client will not attempt to use extended
(ESMTP) features of the protocol. Note that if
the mail server requires authentication, the
smtpOptionExtended option must be
specified.

1 smtpOptionExtended Extended SMTP commands should be used if
possible. This option enables features such as
authentication and delivery status notification.
If this option is not specified, the library will not
attempt to use any extended features. This
option is automatically enabled if the
connection is established on port 587 because
submitting messages for delivery using this
port typically requires client authentication.

&H400 smtpOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 smtpOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This
option only affects connections using either
the SSL or TLS protocols.

&H1000 smtpOptionSecureExplicit This option specifies that a secure connection
should be established with the server and
requires that the server support either the SSL
or TLS protocol. This option initiates the secure
session using the STLS command.

 



&H2000 smtpOptionSecureImplicit This option specifies the client should attempt
to establish a secure connection with the
server. It should only be used when the server
expects an implicit SSL connection or does not
implement RFC 2595 where the STLS
command is used to negotiate a secure
connection with the server.

&H8000 smtpOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option
is specified, the client will allow connections
using TLS 1.0 and cipher suites that use RC4,
MD5 and SHA1.

&H40000 smtpOptionPreferIPv6 This option specifies the client should prefer
the use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address.
This option is ignored if the local system does
not have IPv6 enabled, or when the hostname
can only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this
option has been specified.

Data Type
Integer (Int32)

See Also
Extended Property, Secure Property, Connect Method



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password used to authenticate the user. This property is
used as the default value for the Authenticate method if no password is specified as an
argument.

Refer to the AuthType property for more information on the available authentication methods. If
you are using the OAuth 2.0 authentication method, this property should not be set to the user's
password. Instead, you should set the BearerToken property to the OAuth 2.0 access token
issued by the mail service provider. Note that these access tokens can be much larger than your
typical password and are only valid for a limited period of time.

You can use the Password property to specify an OAuth 2.0 bearer token. However, it is
recommended that you use the BearerToken property instead of assigning it to this property. It
will ensure compatibility with future versions of the control and make it clear in your code you are
using an OAuth 2.0 bearer token and not a password. If the AuthType property specifies one of
the OAuth 2.0 authentication methods, this property will return the bearer token.

Data Type
String

See Also
BearerToken Property, UserName Property, Authenticate Method, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server. For standard connections, the default port number is 25. An alternative
port is 587, which is commonly used by authenticated clients to submit messages for delivery. For
secure connections, the default port number is 465. If the secure port number is specified, an
implicit SSL/TLS connection will be established by default.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultCode Property  

 

Return the result code of the previous action.

Syntax
object.ResultCode

Remarks
The ResultCode read-only property returns the result code of the last action performed by the
client. This property should be checked after the Command method is used to execute a
command on the server to determine if the operation was successful. Result codes are three-digit
numeric values returned by the server and may be broken down into the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being
initiated, and the client should expect another reply from the server before
proceeding.

200-
299

Positive completion result. This indicates that the server has successfully
completed the requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot
complete until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action
did not take place, but the error condition is temporary and may be attempted
again.

500-
599

Permanent negative completion result. This indicates that the requested action
did not take place.

It is important to note that while some result codes have become standardized, not all servers
respond to commands using the same result codes. For example, one server may respond with a
result code of 221 to indicate success, while another may respond with a value of 235. It is
recommended that applications check for ranges of values to determine if a command was
successful, not a specific value.

Data Type
Integer (Int32)

See Also
ResultString Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ResultString Property  

 

Return a string describing the results of the previous action.

Syntax
object.ResultString

Remarks
The ResultString read-only property returns the result string from the last action taken by the
client. This string is generated by the server, and typically is used to describe the result code. For
example, if an error is indicated by the result code, the result string may describe the condition
that caused the error.

Data Type
String

See Also
ResultCode Property, Command Method, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReturnReceipt Property  

 

Enable or disable delivery status notification.

Syntax
object.ReturnReceipt [= { True | False } ] ]

Remarks
The ReturnReceipt property enables or disables delivery status notification (DSN) by the mail
server. If the property is set to True, a mail message will be automatically returned to the sender
indicating if the message was delivered successfully, unsuccessfully or delayed by the mail server. If
the property is set to False, no delivery status information is sent back to the sender.

Note that delivery status notification is not available on all servers. It is also important to note that
a message indicating that delivery was successful does not mean that the message was actually
read by the recipient, only that it was delivered to their mailbox.

Data Type
Boolean

See Also
AddRecipient Method, CreateMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if a connection to the server is secure.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application must set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may request files or
submit queries to the server as with standard connections.

It is strongly recommended that any application that sets this property True use error handling to
trap an errors that may occur. If the control is unable to initialize the security libraries, or otherwise
cannot create a secure session for the client, an error will be generated when this property value is
set.

Data Type
Boolean

Example
The following example establishes a secure connection to a server:

SmtpClient1.HostName = strHostName
SmtpClient1.RemotePort = 587
SmtpClient1.UserName = strUserName
SmtpClient1.Password = strPassword
SmtpClient1.Secure = True

nError = SmtpClient1.Connect()
If nError > 0 Then
    MsgBox "Unable to connect to server " & strHostName, vbExclamation
    Exit Sub
End If

If SmtpClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          SmtpClient1.Disconnect
          Exit Sub
     End If
End If

See Also
CertificateStatus Property, Connect Method

 



 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 stCipherNone No cipher has been selected. This is not a secure connection
with the server.

1 stCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

2 stCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

4 stCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 stCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 stCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 stCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 stCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 stCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 stCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Value Constant Description

1 stHashMD5 The MD5 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

2 stHashSHA1 The SHA-1 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

4 stHashSHA256 The SHA-256 algorithm has been selected.

8 stHashSHA384 The SHA-384 algorithm has been selected.

16 stHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 stKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 stKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 stKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 stKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 stKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange algorithm
was selected. This is a variant of the Diffie-Hellman
algorithm which uses elliptic curve cryptography. This
key exchange algorithm is only supported on Windows
XP SP3 and later versions of the operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

 



established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

SmtpClient1.ThrowError = False
nError = SmtpClient1.Connect(strHostName)

If nError > 0 Then
    MsgBox SmtpClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

SmtpClient1.ThrowError = True
SmtpClient1.Connect strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 smtpTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 smtpTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 smtpTraceWarning Only those function calls which fail, or return values
which indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 smtpTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= username ]

Remarks
The UserName property specifies the user that is logging in to the server, and is required for
authentication purposes. This property is used as the default value for the Connect method if no
password is specified as an argument.

Data Type
String

See Also
Password Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Simple Mail Transfer Protocol Control Methods  

 

Method Description

AddRecipient Add an address to the recipient list for the current message

AppendMessage Append text to the current message being composed

Authenticate Authenticate the client session

Cancel Cancels the current blocking network operation

CloseMessage Closes the current message

Command Send a custom command to the server

Connect Establish a connection with a server

CreateMessage Begin the composition of a new message to be delivered

Disconnect Terminate the connection with a server

ExpandAddress Expand the specified email address

Initialize Initialize the control and validate the runtime license key

Reset Reset the internal state of the control

SendMessage Send the specified message through the mail server

Uninitialize Uninitialize the control and release any system resources that were allocated

VerifyAddress Verify the specified email address

Write Write data to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AddRecipient Method  

 

Add an address to the recipient list for the current message.

Syntax
object.AddRecipient( Address )

Parameters
Address

A string value that specifies the email address of a recipient.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AddRecipient method adds the specified address to the recipient list for the current
message. This method should be called after the message transaction has begun with a call to the
CreateMessage method. Most servers impose a limit of approximately 100 recipient addresses
that will be accepted for a single message.

See Also
AppendMessage Method, CloseMessage Method, CreateMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AppendMessage Method  

 

Append text to the current message being composed.

Syntax
object.AppendMessage( Message, [Options] )

Parameters
Message

A string or byte array which will contain the article to be posted to the server.

Options

An optional integer value which specifies one or more options. This argument is reserved for
future use and should be omitted.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The AppendMessage method appends the specified text to the current message. This method
will cause the current thread to block until the article transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

This method is useful for composing a message where the application needs to dynamically create
the header, followed by a large amount of text. The message contents should be text, with each
line terminated with a carriage return and linefeed character. Not all mail servers support sending
8-bit characters, so the message contents may need to be encoded if it uses anything other than
standard US ASCII. To append binary data, it must be encoded using either the uucode or base64
(MIME) algorithms. It is recommended that you use the Mail Message control to handle file
attachments and other complex message types.

See Also
AddRecipient Method, CloseMessage Method, CreateMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Authenticate Method  

 

Authenticate the client session.

Syntax
object.Authenticate( [UserName], [Password] )

Parameters
UserName

An optional string argument which specifies the username used to authenticate the client
session. If the argument is omitted, the value assigned to the UserName property will be used
instead.

Password

An optional string argument which specifies the password used to authenticate the client
session. If the argument is omitted, the value assigned to the Password property will be used
instead. If you are using OAuth 2.0 authentication, this parameter specifies the bearer token
provided by the mail service.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Authenticate method is used to authenticate the current client session to the mail server,
ensuring that only valid users may deliver messages through the server. This method uses the
LOGIN authentication mechanism by default and you can specify an alternate authentication
method by setting the the AuthType property.

Authentication requires the server to support the AUTH extended SMTP command and the
Extended property must be set to True. If the server does not support the specified type of
authentication, an error will be returned.

If you with to use OAuth 2.0 for authentication, set the AuthType property to the desired
authentication type prior to calling this method. The connection must be secure, and the server
must advertise its support for OAuth 2.0 or the authentication attempt will fail. This method will
not attempt to automatically refresh an expired token.

See Also
AuthType Property, BearerToken Property, Password Property, UserName Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Disconnect Method, Reset Method, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CloseMessage Method  

 

Closes the current message.

Syntax
object.CloseMessage

Parameters
None.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CloseMessage method closes the current message and completes the submission of the
message to the server. This method is only required if the message is being submitted using the
AppendMessage or Write methods.

See Also
AppendMessage Method, CreateMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Command Method  

 

Send a custom command to the server.

Syntax
object.Command( Command, [Parameters], [Options] )

Parameters
Command

A string which specifies the command to send. Valid commands vary based on the Internet
protocol and the type of server that the client is connected to. Consult the protocol standard
and/or the technical reference documentation for the server to determine what commands may
be issued by a client application.

Parameters

An optional string which specifies one or more parameters to be sent along with the command.
If more than one parameter is required, most Internet protocols require that they be separated
by a single space character. Consult the protocol standard and/or technical reference
documentation for the server to determine what parameters should be provided when issuing a
specific command. If no parameters are required for the command, this argument may be
omitted.

Options

A numeric value which specifies one or more options. Currently this argument is reserved and
should either be omitted, or a value of zero should always be used.

Return Value
A value of zero is returned if the command was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure. To determine the result code returned by the
server in response to the command, read the value of the ResultCode property.

Remarks
The Command method sends a command to the server and processes the result code sent back
in response to that command. This method can be used to send custom commands to a server to
take advantage of features or capabilities that may not be supported internally by the control.

See Also
ResultCode Property, ResultString Property, OnCommand Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

Establish a connection with a server.

Syntax
object.Connect( [RemoteHost], [RemotePort], [UserName], [Password], [Timeout], [Options] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero specifies that the default
port number should be used. For standard connections, the default port number is 25. An
alternative port is 587, which is commonly used by authenticated clients to submit messages for
delivery. For implicit SSL connections, the default port number is 465.

UserName

An optional string argument which specifies the user name to be used with authentication. If this
argument is not specified, it defaults to the value of the UserName property. Note that for
authentication to be performed, the Extended property must be set to True.

Password

An optional string argument which specifies the password to be used with authentication. If this
argument is not specified, it defaults to the value of the Password property. Note that for
authentication to be performed, the Extended property must be set to True.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

A numeric value which specifies one or more options. If this argument is omitted or a value of
zero is specified, a default connection will be established. This argument is constructed by using
a bitwise operator with any of the following values:

Value Constant Description

0 smtpOptionNone No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used
and the client will not attempt to use extended
(ESMTP) features of the protocol. Note that if
the mail server requires authentication, the
smtpOptionExtended option must be
specified.

1 smtpOptionExtended Extended SMTP commands should be used if
possible. This option enables features such as
authentication and delivery status notification.



 

If this option is not specified, the library will not
attempt to use any extended features. This
option is automatically enabled if the
connection is established on port 587 because
submitting messages for delivery using this
port typically requires client authentication.

&H400 smtpOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 smtpOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This
option only affects connections using either
the SSL or TLS protocols.

&H1000 smtpOptionSecureExplicit This option specifies that a secure connection
should be established with the server and
requires that the server support either the SSL
or TLS protocol. This option initiates the secure
session using the STLS command.

&H2000 smtpOptionSecureImplicit This option specifies the client should attempt
to establish a secure connection with the
server. It should only be used when the server
expects an implicit SSL connection or does not
implement RFC 2595 where the STLS
command is used to negotiate a secure
connection with the server.

&H8000 smtpOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option
is specified, the client will allow connections
using TLS 1.0 and cipher suites that use RC4,
MD5 and SHA1.

&H40000 smtpOptionPreferIPv6 This option specifies the client should prefer
the use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address.
This option is ignored if the local system does
not have IPv6 enabled, or when the hostname
can only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this
option has been specified.

 



Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Connect method establishes a connection with the mail server. All arguments are optional. If
a given argument is omitted, then the corresponding property values are used as defaults.
Specifying a username and password only sets the default UserName and Password property
values. If authentication is required, the client must explicitly call the Authenticate method after
the connection has been established.

See Also
Extended Property, HostAddress Property, HostName Property, Options Property, RemotePort
Property, Authenticate Method, Disconnect Method, OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CreateMessage Method  

 

Begin the composition of a new message to be delivered.

Syntax
object.CreateMessage( Sender, [MessageSize] )

Parameters
Sender

A string which specifies the email address of the user sending the message. This typically
corresponds to the address in the From header of the message, but it is not required that they
be the same.

MessageSize

An integer which specifies the size of the message in bytes. If the size of the message is
unknown, this argument should be omitted or passed as value of zero. This argument is ignored
if the server does not support extended features. If the message size is larger than what the
server will accept, this method will fail. Most Internet Service Providers impose a limit on the size
of an email message, typically between 5 and 10 megabytes.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The CreateMessage method begins the composition of a new message to be submitted to the
mail server for delivery. There are several steps that must be followed when dynamically
composing a message using the CreateMessage method:

1. Call the CreateMessage method to begin the message composition. The sender email
address should generally be the same address as the one used in the "From" header field in
the message.

2. Call the AddRecipient method for each recipient of the message. These addresses are
typically specified in the "To" and "Cc" header fields in the message. Additional addresses
may also be be provided which are not specified in the email message itself. This is how one
or more blind carbon copies of a message is delivered. Most servers have a limit on the
total number of recipients that may be specified for a single message. This limit is usually
around 100 addresses.

3. Call the Write method to write the contents of the message to the data stream. The
application may also choose to use the AppendMessage method to write out a large
amount of message data.

4. Call the CloseMessage method to close the message and submit it to the mail server for
delivery.

For applications that do not need to dynamically compose the message and already have the
message contents stored in a file or memory buffer, the SendMessage method is the preferred
method of submitting a message for delivery.

See Also

 



AddRecipient Method, AppendMessage Method, CloseMessage Method, SendMessage Method,
Write Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
IsConnected Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExpandAddress Method  

 

Expand the specified email address.

Syntax
object.ExpandAddress( Address, ExpandedAddress )

Parameters
Address

A string argument which specifies the address to expand.

ExpandedAddress

A string argument which will contain the list of expanded addresses when the method returns.

Return Value
If the method succeeds, it will return a value of true. If it was unable to expand the address, then
the return value will be False. If the method fails, the ResultString property may provide
additional information as to why the failure occurred.

Remarks
The ExpandAddress method requests that the server expand the specified email address.
Typically this is used to expand aliases which refer to a mailing list, returning all of the members of
that list. A server may not support this command, or may restrict its usage. An application should
not depend on the ability to expand addresses.

See Also
VerifyAddress Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set smtpClient = CreateObject("SocketTools.SmtpClient.11")

nError = smtpClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendMessage Method  

 

Submit the specified message to the mail server for delivery.

Syntax
object.SendMessage( Sender, Recipients, Message, [Options] )

Parameters
Sender

A string argument which specifies the email address of the person sending the message. This
typically corresponds to the address in the From header of the message, but it is not required
that they be the same.

Recipients

A string argument which specifies the email address of the person or persons to receive the
message. Multiple addresses may be specified by separating each address with a comma. It
should be noted that this protocol is only concerned with the delivery of a message and not its
contents. Header fields in the message are not parsed to automatically determine the recipients.
This argument should be a concatenation of all recipients, including carbon copies and blind
carbon copies, with each address separated with a comma.

Message

A string argument contains the message to be delivered to the specified recipients. The
message must be text and conform to the basic structure defined in RFC 822. There must be
one or more headers separated by a blank line, followed by the body of the message. Each line
of text must be terminated by a carriage return and linefeed character sequence. Note that
more complex multipart MIME messages may also be used, but it is recommended that you use
the Mail Message control to compose them.

Options

An optional argument that is reserved for future use. This argument should be omitted when
calling this method.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The SendMessage method enables an application to send a formatted email message using the
current mail server. This provides a convenient one-step method of addressing and sending a
message, and is designed to easily integrate with the Mail Message control.

This method will cause the current thread to block until the message transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the OnProgress event will fire periodically,
enabling the application to update any user interface objects such as a progress bar.

Example
The following example demonstrates how to use the SendMessage method, along with the Mail
Message control, to compose and deliver a message:

' Compose a new message
nError = MailMessage1.ComposeMessage(strFrom, _
                                     strTo, _

 



                                     strCc, _
                                     strBcc, _
                                     strSubject, _
                                     strMessageText)
    
If nError > 0 Then
    MsgBox MailMessage1.LastErrorString, vbExclamation
    Exit Sub
End If
    
If MailMessage1.Recipients = 0 Then
    MsgBox "There are no recipients for this message"
    Exit Sub
End If
    
' Connect to the mail server
nError = SmtpClient1.Connect(strMailServer)
If nError > 0 Then
    MsgBox SmtpClient1.LastErrorString, vbExclamation
    Exit Sub
End If
    
' Deliver the message
nError = SmtpClient1.SendMessage(MailMessage1.Sender, 
MailMessage1.AllRecipients, MailMessage1.Message)
If nError > 0 Then
    MsgBox SmtpClient1.LastErrorString, vbExclamation
    SmtpClient1.Disconnect
    Exit Sub
End If
    
' Disconnect
SmtpClient1.Disconnect

See Also
AddRecipient Method, Connect Method, CreateMessage Method, Disconnect Method,
OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 VerifyAddress Method  

 

Verify the specified email address.

Syntax
object.VerifyAddress( Address, VerifiedAddress )

Parameters
Address

A string argument which specifies the address to verify.

VerifiedAddress

A string argument which will contain the verified address when the method returns. This
parameter must be passed by reference.

Return Value
If the method succeeds, it will return a value of true. If it was unable to verify the address, then the
return value will be False. If the method fails, the ResultString property may provide additional
information as to why the failure occurred.

Remarks
The VerifyAddress method requests that the server verify the specified email address. Typically
this is used to verify that a recipient address is valid, and return a fully qualified email address for
that recipient. A server may not support this command, or may restrict its usage. An application
should not depend on the ability to verify addresses.

See Also
ExpandAddress Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the server.

Syntax
object.Write( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the string
contains Unicode characters, it will be automatically converted to use standard UTF-8 encoding
prior to being sent. If you wish to send the data without conversion, use a Byte array as the
buffer instead of a String variable.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the server, or -1 if an error was
encountered.

Remarks
The Write method sends the data in buffer to the server. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is blocking, the application will wait until the data can be sent. If the control
is non-blocking and the write fails because it could not send all of the data to the server, the
OnWrite event will be fired when the server can accept data again.

If the Write method is used to send the message contents to the server, the application must first
call the CreateMessage method to specify the sender and the length of the message, followed by
one or more calls to the AddRecipient method to specify each recipient of the message. When all
of the message text has been submitted to the server, the application must call the CloseMessage
method.

The message text is filtered by the Write method, and it will automatically normalize end-of-line
character sequences to ensure the message meets the protocol requirements. The message itself
must be in a standard RFC 822 or multi-part MIME message format, or the server may reject the
message. Binary data, such as file attachments, should always be encoded. The MailMessage
control can be used to compose and export a message in the correct format, which can then be
submitted to the server.

It is recommended that most applications use the SendMessage method, which submits the
message in a single method call.

See Also
AddRecipient Method, CloseMessage Method, CreateMessage Method, SendMessage Method

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Simple Mail Transfer Protocol Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnCommand This event is generated when the server processes a command issued by the client

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnProgress This event is generated during data transfer

OnTimeout This event is generated when a blocking operation times out

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCommand Event  

 

The OnCommand event is generated when the client sends a command to the server and
receives a reply indicating the results of that command.

Syntax
Sub object_OnCommand( [Index As Integer], ByVal ResultCode As Variant, ByVal ResultString
As Variant )

Remarks
The OnCommand event is generated when the client receives a reply from the server after some
action has been taken. The ResultCode argument contains the numeric result code returned by
the server. The result codes returned from the server fall into one of the following categories:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being
initiated, and the client should expect another reply from the server before
proceeding.

200-
299

Positive completion result. This indicates that the server has successfully
completed the requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot
complete until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action
did not take place, but the error condition is temporary and may be attempted
again.

500-
599

Permanent negative completion result. This indicates that the requested action
did not take place.

The ResultString argument contains the descriptive string returned by the server which describes
the result. The string contents may vary depending on the type of server.

See Also
ResultCode Property, ResultString Property, Command Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a server as a result of a
Connect method call. This event is only triggered when the Blocking property is set to False.

See Also
Blocking Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server. This
event is only triggered when the Blocking property is set to False.

When the OnDisconnect event fires, it is possible that there may still be buffered data available to
read from the server. Before disconnecting from the server, the application should attempt to read
any remaining data until the Read method returns a value of zero, or returns an error indicating
that the operation would block.

See Also
Blocking Property, IsConnected Property, Connect Method, Disconnect Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnProgress Event  

 

The OnProgress event is generated during data transfer.

Syntax
Sub object_OnProgress ( [Index As Integer], ByVal MessageSize As Variant, ByVal
MessageCopied As Variant, ByVal Percent As Variant )

Remarks
The OnProgress event is generated during the transfer of data between the client and server,
indicating the amount of data exchanged. For transfers of large amounts of data, this event can be
used to update a progress bar or other user-interface control to provide the user with some visual
feedback. The arguments to this event are:

MessageSize

The size of the message being transferred in bytes.

MessageCopied

The number of bytes that have been transferred between the client and server.

Percent

The percentage of data that's been transferred, expressed as an integer value between 0 and
100, inclusive.

Note that this event is only generated when a message is delivered using the SendMessage
method. If the client is writing the message data directly to the server using Write method then
the application is responsible for calculating the completion percentage and updating any user
interface controls.

See Also
SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property. This event is only triggered when the Blocking property is
set to True.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ( [Index As Integer] )

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
triggered when the Blocking property is set to False.

See Also
IsWritable Property, Write Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



SocketWrench ActiveX Control

A general purpose TCP/IP networking component for developing client and server applications.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name SocketWrenchCtl.SocketWrench

File Name CSWSKX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.SocketWrench.11

ClassID B2880FA8-3F91-40C1-B8A1-D63FF4B9FF9B

Threading Model Apartment

Help File CSW11HLP.CHM

Dependencies None

Standards RFC 768, RFC 791, RFC 793

Overview
The SocketWrench control provides a simplified interface for the standard Windows Sockets API
used to develop Internet and intranet applications using the TCP/IP protocol. With SocketWrench,
you can create both client and server applications, as well as send and receive UDP datagrams.
SocketWrench also supports secure connections using the standard Secure Sockets Layer (SSL)
and Transport Layer Security (TLS) protocols. Enabling the security features of the control is done
by setting a single property, and all of the data that is exchanged between your application and
the remote host will be encrypted.

Instead of using complex API calls, virtually all network functions can be performed by setting the
control's properties and responding to events. For developers who are not familiar with the details
of Internet programming, SocketWrench can also insulate them from many of the common pitfalls,
without sacrificing functionality or flexibility.

Each instance of the control that you use corresponds to one socket which may or may not be
currently connected to a remote host. If you need access to multiple sockets, you simply create
multiple instances of the control. This is most commonly needed when your application acts a
server and must be able to handle several connections at one time.

Requirements
SocketWrench is a self-registering ActiveX control compatible with any programming language
that supports COM (Component Object Model) and the ActiveX control specification. If you are
using Visual Basic 6.0, you must have Service Pack 6 (SP6) installed. It is recommended that you
install all updates for your development tools.



This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketWrench Control Properties  

 

Property Description

AdapterAddress Returns the IP address associated with the specified network adapter

AdapterCount Returns the number of available local and remote network adapters

AtMark A read-only property that returns True if the next receive will return urgent data

AutoResolve Determines if host names and addresses are automatically resolved

Backlog Gets and sets the number of client connections that may be queued by a listening socket

Blocking Gets and sets the blocking state of the control

Broadcast Determines if datagrams should be broadcast over the network

ByteOrder Gets and sets the byte order in which integer data will be written to and read from the socket

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the security certificate

CertificatePassword Gets and sets the password associated with the certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was issued

CertificateUser Gets and sets the user that owns the client certificate

CipherStrength Return the length of the key used by the encryption algorithm

CodePage Gets and sets the code page used when reading and writing text

ExternalAddress Return the external IP address assigned to the local system

HashStrength Return the length of the message digest that was selected

HostAddress Gets and sets the IP address of the remote host

HostAlias Returns the aliases defined for the current hostname

HostFile Gets and sets the name of an alternate host file

HostName Gets and sets the name of the remote host

InLine Sets or returns if urgent data is received in-line with non-urgent data

Interval Gets and sets the number of milliseconds between calls to the control's timer event

IsBlocked Determine if the control is blocked performing an operation

IsClosed Determine if the connection has been closed by the remote host

IsConnected Determine if the control is connected to a remote host

IsInitialized Determine if the control has been initialized

IsListening Returns if the socket is listening for connections

IsReadable Determine if data can be read from the socket without blocking

IsWritable Determine if data can be written to the socket without blocking

 



KeepAlive Set or return if keep-alive packets are sent on a connected socket

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error that occurred

Linger Gets and sets the number of seconds to wait for the socket to close

LocalAddress Return the IP address of the local host

LocalName Return the name of the local host

LocalPort Gets and sets the port number for a local listening socket

NoDelay Enable or disable the Nagle algorithm

Options Gets and sets the options that are used in establishing a connection

PeerAddress Return the IP address of the remote peer

PeerName Return the name of the remote peer

PeerPort Return the port number of the remote connection or datagram

PhysicalAddress Return the MAC address for the local host's Ethernet or Token Ring adapter

Protocol Gets and sets the protocol that should be used to create the socket

RemotePort Gets and sets the port number for a remote connection

ReservedPort Set or return if a reserved local port number should be allocated

ReuseAddress Set or return if an address can be reused

Secure Set or return if a connection to the remote host is secure

SecureCipher Return the encryption algorithm used to establish a secure connection

SecureHash Return the message digest selected when establishing a secure connection

SecureKeyExchange Return the key exchange algorithm used to establish a secure connection

SecureProtocol Gets and sets the security protocol used to establish a secure connection

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

Urgent Send or receive urgent data

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AdapterAddress Property  

 

Returns the IP address associated with the specified network adapter.

Syntax
object.AdapterAddress(Index)

Remarks
The AdapterAddress property array returns the IP addresses that are associated with the local
network or remote dial-up network adapters configured on the system. The AdapterCount
property can be used to determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and
dial-up adapters will not be listed in a specific order. An application should not make the
assumption that the address returned by AdapterAddress(0) always refers to a local network
adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will return the IP address allocated for that
connection.

When using Visual Studio .NET, you must use the accessor method get_AdapterAddress instead
of the property name, otherwise an error will be returned indicating that it not a member of the
control class.

Data Type
String

See Also
AdapterCount Property, LocalAddress Property, LocalName Property, PhysicalAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AdapterCount Property  

 

Returns the number of available local and remote network adapters.

Syntax
object.AdapterCount

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress
property array to enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will returned IP address allocated for that
connection.

Data Type
Integer (Int32)

See Also
AdapterAddress Property, LocalAddress Property, LocalName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AtMark Property  

 

A read-only property that returns True if the next receive will return urgent data.

Syntax
object.AtMark

Remarks
This property can only be used if the Protocol is swProtocolTcp and the InLine property has been
set to True. Reading this property is the same as using the SIOCATMARK option with the
ioctlsocket function.

Data Type
Boolean

See Also
Urgent Property, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note: When using the domain name service (DNS), setting the HostName or HostAddress
property may cause the thread to block, sometimes for several seconds, until the name or address
is resolved. To prevent this behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostFile Property, HostName Property, Resolve Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Backlog Property  

 

Gets and sets the number of client connections that may be queued by a listening socket.

Syntax
object.Backlog [= backlog ]

Remarks
The Backlog property specifies the maximum size of the queue used to manage pending
connections to the server. If the property is set to value which exceeds the maximum size for the
underlying service provider, it will be silently adjusted to the nearest legal value. There is no
standard way to determine what the maximum backlog value is.

This property must be set to the desired value before the Listen method is called, if the Listen
method is used with default parameters. The default backlog value is 5 on all Windows platforms.
The Windows Server platforms support a maximum backlog value of 200.

Note that this property does not specify the total number of connections that the server
application may accept. It only specifies the size of the backlog queue which is used to manage
pending client connections. Once the client connection has been accepted, it is removed from the
queue.

Data Type
Integer (Int32)

See Also
IsListening Property, OnAccept Event, Accept Method, Listen Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action (such as sending or receiving data) will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking (such as attempting to receive
data when none has been written), an error is generated. Control events such as OnDisconnect,
OnRead and OnWrite are only fired if the socket is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Broadcast Property  

 

Determines if datagrams should be broadcast over the network.

Syntax
object.Broadcast [= { True | False } ]

Remarks
If the Broadcast property is set to a value of true, the datagram written to the socket will be
broadcast to all systems on the network. Use of this property is restricted to the swProtocolUdp
protocol.

Data Type
Boolean

See Also
InLine Property, KeepAlive Property, ReuseAddress Property, Route Property, Protocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/winsock/control/property/route.html


 ByteOrder Property  

 

Gets and sets the byte order in which integer data will be written to and read from the socket.

Syntax
object.ByteOrder [= 0 | 1]

Remarks
The ByteOrder property is used to specify how 16-bit (short) integer and 32-bit (long) integer
data is written to and read from the socket. The default value for this property is 0, which specifies
that integers should be written in the native byte order for the local machine. A value of 1
indicates that integers should be written in network byte order.

When applications write integer values on a socket (instead of string representations of those
values), they should typically be converted to network byte order before they are sent. Likewise,
when an integer value is read, it should then be converted from the network byte order back to
the byte order used by the local machine. The native byte order, also called the host byte order,
should only be used if it can be assured that both the sender and the receiver are running on an
identical or compatible machine architectures (for example, if both systems are Intel-based).

This property will affect how data is read by the Read method and by the Write method, if the
Variant data that is being read or written is recognized as integer data.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateExpires Property  

 

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssued Property  

 

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssuer Property  

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site the
certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function
     End If



      nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the name of the company who issued the server
certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = HttpClient1.CertificateIssuer
If Len(strIssuer) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strCompanyName = GetCertNameValue(strIssuer, "O")
     MsgBox "This certificate was issued by " & strCompanyName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the security certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the client certificate that should be used
to establish the connection with the server, or the name of the server certificate if the control is
being used to create a server application. This property is used in conjunction with the
CertificateStore property to identify the certificate that should be used to create a security
context for the session.

For client applications, it is only required that you set this property value if the server requires a
client certificate for authentication. If this property is not set, a client certificate will not be provided
to the server. The certificate must be designated as a client certificate and have a private key
associated with it, otherwise the connection attempt will fail.

For server applications, it is required that you specify a certificate name if security has been
enabled by setting the Secure property to True. The certificate must be designated as a server
certificate and have a private key associated with it, otherwise the control will be unable to accept
incoming client connections.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStatus Property  

 

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property returns an integer value which identifies the status of the server
certificate. This property may return one of the following values:

Constant Value Description

swCertificateNone 0 No certificate information is available. A secure connection was
not established with the server.

swCertificateValid 1 The certificate is valid.

swCertificateNoMatch 2 The certificate is valid, however the domain name specified in
the certificate does not match the domain name of the site that
the client has connected to. This is typically the case if the
HostAddress property is used rather than the HostName
property. It is recommended that the client examine the
CertificateSubject property to determine the domain name of
the site that the certificate was issued for.

swCertificateExpired 3 The certificate has expired and is no longer valid. The client can
examine the CertificateExpires property to determine when
the certificate expired.

swCertificateRevoked 4 The certificate has been revoked and is no longer valid. It is
recommended that the client application immediately terminate
the connection if this status is returned.

swCertificateUntrusted 5 The certificate has not been issued by a trusted authority, or the
certificate is not trusted on the local host. It is recommended
that the client application immediately terminate the connection
if this status is returned.

swCertificateInvalid 6 The certificate is invalid. This typically indicates that the internal
structure of the certificate is damaged. It is recommended that
the client application immediately terminate the connection if
this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
Integer (Int32)

Example
The following example establishes a secure connection to a server:

SocketWrench1.HostName = strHostName
SocketWrench1.Secure = True

 



nError = SocketWrench1.Connect()
If nError > 0 Then
     MsgBox "Unable to connect to server " & strHostName, vbExclamation
     Exit Sub
End If

If SocketWrench1.CertificateStatus <> swCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                              "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          SocketWrench1.Disconnect
          Exit Sub
     End If
End If

SocketWrench1.Disconnect

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the certificate that should be used
when establishing a secure connection with the server or accepting secure client connections. The
certificate may either be stored in the registry or in a file. If the certificate is stored in the registry,
then this property should be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the certificate will be installed in the user's personal certificate store, and therefore it
is not necessary to set this property value because that is the default location that will be used to
search for the certificate. This property is only used if the CertificateName property is also set to
a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateSubject Property  

Returns information about the organization that the server certificate was issued to.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the subject's company or country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site the
certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function



 

     End If

     nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the domain name that the server certificate was issued
for:

Dim strSubject As String
Dim strDomainName As String

strSubject = HttpClient1.CertificateSubject
If Len(strSubject) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strDomainName = GetCertNameValue(strSubject, "CN")
     MsgBox "This certificate was issued for " & strDomainName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus

 



Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the certificate that will be used to establish a
secure connection with the server or accept secure client connections. If this property is not set,
the certificate store for the current user will be used when searching for the certificate. If this
property is used to specify another user, the process must have the appropriate permission to
access the registry location that contains the client certificate. On Windows Vista and later versions
of the operating system, this requires that the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CodePage Property  

 

Gets and sets the code page used when reading and writing text.

Syntax
object.CodePage [= value ]

Remarks
The CodePage property is an integer value which specifies how strings are encoded when data is
sent or received. Any valid code page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale. This is the default encoding type.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. It is not recommended that you use this code page unless
you know that the remote host is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available  code page identifiers can be found in Microsoft's documentation for
the Win32 API.

All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to
as "octets" in networking terminology. However, the internal string type used by ActiveX controls
are Unicode where each character is represented by 16 bits. To send and receive data using
strings, these Unicode strings are converted to a stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale,
mapping the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into

 

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers


a string buffer, the stream of bytes received from the remote host are converted to Unicode
before they are returned to your application.

If you are exchanging text with another system and it appears to corrupted or characters are
being replaced with question marks or other symbols, it is likely the system is sending text which is
using a different character encoding. Most services use UTF-8 encoding to represent non-ASCII
characters and selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a
string data type is not recommended when reading or writing binary data to a
socket. If possible, you should always use a byte array as the buffer parameter for the
Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, the control defaults to using the code page for the current locale.
This property value directly corresponds to Windows code page identifiers, and will accept any
valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Data Type
Integer (Int32)

See Also
Read Method, ReadLine Method, ReadStream Method, Write Method, WriteLine Method,
WriteStream Method



 ExternalAddress Property  

 

Return the external IP address for the local system.

Syntax
object.ExternalAddress

Remarks
The ExternalAddress property returns the IP address assigned to the router that connects the
local host to the Internet. This is typically used by an application executing on a system in a local
network that uses a router which performs Network Address Translation (NAT). In that network
configuration, the LocalAddress property will only return the IP address for the local system on
the LAN side of the network unless a connection has already been established to a remote host.
The ExternalAddress property can be used to determine the IP address assigned to the router on
the Internet side of the connection and can be particularly useful for servers running on a system
behind a NAT router. Note that you should not assign the LocalAddress property to the value
returned by the ExternalAddress property. If the server is running behind a NAT router, the
router must be configured to forward incoming connections to the appropriate address on the
LAN.

Using this property requires that you have an active connection to the Internet; checking the value
of this property on a system that uses dial-up networking may cause the operating system to
automatically connect to the Internet service provider. The control may be unable to determine
the external IP address for the local host for a number of reasons, particularly if the system is
behind a firewall or uses a proxy server that restricts access to external sites on the Internet. If the
external address for the local host cannot be determined, the property will return an empty string.

If the control is able to obtain a valid external address for the local host, that address will be
cached for sixty minutes. Because dial-up connections typically have different IP addresses
assigned to them each time the system is connected to the Internet, it is recommended that this
property only be used in conjunction with persistent broadband connections.

It is important to note that checking this property value may cause the thread to block until the
external IP address can be resolved and should never be used in conjunction with non-blocking
(asynchronous) socket connections. If you need to check this property value in an application
which uses asynchronous sockets, it is recommended that you create a new thread and access the
property from within that thread.

Data Type
String

See Also
HostAddress Property, LocalAddress Property, PeerAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Handle Property  

 

Returns the descriptor for the current socket.

Syntax
object.Handle

Remarks
The Handle read-only property returns the descriptor of the socket being used by the control. If
the control is not connected to a remote host, a value of -1 is returned. This property can be used
in conjunction with direct calls to the Windows Sockets API.

When using Visual Studio .NET, you must use the property name CtlHandle instead.

Data Type
Integer (Int32)

See Also
Connect Method, Listen Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the remote host.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a remote system that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostFile Property, HostName Property, LocalAddress Property, Resolve
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAlias Property  

 

Returns the aliases defined for the current hostname.

Syntax
object.HostAlias(Index)

Remarks
The HostAlias property array returns the aliases assigned to the host specified by the
HostAddress or HostName properties. If the host address or name can be resolved, the first
element in the HostAlias array (an index value of 0) always refers to the host's fully qualified
domain name. The end of the alias list is indicated when the property returns an empty string.

When using Visual Studio .NET, you must use the accessor method get_HostAlias instead of the
property name, otherwise an error will be returned indicating that it not a member of the control
class.

Data Type
String

Example
The following example places the all of the aliases for a specific host into a listbox:

Dim nIndex As Integer

List1.Clear
Socket1.HostName = Trim(Text1.Text)

Do While Len(Socket1.HostAlias(nIndex)) > 0
    List1.AddItem Socket1.HostAlias(nIndex)
    nIndex = nIndex + 1
Loop

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostFile Property  

 

Gets and sets the name of an alternate host file.

Syntax
object.HostFile [= filename ]

Remarks
The HostFile property is used to specify the name of an alternate file for resolving hostnames and
IP addresses. The host file is used as a database that maps an IP address to one or more
hostnames, and is used when setting the HostName or HostAddress properties and establishing
a connection with a remote host. The file is a plain text file, with each line in the file specifying a
record, and each field separated by spaces or tabs. The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Setting this property loads the file into memory allocated for the current thread. If the contents of
the file have changed after the function has been called, those changes will not be reflected when
resolving hostnames or addresses. To reload the host file from disk, set the property again with
the same file name. To remove the alternate host file from memory, specify an empty string as the
file name.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

Because the alternate host file is cached for the current thread, setting this property will affect all
instances of the control in the same thread. For example, if a project has three instances of the
control loaded on a form, setting the HostFile property will affect all three controls, not just the
control that set the property. To determine if an alternate host file has been cached, check the
property value. If the property returns an empty string, no alternate host file has been cached.

Data Type
String

See Also
AutoResolve Property, HostAddress Property, HostName Property, LocalName Property, Resolve
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the remote host.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the remote system that you wish to
communicate with. If the name is found in the host table, the HostAddress property is updated to
reflect the IP address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property, HostFile Property, LocalName Property, Resolve
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 InLine Property  

 

Sets or returns if urgent data is received in-line with non-urgent data.

Syntax
object.InLine [= { True | False } ]

Remarks
The InLine property controls how urgent (out-of-band) data is handled when reading data from
the socket. If set to a value of true, urgent data is placed in the data stream along with non-urgent
data. To determine if the data that is being read is urgent, the AtMark property can be read.

Urgent data is sent and received directly from the socket, and is not buffered even if buffering is
enabled. It is recommended that you do not enable buffering if urgent data is being received in-
line.

Data Type
Boolean

See Also
NoDelay Property, Urgent Property, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Interval Property  

 

Gets and sets the number of milliseconds between calls to the control's OnTimer event.

Syntax
object.Interval [= milliseconds ]

Remarks
The Interval property specifies the number of milliseconds between calls to the OnTimer event. A
value of zero indicates that the timer is disabled and no events will be generated. The maximum
interval value is 65536 milliseconds, which is slightly more than one minute.

Data Type
Integer (Int32)

See Also
OnTimer Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

If the IsBlocked property returns False, this means there are no blocking operations on the
current thread at that time. If the property returns True, this tells you that you can't proceed with a
socket operation. However, if the property returns False this does not guarantee that the next
socket operation will not fail with a swErrorOperationWouldBlock or
swErrorOperationInProgress error. The application should treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless of whether the control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsClosed Property  

 

Determine if the connection has been closed by the remote host.

Syntax
object.IsClosed

Remarks
The IsClosed property returns True if the socket connection has been closed by the remote host.
Note that it is possible to continue to receive data due to buffering.

Data Type
Boolean

See Also
IsReadable Property, IsWritable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a remote host.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of True if the control is connected with a
remote host, otherwise the property has a value of false.

Data Type
Boolean

See Also
Connect Method, Disconnect Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsListening Property  

 

Returns if the socket is listening for connections.

Syntax
object.IsListening

Remarks
The IsListening property returns True if the socket is listening for connections after the Listen
method is called.

Data Type
Boolean

See Also
Backlog Property, Listen Method, OnAccept Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsReadable Property  

 

Determine if data can be read from the socket without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the socket without blocking. For
non-blocking sockets, this property can be checked before the application attempts to read the
socket, preventing an error.

Data Type
Boolean

See Also
IsClosed Property, IsWritable Property, Peek Method, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Determine if data can be written to the socket without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written to the socket without blocking. For
non-blocking sockets, this property can be checked before the application attempts to write to the
socket, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
write to the socket without an error. The next socket operation may result in a
swErrorOperationWouldBlock or swErrorOperationInProgress error. The application should
treat these errors as recoverable, and should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
IsClosed Property, IsReadable Property, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeepAlive Property  

 

Set or return if keep-alive packets are sent on a connected socket.

Syntax
object.KeepAlive [= { True | False } ]

Remarks
Setting the KeepAlive property to a value of true indicates that packets are to be sent to the
remote system when no data is being exchanged to keep the connection active. This property can
only be set for stream sockets that were created with the Protocol property set to a value of
swProtocolTcp.

If this property is set to true, keep-alive packets will start being generated five seconds after the
socket has become idle with no data being sent or received. Enabling this option can be used by
applications to detect when a physical network connection has been lost. However, it is
recommended that most applications query the remote host directly to determine if the
connection is still active. This is typically accomplished by sending specific commands to the server
to query its status, or checking the elapsed time since the last response from the server.

Data Type
Boolean

See Also
Broadcast Property, InLine Property, NoDelay Property, Protocol Property, ReuseAddress Property,
Route Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/winsock/control/property/route.html


 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= errorcode ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero (to clear the error) or a valid error code
for the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error that occurred.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a string that contains a description of the last error that
occurred.

Data Type
String

See Also
LastError Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Linger Property  

 

Gets and sets the number of seconds to wait for the socket to close.

Syntax
object.Linger [= seconds ]

Remarks
Setting the Linger property to a value greater than zero indicates that the Disconnect method
should wait up to the specified number of seconds for any data on the socket to be written before
it is closed. A value of zero indicates that the socket should be closed immediately (but gracefully,
without data loss).

Data Type
Integer (Int32)

See Also
OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalAddress Property  

 

Return the IP address of the local host.

Syntax
object.LocalAddress

Remarks
The LocalAddress read-only property returns the local host's IP address in dot notation, as four
numbers separated by periods.

Data Type
String

See Also
AutoResolve Property, ExternalAddress Property, HostAddress Property, LocalName Property, Bind
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalName Property  

 

Return the name of the local host.

Syntax
object.LocalName

Remarks
The LocalName read-only property returns the fully qualified domain name of the local system.
This consists of the local computer name and its domain name. The actual value returned depends
on the system configuration. If no domain has been specified for the system, then only the
machine name will be returned.

Data Type
String

See Also
AutoResolve Property, HostName Property, LocalAddress Property, Resolve Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalPort Property  

 

Gets and sets the port number for a local listening socket.

Syntax
object.LocalPort [= port ]

Remarks
The LocalPort property is used to set the port number that a server will listen on for connections.

Data Type
Integer (Int32)

See Also
PeerPort Property, RemotePort Property, ReservedPort Property, Bind Method, Listen Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NoDelay Property  

 

Enable or disable the Nagle algorithm.

Syntax
object.NoDelay [= { True | False } ]

Remarks
The NoDelay property is used to enable or disable the Nagle algorithm, which buffers
unacknowledged data and ensures that a full-size packet can be sent to the remote host. By
default this property value is set to False, which enables the Nagle algorithm (in other words, the
data being written may not actually be sent until it is optimal to do so). Setting this property to
True disables the Nagle algorithm, minimizing the time delays between the data packets being
sent.

This property should be set to True only if it is absolutely required and the implications of doing so
are understood. Disabling the Nagle algorithm can have a significant negative impact on the
performance of the application.

Data Type
Boolean

See Also
InLine Property, KeepAlive Property, ReuseAddress Property, Route Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/winsock/control/property/route.html


 Options Property  

 

Gets and sets the options that are used in establishing a connection.

Syntax
object.Options [= value ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when connecting to the server. The property
value is created by using a bitwise operator with one or more of the following values:

Value Constant Description

1 swOptionBroadcast This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

2 swOptionDontRoute This option specifies default routing should not
be used. This option should not be specified
unless absolutely necessary.

4 swOptionKeepAlive This option specifies that packets are to be sent
to the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

&H10 swOptionNoDelay This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the
responsiveness of certain applications. This
option disables this buffering and immediately
sends data packets as they are written to the
socket.

&H20 swOptionInLine This option specifies that out-of-band data
should be received inline with the standard data
stream. This option is only valid for stream
sockets.

&H800 swOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

&H1000 swOptionSecure This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS can be specified by setting
the SecureProtocol property. By default, the
connection will use TLS 1.2 and the strongest
cipher suites available. Older versions of

 



Windows prior to Windows 7 and Windows
Server 2008 R2 only support TLS 1.0 and secure
connections will automatically downgrade on
those platforms.

&H8000 swOptionSecureFallback This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

&H40000 swOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option
has been specified.

Several of these options correspond to Boolean properties which can be used to enable or disable
specific functionality. For example, setting the Secure to True is the same as specifying the
swOptionSecure option. We generally recommend setting individual properties when they are
available, or explicitly specifying the required options when calling the Connect method.

Data Type
Integer (Int32)

See Also
Broadcast Property, InLine Property, NoDelay Property, Secure Property, SecureProtocol Property,
Connect Method



 PeerAddress Property  

 

Return the IP address of the remote peer.

Syntax
object.PeerAddress

Remarks
The PeerAddress property returns the IP address of the remote system that the local host is
connected to. If a datagram socket is being used, this property will return the address of the
system which sent the last datagram that was read. If no connection has been established, this
property will return 255.255.255.255.

If this property is read inside an OnAccept event handler, it will return the IP address of the client
that is requesting the connection. The application may use this information to determine if it
wishes to accept or reject the client connection. If the IP address information is not available for
the client at that time, this property will return the address 0.0.0.0.

Data Type
String

See Also
HostAddress Property, LocalAddress Property, PeerName Property, PeerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PeerName Property  

 

Return the name of the remote peer.

Syntax
object.PeerName

Remarks
The PeerName property returns the name of the remote system that the local host is connected
to. If a datagram socket is being used, this property will return the name of the system which sent
the last datagram that was read.

Accessing this property causes the control to perform a blocking reverse DNS lookup, attempting
to match the client Internet address with a hostname. Not all addresses have a reverse DNS
record, in which case this property will return an empty string. It is recommended that most
applications use the value of the PeerAddress property rather than use the PeerName property
to distinguish between connections from a remote host.

Data Type
String

See Also
HostName Property, LocalName Property, PeerAddress Property, PeerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PeerPort Property  

 

Return the port number of the remote connection or datagram.

Syntax
object.PeerPort

Remarks
The PeerPort property returns the port number that the remote host has used when establishing
a connection with the local system. If a datagram socket is being used, this property will return the
port number used by the remote host which sent the last datagram that was received.

Data Type
String

See Also
LocalPort Property, PeerAddress Property, PeerName Property, RemotePort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PhysicalAddress Property  

 

Return the MAC address for the local host's Ethernet or Token Ring adapter.

Syntax
object.PhysicalAddress

Remarks
The PhysicalAddress property returns the Media Access Control (MAC) address for an Ethernet
or Token Ring network adapter installed and configured on the local system. Since it is guaranteed
that every adapter is assigned a unique address throughout the world, this value can be safely
used for identification purposes. It is possible that this property will return an empty string, which
indicates that it could not find a network adapter.

If more than one physical network adapter is installed on the system, this property will return the
MAC address of the first adapter that it finds.

Data Type
String

See Also
AdapterAddress Property, AdapterCount Property, LocalAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Protocol Property  

 

Gets and sets the protocol that should be used to create the socket.

Syntax
object.Protocol [= protocol ]

Remarks
The Protocol property specifies the type of socket that is to be created. This property may only be
set before a socket has been created, or after it has been closed. Supported socket protocols are:

Value Constant Description

6 swProtocolTcp Specifies the User Datagram Protocol. This is a stateless, peer-to-peer
message oriented protocol, with the data sent in discrete packets. UDP
is a simpler network protocol that does not have the inherent reliability
of TCP, but it has less overhead and is ideal for real-time applications
where a dropped packet is preferable to the delay of waiting for a
packet to be retransmitted. It also supports the broadcasting of
datagrams over local networks, and is commonly used by services that
must exchange a relatively small amount of data with a large number
of clients.

17 swProtocolUdp Specifies the User Datagram Protocol. This is a stateless, peer-to-peer
message oriented protocol, with the data sent in discrete packets. UDP
is a simpler network protocol that does not have the inherent reliability
of TCP, but it has less overhead and is ideal for real-time applications
where a dropped packet is preferable to the delay of waiting for a
packet to be retransmitted. It also supports the broadcasting of
datagrams over local networks, and is commonly used by services that
must exchange a relatively small amount of data with a large number
of clients.

255 swProtocolRaw Raw sockets. This socket type is for special purpose applications which
need access to the IP datagram. It is not supported on all platforms
and should only be used if required.

The default value for this property is swProtocolTcp.

Data Type
Integer (Int32)

See Also
Bind Method, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portno%]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the remote host.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property, LocalPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReservedPort Property  

 

Set or return if a reserved local port number should be allocated.

Syntax
object.ReservedPort [= { True | False } ]

Remarks
The ReservedPort property determines if a reserved local port number is used by the control
when the socket is created (reserved port numbers are in the range of 513 through 1023,
inclusive). Some application protocols require that the client bind to a local port number in this
range. By setting the LocalPort property to 0 and the ReservedPort property to True, a reserved
port number will be used when the socket is created. The default value for this property is False,
which specifies that a standard port number with a value of 1024 or higher will be bound to the
socket unless the LocalPort property is explicitly set to a non-zero value. Reserved ports should
only be used by those applications that expressly need them to implement a specific protocol.

It is possible that the error swErrorAddressInUse will be returned when attempting to connect
using a reserved port number. The value of the LocalPort property will contain the reserved port
number that could not be used.

Data Type
Boolean

See Also
LocalPort Property, RemotePort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReuseAddress Property  

 

Set or return if a local socket address can be reused by the application.

Syntax
object.ReuseAddress [= { True | False } ]

Remarks
Setting this property to a value of true allows the address that the socket is listening on to be
reused.

When a listening socket is closed, the socket will normally go into a TIME-WAIT state where the
local address and port number cannot be immediately reused. A consequence of this is that
calling the Disconnect method immediately followed by the Listen method using the same
address and port number values may result in an error indicating that the specified address is
already in use. By setting this property to True, that error is avoided and the listening socket can
be created immediately without waiting for the TIME-WAIT period to elapse.

Data Type
Boolean

See Also
Broadcast Property, InLine Property, NoDelay Property, KeepAlive Property, Route Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/winsock/control/property/route.html


 Secure Property  

 

Set or return if a connection to the server is secure.

Syntax
object.Secure [={ True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may request files or
submit queries to the server as with standard connections.

It is possible for an application to establish a non-secure connection, and then switch to a secure
connection at some later point during the session. Initially set the Secure property to False, then
connect to the server normally. Once the connection has been established, setting the Secure
property to True will cause the control to negotiate a secure connection with the remote host. If
the socket was created using the Accept method, the control will block and wait for the client to
begin the negotiation. If the socket was created using the Connect method, it will immediately
begin the negotiation with the server. Note that if a non-blocking (asynchronous) socket is being
used, the application must wait to set the Secure property to True after the OnConnect event has
fired.

Setting the Secure property to False during a connection will cause the control to send a
shutdown message to the remote host. This may cause which may cause it to terminate the
connection, however it will not close the socket. It is recommended that applications do not set
the Secure property to False after a secure connection has been established, and instead use the
Disconnect method to close the connection.

It is recommended that the application use exception handling to catch any errors that may occur
when changing the value of this property. If the control is unable to initialize the Windows security
libraries, an exception will be thrown when this property value is modified.

Data Type
Boolean

Example
The following example establishes a secure connection to a web server:

SocketWrench1.HostName = strHostName
SocketWrench1.RemotePort = 443
SocketWrench1.Secure = True

nError = SocketWrench1.Connect()
If nError > 0 Then
    MsgBox "Unable to connect to server " & strHostName, vbExclamation
    Exit Sub
End If

If SocketWrench1.CertificateStatus <> swCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                              "Are you sure you wish to continue?", vbYesNo)

 



     If nResult = vbNo Then
          SocketWrench1.Disconnect
          Exit Sub
     End If
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus
Property, CertificateSubject Property, CipherStrength Property, HashStrength Property,
SecureCipher Property, SecureHash Property, SecureKeyExchange Property, SecureProtocol
Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 swCipherNone No cipher has been selected. This is not a secure
connection with the server.

1 swCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-
bits in length, in 8-bit increments.

2 swCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-
bits in length, in 8-bit increments.

4 swCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 swCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 swCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 swCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 swCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 swCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 swCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Constant Value Description

1 swHashMD5 The MD5 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be cryptographically
secure.

2 swHashSHA1 The SHA-1 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be cryptographically
secure.

4 swHashSHA256 The SHA-256 algorithm has been selected.

8 swHashSHA384 The SHA-384 algorithm has been selected.

16 swHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 swKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 swKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 swKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 swKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 swKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange
algorithm was selected. This is a variant of the Diffie-
Hellman algorithm which uses elliptic curve
cryptography. This key exchange algorithm is only
supported on Windows XP SP3 and later versions of the
operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 swProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 swProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 swProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 swProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 swProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 swProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 swProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server
2019 and later versions of Windows. If this protocol version
is not supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

 



established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

Dim lResult As Long

Socket1.ThrowError = False
lResult = Socket1.Connect

If lResult <> 0 Then
    MsgBox "Error on Connect: " & lResult
    Exit Sub
Endif

The following example handles errors by throwing them to the container (VB):

On Error Resume Next: Err.Clear

Socket1.ThrowError = True
Socket1.Connect

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting this property specifies the number of seconds until a blocking operation fails and the
control returns an error.

For backwards compatibility with previous versions of the control, if a value greater than 1000 is
specified when setting the property, the control assumes that milliseconds were intended and
adjusts the value accordingly.

Data Type
Integer (Int32)

See Also
LastError Property, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable (or disable) the tracing of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Only those function calls made by the SocketTools networking controls will be logged. Calls made
directly to the Windows Sockets API, or calls made by other controls, will not be logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named CSTRACE.LOG is created in the system's temporary directory. If no temporary directory
exists, then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column identifies if the trace record is reporting information, a warning, or
an error. What follows is the name of the function being called, the arguments passed to the
function and the function's return value. If a warning or error is reported, the error code is
appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= flags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 swTraceInfo All function calls are written to the trace file. This is the default value.

1 swTraceError Only those function calls which fail are recorded in the trace file.

2 swTraceWarning Only those function calls which fail, or return values which indicate a
warning, are recorded in the trace file.

4 swTraceHexDump All functions calls are written to the trace file, plus all the data that is
sent or received is displayed, in both ASCII and hexadecimal format.

Since socket function tracing is enabled per-process, the trace flags are shared by all instances of
the controls being used. If multiple controls have tracing enabled, the TraceFlags property should
be set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and the error WSAEWOULDBLOCK is
returned, a warning is generated since the application simply needs to attempt to write the data at
a later time.

Data Type
String

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Urgent Property  

 

Send or receive urgent data.

Syntax
object.Urgent [= { True | False } ]

Remarks
This Boolean property affects how the Read and Write methods read or write data to the socket.
If set to a value of true, urgent (out-of-band) data will be read or written. All reads or writes of
urgent data are unbuffered. The property value will automatically be reset to a value of false after
the socket has been read or written.

Note: Not all implementations may support more than one byte of urgent data if the data is not
being received in-line. Refer to the InLine property for additional information.

Data Type
Boolean

See Also
InLine Property, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketWrench Control Methods  

 

Method Description

Abort Terminate the connection with a remote host

Accept Accepts a client connection on a listening socket

Bind Bind the socket to the specified local address and port number

Cancel Cancels the current blocking network operation

Connect Establish a connection with a server

ConnectUrl Establish a connection with a server using a URL

Disconnect Terminate the connection with a remote host

Flush Flush the contents of the send and receive socket buffers

Initialize Initialize the control and validate the runtime license key

Listen Listen for incoming connections

Peek Return data read from the socket, but do not remove it from the socket buffer

Read Return data read from the socket

ReadByte Read a single byte of data from the socket

ReadLine Read a line of data from the socket, storing it in a string buffer

ReadStream Read a stream of data from the socket, returning when all data has been read

Reject Reject a pending client connection

Reset Reset the internal state of the control

Resolve Resolves a host name to a host IP address

Shutdown Stop sending or receiving data on the socket

StoreStream Read a stream of data from the remote host, storing it in a file

Uninitialize Uninitialize the control and release any system resources that were allocated

Write Write data to the socket

WriteByte Write a single byte of data to the socket

WriteLine Write a line of data to the socket, terminated with a carriage-return and linefeed

WriteStream Write a stream of data to the socket, returning when all data has been written

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Abort Method  

 

Terminate the connection with a remote host.

Syntax
object.Abort

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
The Abort method immediately closes the socket, without waiting for any remaining data to be
written out. This method should only be used when the connection must be closed immediately
before the application terminates.

See Also
Connect Method, Disconnect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Accept Method  

 

Accepts a client connection on a listening socket.

Syntax
object.Accept ( Handle, [Options] )

Parameters
Handle

An integer value that specifies the handle of the listening socket. If the control that invokes this
method is not the listening socket, then the listening socket may continue to listen for incoming
connections. If the control invokes this method using its own Handle property, it will stop
listening for connections.

Options

An optional integer value that specifies one or more options. If this parameter is omitted, the
values of the properties listed below will be used to determine the default options when
accepting the connection.

Value Constant Property

0 swOptionNone None

2 swOptionDontRoute Route = False

4 swOptionKeepAlive KeepAlive = True

8 swOptionReuseAddress ReuseAddress = True

16 swOptionNoDelay NoDelay = True

32 swOptionInLine InLine = True

&H1000 swOptionSecure Secure = True

Return Value
A value of zero is returned if the acceptance was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
To set the Options argument explicitly, set it as a combination of values chosen from the table
above. Use the appropriate constant if you wish the attribute corresponding to the property to be
True, except for the Route property. Specifying the swOptionDontRoute option is the same as
setting the Route property to a value of False.

See Also
Backlog Property, Handle Property, Listen Method, Reject Method, OnAccept Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Bind Method  

 

Bind the socket to the specified local address and port number.

Syntax
object.Bind( [LocalAddress], [LocalPort], [Protocol], [Timeout], [Options] )

Parameters
LocalAddress

An optional string value that specifies the local Internet address that the socket should be
bound to. To bind to any valid network interface on the local system, specify the address 0.0.0.0.
Applications should only specify a particular address if it is absolutely necessary. In most cases a
local address is not required when establishing a client connection. If this value is not specified,
the LocalAddress property will be used to determine the default value.

LocalPort

An optional integer value that specifies a local port number that the socket should be bound to.
To bind to any available port number, specify a port number of 0. Applications should only
specify a particular port number if it is absolutely necessary. The maximum valid port number is
65535. If this argument is not specified, the LocalPort property will be used to determine the
default value.

Protocol

An optional integer value that specifies the protocol that should be used when establishing the
connection. If this argument is not specified, the value of the Protocol property will be used as
the default. One of the following values may be used:

Value Constant Description

6 swProtocolTcp Specifies the Transmission Control Protocol. This protocol
provides a reliable means of communication between two
computers using a client/server architecture. The data is
exchanged as a stream of bytes, with the protocol ensuring
that the data arrives in the same byte order that it was sent,
without duplication or missing data. This protocol is designed
for accuracy and not speed, therefore TCP can sometimes
incur relatively long delays while waiting for out-of-order
packets and the retransmission of data which can make it
unsuitable for some applications such as streaming video or
audio.

17 swProtocolUdp Specifies the User Datagram Protocol. This is a stateless, peer-
to-peer message oriented protocol, with the data sent in
discrete packets. UDP is a simpler network protocol that does
not have the inherent reliability of TCP, but it has less
overhead and is ideal for real-time applications where a
dropped packet is preferable to the delay of waiting for a
packet to be retransmitted. It also supports the broadcasting
of datagrams over local networks, and is commonly used by
services that must exchange a relatively small amount of data
with a large number of clients.  



Timeout

An optional integer value that specifies the amount of time until a blocking operation fails. If this
argument is not specified, the Timeout property will be used to determine the default value.

Options

An optional integer value that specifies one or more options which are to be used when
establishing the connection. The value is created by combining the options using a bitwise Or
operator. Note that if this argument is specified, it will override any property values that are
related to that option.

Value Constant Description

1 swOptionBroadcast This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

2 swOptionDontRoute This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

4 swOptionKeepAlive This option specifies that packets are to be sent to the
remote system when no data is being exchanged to
keep the connection active. This option is only valid
for stream sockets.

8 swOptionReuseAddress This option specifies the local address can be reused.
This option is commonly used by server applications.

16 swOptionNoDelay This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a full-
size packet can be sent to the remote host.

32 swOptionInLine This option specifies that out-of-band data should be
received inline with the standard data stream. This
option is only valid for stream sockets.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
When this method is called with swProtocolUdp as the specified protocol, it will immediately
create the datagram socket and bind it to the given address. When this method is called with
swProtocolTcp as the specified protocol, creation of the socket is deferred until the Connect
method is called. For stream sockets, this method will set the local address, port number and
default options used when the socket is actually created.

See Also
Broadcast Property, LocalAddress Property, LocalPort Property, Timeout Property, Connect
Method, Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Reset Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

Establish a connection with a server.

Syntax
object.Connect( [RemoteAddress], [RemotePort], [Protocol], [Timeout], [Options], [LocalAddress],
[LocalPort] )

Parameters
RemoteAddress

An optional string value that specifies the host name or IP address of the server. If this
parameter is omitted, it defaults to the value of the HostAddress property if it is defined;
otherwise, it defaults to the value of the HostName property.

RemotePort

An optional integer value that specifies the port number that the server is using to listen for
connections. If this parameter is omitted, the RemotePort property will be used to determine
the default value.

Protocol

An an optional integer value that specifies the protocol that should be used when establishing
the connection. If this parameter is omitted, the Protocol property will be used to determine
the default value. It may be one of the following values:

Value Constant Description

6 swProtocolTcp The connection will use the Transmission Control Protocol.
This protocol provides a reliable means of communication
between two computers using a client/server architecture. The
data is exchanged as a stream of bytes, with the protocol
ensuring that the data arrives in the same byte order that it
was sent, without duplication or missing data. This protocol is
designed for accuracy and not speed, therefore TCP can
sometimes incur relatively long delays while waiting for out-
of-order packets and the retransmission of data which can
make it unsuitable for some applications such as streaming
video or audio.

17 swProtocolUdp The connection will use the User Datagram Protocol. This is a
stateless, peer-to-peer message oriented protocol, with the
data sent in discrete packets. UDP is a simpler network
protocol that does not have the inherent reliability of TCP, but
it has less overhead and is ideal for real-time applications
where a dropped packet is preferable to the delay of waiting
for a packet to be acknowledged or retransmitted. It also
supports the broadcasting of datagrams over local networks,
and is commonly used by services that must exchange a
relatively small amount of data with a large number of clients.

Timeout

An optional integer value that specifies the amount of time until a blocking operation fails. If this
parameter is omitted, the Timeout property will be used to determine the default value.



 

Options

An optional integer value that specifies one or more socket options which are to be used when
establishing the connection. The value is created by combining the options using a bitwise Or
operator. Note that if this argument is specified, it will override any property values that are
related to that option.

Value Constant Description

1 swOptionBroadcast This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

2 swOptionDontRoute This option specifies default routing should not
be used. This option should not be specified
unless absolutely necessary.

4 swOptionKeepAlive This option specifies that packets are to be sent
to the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

&H10 swOptionNoDelay This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the
responsiveness of certain applications. This
option disables this buffering and immediately
sends data packets as they are written to the
socket.

&H20 swOptionInLine This option specifies that out-of-band data
should be received inline with the standard data
stream. This option is only valid for stream
sockets.

&H800 swOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

&H1000 swOptionSecure This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS can be specified by setting
the SecureProtocol property. By default, the
connection will use TLS 1.2 and the strongest
cipher suites available. Older versions of
Windows prior to Windows 7 and Windows
Server 2008 R2 only support TLS 1.0 and secure
connections will automatically downgrade on
those platforms.

&H8000 swOptionSecureFallback This option specifies the client should permit the
use of less secure cipher suites for compatibility

 



with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

&H40000 swOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option
has been specified.

LocalAddress

An optional string value that specifies the local IP address of the network adapter that the
control should use when establishing the connection. If this parameter is omitted, the control
will bind to any suitable adapter on the local system. It is recommended that you omit this
parameter when establishing a TCP connection unless you fully understand the implications of
binding the socket to a specific local address.

LocalPort

An optional integer value that specifies the local port number that the control should use when
establishing the connection. If this argument is not specified, an appropriate local port number
will be automatically allocated for the connection. It is recommended that you omit this
parameter when establishing a TCP connection unless you fully understand the implications of
binding the socket to a specific local port.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

See Also
HostName Property, KeepAlive Property, NoDelay Property, Options Property, RemotePort
Property, ReuseAddress Property, Route Property, Secure Property, SecureProtocol Property,
Timeout Property, Bind Method, Disconnect Method, OnConnect Event, OnDisconnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/winsock/control/property/route.html


 ConnectUrl Method  

Establish a connection with a server using a URL.

Syntax
object.ConnectUrl( [Url], [Timeout], [Options] )

Parameters
Url

An string value which specifies a URL used when establishing the connection. This parameter
cannot be omitted and it cannot be an empty string. If a non-standard URI scheme is used, the
port number must be explicitly specified or the method will fail. See the remarks below for more
information on the format supported by this method.

Timeout

An optional integer value that specifies the amount of time until a blocking operation fails. If this
parameter is omitted, the Timeout property will be used to determine the default value.

Options

An optional integer value that specifies one or more socket options which are to be used when
establishing the connection. The value is created by combining the options using a bitwise Or
operator. Note that if this argument is specified, it will override any property values that are
related to that option.

Value Constant Description

4 swOptionKeepAlive This option specifies that packets are to be sent
to the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

&H10 swOptionNoDelay This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the
responsiveness of certain applications. This
option disables this buffering and immediately
sends data packets as they are written to the
socket.

&H20 swOptionInLine This option specifies that out-of-band data
should be received inline with the standard data
stream. This option is only valid for stream
sockets.

&H800 swOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

&H1000 swOptionSecure This option specifies that a secure connection
should be established with the remote host. The



 

specific version of TLS can be specified by setting
the SecureProtocol property. By default, the
connection will use TLS 1.2 and the strongest
cipher suites available.

&H8000 swOptionSecureFallback This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

&H40000 swOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option
has been specified.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ConnectUrl method provides a simplified interface which can be used to establish a
connection using a URL. This method can only be used to establish connections using TCP and
does not currently support the use of URLs to connect with a service which uses UDP. The general
format of the URL should look like this:

[scheme]:// [[username : password] @] hostname [:port] / [path;paramters 
...]

This method recognizes most standard URI schemes which use this format. The host name and
port number specified in the URL will be used to establish a connection and the remaining
information will be discarded. If the URL does not explicitly specify a port number, the default port
number associated with the scheme will be used as the default value. For example, consider the
following:

https://www.example.com

In this example, there is no port number specified; instead, the default port for the https://
scheme would be used, which is port 443. The host name www.example.com would be resolved
into an IP address and the connection established on port 443. This method will also recognize a
simpler format which only includes the host name and port number without a URI scheme, such
as:

www.example.com:443

When used in this way, the port number must always be provided. Without a URI scheme or an
explicit port number, the method cannot determine what port number should be used when
establishing the connection. The same also applies if a custom, non-standard URI scheme is
provided which is not recognized.

 



If the URI scheme specifies a secure protocol which requires implicit TLS, this method will
automatically enable security options. For example, providing a URL which uses the https://
scheme will automatically enable a secure connection regardless if the Options parameter includes
that option. If a URI scheme is used in conjunction with a port number associated with a secure
service, security will also be enabled for that connection. For example:

http://www.example.com:443

The standard http:// scheme is used which does not indicate a secure connection. However, since
port 443 is the standard port designated for a secure HTTP connection, a secure connection will
be enabled by default, even if swOptionSecure has not been specified by the caller. Alternatively,
if a custom port number is specified in the URL or the scheme is not recognized as one which
requires implicit TLS, security options will not be automatically enabled for the connection.

The host name portion of the URL can be specified as either a domain name or an IP address.
Because an IPv6 address can contain colon characters, you must enclose the entire address in
bracket [] characters. If this is not done, this method will return an error indicating the port number
is invalid. For example, the URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address
and this would be considered valid. Without the brackets, this URL would not be accepted.

Important: The URL provided to this method will only be used to establish a connection with a
server. This is a general purpose method which does not enable support for any particular
application protocol and all implementation details are the responsibility of your application. If you
require higher-level support for a specific Internet protocol, the SocketTools ActiveX Edition
provides a comprehensive collection of higher-level controls which can be used to access those
services.

If you use the swOptionSecure option to enable a secure connection, the connection will always
use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the  dwOptionSecure option.
Instead, connect without this option and then set the Secure property to True when you are ready
to initiate the TLS handshake.

See Also
HostName Property, KeepAlive Property, NoDelay Property, Options Property, Secure Property,
Timeout Property, Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a remote host.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Flush Method  

 

Flush the contents of the send and receive socket buffers.

Syntax
object.Flush

Parameters
None.

Return Value
A value of zero is returned if the control buffers were flushed successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
The Flush method will flush any data waiting to be read or written to the remote host . It is
important to note that this method is not similar to flushing data to a disk file; it does not ensure
that a specific block of data has been written to the socket. For example, you should never call this
function immediately after calling the Write method or prior to calling the Disconnect method.

An application never needs to use the Flush method under normal circumstances. This method is
only to be used when the application needs to immediately return the socket to an inactive state
with no pending data to be read or written. Calling this function may result in data loss and should
only be used if you understand the implications of discarding any data which has been sent by the
remote host.

See Also
IsReadable Property, IsWritable Property, Read Method, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set objSocket = CreateObject("SocketTools.SocketWrench.11")

nError = objSocket.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketWrench"
    End
End If

See Also
IsInitialized Property, Connect Method, Reset Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Listen Method  

 

Listen for incoming connections.

Syntax
object.Listen( [LocalAddress], [LocalPort], [Backlog] )

Parameters
LocalAddress

An optional string value that specifies the IP address the control should use when listening for
connection requests. If this argument is not specified, the control will bind to any suitable IPv4
interface on the local system.

LocalPort

An optional integer value that specifies the local port number that be used to listen for
connections. If this parameter is omitted, the LocalPort property will be used to determine the
default port number. If this value is zero, the listening socket will be bound to a random port
number.

Backlog

An optional integer value that specifies the maximum size of the queue used to manage
pending connections to the service. If this parameter is set to value which exceeds the maximum
size allowed by the operating system, it will be silently adjusted to the nearest legal value. If this
parameter is omitted, the Backlog property will be used to determine the default value.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure. This method will return an error if a socket has
already been created by a previous call to the Connect method.

Remarks
The Listen method causes the control to listen on a socket for incoming connections on a
particular local address and local port. If an IPv6 address is specified as the local IP address, the
system must have an IPv6 stack installed and configured, otherwise the method will fail.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

See Also
Backlog Property, LocalPort Property, Accept Method, Connect Method, Reject Method, OnAccept
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Peek Method  

 

Return data read from the socket, but do not remove it from the socket buffer.

Syntax
object.Peek( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, it is recommended
that a Byte array be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
If the method succeeds, it will return the number of bytes available to read from the socket
without causing the thread to block. A return value of zero indicates that there is no data available
to read at that time. If an error occurs, a value of -1 is returned.

Remarks
The Peek method reads the specified number of bytes from the socket and copies them into the
buffer, but it does not remove the data from the internal socket buffer. Note that it is possible for
the returned data to contain embedded null characters.

The data returned by the Peek method is not removed from the socket buffers. It must be
consumed by a subsequent call to the Read method. The return value indicates the number of
bytes that can be read in a single operation, up to the specified buffer size. However, it is
important to note that it may not indicate the total amount of data available to be read from the
socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a
loop to poll a non-blocking socket may cause the application to become non-responsive. To
determine if there is data available to be read, use the IsReadable property.

See Also
IsReadable Property, Read Method, ReadLine Method, Write Method, WriteLine Method, OnRead
Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Read Method  

 

Return data read from the socket.

Syntax
object.Read( Buffer, [Length], [Options], [RemoteAddress], [RemotePort] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, a Byte array
should be used instead. This parameter must be passed by reference.

Length

An optional integer value which specifies the number of bytes to read. Its maximum value is

231-1 = 2147483647. This argument is required to be present for string data. If a value is
specified for this argument for other permissible types of data, and it is less than number of
bytes that is determined by the control, then Length will override the internally computed value.
If the argument is omitted, then the maximum number of bytes to read is determined by the
size of the buffer.

Options

An optional integer value that is reserved for future functionality and should either be omitted,
or specified with a value of zero. Specifying a non-zero value will cause the method to fail and
return an error.

RemoteAddress

An optional string that will contain the IP address of the remote host when the method returns.
This parameter must be passed by reference. For a TCP connection, the IP address is the same
value that was used to establish the connection. When reading data from a UDP socket, this is
the IP address of the peer that sent the datagram. This information can be used in conjunction
with the Write method to send a datagram back to that host. If the peer's IP address is not
required, this parameter may be omitted.

RemotePort

An optional integer that will contain the port number for the remote host when the method
returns. This parameter must be passed by reference. When reading a datagram from a UDP
socket, this is the port number used by the peer who sent the datagram. This information can
be used in conjunction with the Write method to send a datagram back to that host. If the
peer's port number is not required, this parameter may be omitted.

Return Value
The number of bytes actually read from the socket is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been read from the socket, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will wait until data is returned by the server
or the connection is closed.

 



If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Read method.
When you provide a String variable as the buffer, the control will process the data as
text. Binary characters may be interpreted as 8-bit ANSI encoding and embedded
null characters will corrupt the data. Reading the data into a byte array ensures that
you receive the data exactly as it was sent by the server.

If the remote host is sending text that you want to read a line at a time, use the ReadLine method.
If you wish to read a large amount of data using a single method call rather than making multiple
calls to the Read method, use the ReadStream method.

See Also
CodePage Property, IsReadable Property, ReadLine Method, ReadStream Method Write Method,
OnRead Event, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadByte Method  

 

Read a byte of data from the socket.

Syntax
object.ReadByte

Parameters
None.

Return Value
The integer value of the byte read from the socket. If an error occurs, the method will return a
value of -1 and the program should check the value of the LastError property to determine the
specific cause of the error.

Remarks
The ReadByte method returns one byte of data that has been read from the socket. If no data is
available to be read, an error will be generated if the control is non-blocking mode. If the control
is in blocking mode, the program will stop until a byte of data is returned by the server or the
connection is closed.

Note that you should not use the ReadByte method with a datagram socket. If you do, then only
the first byte of the datagram will be returned and the remaining data will be discarded. When
reading data from a datagram socket, it is recommended that you always use the Read method
with the length argument specifying the maximum size of the datagram.

See Also
IsReadable Property, Timeout Property, Read Method, Write Method, WriteByte Method, OnRead
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadLine Method  

 

Read up to a line of data from the socket and returns it in a string buffer.

Syntax
object.ReadLine( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. If the data returned by the server contains UTF-8 encoded text, it will
automatically be converted to standard UTF-16 Unicode text. If you wish to read the data
without conversion, provide a Byte array as the buffer. This parameter must be passed by
reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
This method will return True if a line of data has been read. If an error occurs or there is no more
data available to read, then the method will return False. It is possible for data to be returned in
the string buffer even if the return value is False. Applications should check the length of the string
after the method returns to determine if any data was copied into the buffer. For example, if a
timeout occurs while the method is waiting for more data to arrive on the socket, it will return
zero; however, data may have already been copied into the string buffer prior to the error
condition. It is the responsibility of the application to process that data, regardless of the function
return value.

Remarks
The ReadLine method reads data from the socket up to the specified number of bytes or until an
end-of-line character sequence is encountered. Unlike the Read method which reads arbitrary
bytes of data, this function is specifically designed to return a single line of text data in a string
variable. When an end-of-line character sequence is encountered, the function will stop and
return the data up to that point; the string will not contain the carriage-return or linefeed
characters.

If multi-byte 8-bit encoded characters are read from the socket, by default they will automatically
be converted to Unicode according to the value of the CodePage property and returned in the
string buffer provided. To prevent the text from being converted to Unicode, call the Read
method and use a byte array instead of a string variable.

There are some limitations when using the ReadLine method. The method should only be used to
read text, never binary data. In particular, it will discard nulls, linefeed and carriage return control
characters. This method will force the thread to block until an end-of-line character sequence is
processed, the read operation times out or the remote host closes its end of the socket
connection. If the Blocking property is set to False, calling this method will automatically switch

 



the socket into a blocking mode, read the data and then restore the socket to non-blocking mode.
If another socket operation is attempted while ReadLine is blocked waiting for data from the
remote host, an error will occur. It is recommended that this method only be used with blocking
socket connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method
will consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
CodePage Property, IsReadable Property, Read Method, ReadStream Method, StoreStream
Method, Write Method, WriteLine Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadStream Method  

Read the socket and store the data stream in the specified buffer.

Syntax
object.ReadStream( Buffer, [Length], [Marker], [Options] )

Parameters
Buffer

A variable that will contain the data read from the socket when the method returns. If the
variable is a String type, then the data will be stored as a string of characters. This is the most
appropriate data type to use if the server is sending text data that consists of printable
characters. If the remote host is sending binary data, a Byte array should be used instead. This
parameter must be passed by reference.

Length

A numeric variable which specifies the maximum amount of data to be read from the socket.
When the method returns, this variable will be updated with the actual number of bytes read.
Note that because this argument is passed by reference and modified by the method, you must
provide a variable, not a numeric constant. If this argument is omitted or the value is initialized
to zero, this method will read data from the socket until the remote host disconnects or an error
occurs.

Marker

A string or array of bytes which is used to designate the logical end of the data stream. When
this byte sequence is encountered by the method, it will stop reading and return to the caller.
The buffer will contain all of the data read from the socket up to and including the end-of-
stream marker. If this argument is omitted, then the function will continue to read from the
socket until the maximum buffer size is reached, the remote host closes its socket or an error is
encountered.

Options

An optional integer value which specifies any options to be used when reading the data stream.
One or more of the following bit flags may be specified by the caller:

Value Constant Description

0 swStreamDefault The data stream will be returned to the caller unmodified.
This option should always be used with binary data or data
being stored in a byte array. If no options are specified, this
is the default option used by this method.

1 swStreamConvert The data stream is considered to be textual and will be
modified so that end-of-line character sequences are
converted to follow standard Windows conventions. This
will ensure that all lines of text are terminated with a
carriage-return and linefeed sequence. Because this option
modifies the data stream, it should never be used with
binary data. Using this option may result in the amount of
data returned in the buffer to be larger than the source
data. For example, if the source data only terminates a line
of text with a single linefeed, this option will have the effect



 

of inserting a carriage-return character before each
linefeed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is True. If the
function fails, the return value is False. To get extended error information, check the value of the
LastError property.

Remarks
The ReadStream method enables an application to read an arbitrarily large stream of data and
store it in memory, either in a string or a byte array. Unlike the Read method, which will return
immediately when any amount of data has been read, the ReadStream method will only return
when the buffer is full as specified by the Length argument, the logical end-of-stream marker has
been read, the socket closed by the remote host or when an error occurs.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the ReadStream
method. When you provide a String variable as the buffer, the control will process
the data as text. Binary characters may be interpreted as 8-bit ANSI encoding and
embedded null characters will corrupt the data. Reading the data into a byte array
ensures that you receive the data exactly as it was sent by the server.

This method will force the application to wait until the operation completes. If this method is called
and the Blocking property is set to False, it will automatically switch the socket into a blocking
mode, read the data stream and then restore the socket to non-blocking mode when it has
finished. If another socket operation is attempted while ReadStream is blocked waiting for data
from the remote host, an error will occur. It is recommended that this method only be used with
blocking (synchronous) socket connections; if the application needs to establish multiple
simultaneous connections, it should create worker threads to manage each connection.

It is possible for data to be returned in the buffer even if the method returns False. Applications
should also check the value of the Length argument to determine if any data was copied into the
buffer. For example, if a timeout occurs while the method is waiting for more data to arrive on the
socket, it will return zero; however, data may have already been copied into the buffer prior to the
error condition. It is the responsibility of the application to process that data, regardless of the
method return value.

Because ReadStream can potentially cause the application to block for long periods of time as
the data stream is being read, the control will periodically generate OnProgress events. An
application can use this event to update the user interface as the data is being read. Note that an
application should never perform a blocking operation inside the event handler.

Example
Dim strBuffer As String
Dim nLength As Long

nLength = 0 ' Read socket until connection is closed
If SocketWrench1.ReadStream(strBuffer, nLength, Options:=swStreamConvert) Then
    TextBox1.Text = strBuffer
End If

See Also
Blocking Property, CodePage Property, Read Method, ReadLine Method, StoreStream Method,
WriteStream Method, OnProgress Event

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reject Method  

 

Rejects a connection request from a remote host.

Syntax
object.Reject

Parameters
None.

Return Value
A value of zero is returned if the rejection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the
connection being aborted. If there are no pending client connections at the time, this method will
immediately return with an error indicating that the operation would cause the thread to block.

See Also
Accept Method, Listen Method, OnAccept Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Resolve Method  

 

Resolves a host name to a host IP address.

Syntax
object.Resolve( HostName, IpAddress )

Parameters
HostName

A string value that specifies the host name to resolve.

IpAddress

A string that will contain the IP address of the specified host when the method returns. This
parameter must be passed by reference. The value that is returned may be either a dotted-
quad IPv4 address or an IPv6 address, depending on the configuration of the local system and
what addresses are assigned to the host name.

Return Value
A value of zero is returned if the host name could be resolved into an IP address. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

Remarks
The Resolve method is used to resolve a host name into an IP address. If the host name has both
an IPv4 and IPv6 address associated with it, this method will return the IPv4 address by default. If
the host name only has an IPv6 address, that value will be returned if the local system has an IPv6
TCP/IP stack installed; otherwise, the method will fail with an error indicating that the host name
could not be resolved.

See Also
AutoResolve Property, HostAddress Property, HostFile Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Shutdown Method  

 

Stop sending or receiving data on the socket.

Syntax
object.Shutdown( [Option] )

Parameters
Option

An optional integer value that specifies the action to be taken. It may be one of the following
values:

Value Constant Description

0 swShutdownRead Disable reception of data. The application will no longer be
able to receive data from the remote host. The application
may continue to send data using the Write or WriteLine
method until the socket is closed.

1 swShutdownWrite Disable transmission of data. The application will no longer
be able to send data to the remote host and the remote
host will consider the socket connection to be closed. The
application may continue to read any remaining data in the
socket's receive buffer using the Read or ReadLine
method until the socket is closed. This is the default value if
this parameter is omitted.

2 swShutdownBoth Disable both reception and transmission of data. If this
value is specified, then the socket handle remains valid,
however the client will not be able to send or receive data.
The application must call the Disconnect method to close
the socket.

Return Value
A value of zero is returned if the request was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
In some asynchronous applications, it may be desirable for a client to inform the server that no
further communication is wanted, while allowing the client to read any residual data that may
reside in internal buffers on the client side. Shutdown accomplishes this because the socket
handle is still valid after it has been called, although some or all communication with the remote
host has ceased.

See Also
Disconnect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StoreStream Method  

 

Reads the data stream from the socket and stores it in a specified file.

Syntax
object.StoreStream( FileName, [Length], [Offset], [Options] )

Parameters
FileName

A string variable that specifies the name of the file that will contain the data read from the
socket. If the file does not exist, it will be created. If the file does exist, it will be overwritten.

Length

A numeric variable which specifies the maximum amount of data to be read from the socket.
When the method returns, this variable will be updated with the actual number of bytes read.
Note that because this argument is passed by reference and modified by the method, you must
provide a variable, not a numeric constant. If this argument is omitted or the value is initialized
to zero, this method will read data from the socket until the remote host disconnects or an error
occurs.

Offset

A numeric value which specifies the byte offset into the file where the method will start storing
data read from the socket. Note that all data after this offset will be truncated. If this argument is
omitted or a value of zero is specified the file will be completely overwritten if it already exists.

Options

An optional integer value which specifies any options to be used when reading the data stream.
One or more of the following bit flags may be specified by the caller:

Value Constant Description

0 swStreamDefault The data stream will be returned to the caller unmodified.
This option should always be used with binary data or data
being stored in a byte array. If no options are specified, this
is the default option used by this method.

1 swStreamConvert The data stream is considered to be textual and will be
modified so that end-of-line character sequences are
converted to follow standard Windows conventions. This
will ensure that all lines of text are terminated with a
carriage-return and linefeed sequence. Because this option
modifies the data stream, it should never be used with
binary data. Using this option may result in the amount of
data returned in the buffer to be larger than the source
data. For example, if the source data only terminates a line
of text with a single linefeed, this option will have the effect
of inserting a carriage-return character before each
linefeed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is True. If the
function fails, the return value is False. To get extended error information, check the value of the

 



LastError property.

Remarks
The StoreStream method enables an application to read an arbitrarily large stream of data from
the socket and store it in a file. This method is essentially a simplified version of the ReadStream
method, designed specifically to be used with files rather than strings or byte arrays.

This method will force the thread to block until the operation completes. If this method is called
with the Blocking property set to False, it will automatically switch the socket into a blocking
mode, read the data stream and then restore the socket to non-blocking mode when it has
finished. If another socket operation is attempted while StoreStream is blocked waiting for data
from the remote host, an error will occur. It is recommended that this function only be used with
blocking (synchronous) socket connections; if the application needs to establish multiple
simultaneous connections, it should create worker threads to manage each connection.

Because StoreStream can potentially cause the application to block for long periods of time as
the data stream is being read, the control will periodically generate OnProgress events. An
application can use this event to update the user interface as the data is being read. Note that an
application should never perform a blocking operation inside the event handler.

See Also
Blocking Property, ReadStream Method, WriteStream Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the socket.

Syntax
object.Write( Buffer, [Length], [Options], [RemoteAddress], [RemotePort] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the string
contains Unicode characters, it will be automatically converted to use standard UTF-8 encoding
prior to being sent. If the server is expecting binary data, a Byte array should be used instead.

Length

An optional integer value that specifies the maximum number of bytes to send to the server. Its

maximum value is 231-1 = 2147483647. This argument is not required for string data. If a value
is specified for this argument for other permissible types of data, and it is less than number of
bytes that is determined by the control, then Length will override the internally-computed value.
If the socket is non-blocking and the send fails because it could not write all of the data to the
server, the OnWrite event will be fired when the server can be written to again.

Options

An optional integer value that is reserved for future functionality and should either be omitted,
or specified with a value of zero. Specifying a non-zero value will cause the method to fail and
return an error.

RemoteAddress

An optional string value that specifies the IP address of the remote host that the data will be
sent to. For a TCP connection, it is recommended that this argument be omitted. If it is
specified, the IP address must be the same value that was used to establish the connection.
When writing data to a UDP socket, this is the IP address of the peer that will receive the
datagram. This information can be used in conjunction with the Read method to send a
datagram back to that host.

RemotePort

An optional integer value that specifies the port number on the remote host that the data will
be sent to. For a TCP connection, it is recommended that this argument be omitted. If it is
specified, the port number must be the same value that was used to establish the connection.
When writing data on a UDP socket, this is the port number for the peer who will receive the
datagram. This information can be used in conjunction with the Read method to send a
datagram back to that host.

Return Value
This method returns the number of bytes actually written to the socket, or -1 if an error was
encountered.

Remarks
The Write method sends the data in buffer to the socket. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is non-blocking and is out of buffer space, an error will be generated. If the

 



control is blocking, the application will wait until the data can be sent.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Write method.
When you provide a String variable as the buffer, the control will process the data as
text. If the string contains non-ASCII characters, by default they will automatically be
converted to 8-bit ANSI encoded text prior to being written. Using a byte array
ensures that binary data will be sent as-is without being encoded.

If you want to send text to the remote host a line at a time, use the WriteLine method. If you wish
to send a large amount of data using a single method call rather than making multiple calls to the
Write method, use the WriteStream method.

See Also
CodePage Property, IsWritable Property, Timeout Property, Read Method, WriteLine Method,
WriteStream Method, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 WriteByte Method  

 

Write a byte of data to the socket.

Syntax
object.WriteByte( Value )

Parameters
Value

A byte or integer value that specifies the data that should be sent to the remote host. If this
parameter is a numeric value, it will be converted to its equivalent byte value and written to the
socket. If the argument is a string, the first character will be written to the socket.

Return Value
This method returns a Boolean value. If the byte of data was successfully written to the socket, the
method will return True. If the data could not be written to the socket, the method will return False
and the application should check the value of the LastError property to determine the exact cause
of the failure.

Remarks
The WriteByte method writes a single byte of data to the socket. If the connection is buffered, as
is typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the socket is non-blocking and is out of buffer space, an error will be generated. If the
socket is blocking, the application will wait until the data can be sent.

If you use the WriteByte method with a datagram socket, the datagram will only be a single byte
in length. You cannot use multiple calls to WriteByte to compose a single datagram.

See Also
IsWritable Property, Timeout Property, Read Method, ReadByte Method, Write Method, OnWrite
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 WriteLine Method  

 

Send a line of text to the remote host, terminated by a carriage-return and linefeed.

Syntax
object.WriteLine( [Buffer] )

Parameters
Buffer

An optional String value which contains the text that will be sent to the remote host. The data
will always be terminated with a carriage-return and linefeed control character sequence. If this
argument is omitted, then a only a carriage-return and linefeed are written to the socket.  If the
string contains Unicode characters, it will be automatically converted to use standard UTF-8
encoding prior to being sent. If the string contains an embedded null character, any data that
follows the null character will be discarded.

Return Value
This method returns True if the contents of the string have been written to the socket. If an error
occurs, the method will return False.

Remarks
The WriteLine method writes a line of text to the remote host and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the Write method which writes
arbitrary bytes of data to the socket, this method is specifically designed to write a single line of
text data from a string.

If the Buffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the number of characters sent to the remote host will typically
be larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

If the string value passed to the WriteLine method is a Unicode string which contains non-ASCII
characters, it will be internally converted to 8-bit ANSI encoded text before being written to the
socket. The remote host must be able to recognize the encoding and process it appropriately. The
ReadLine method will automatically convert any encoded characters that it reads from the socket
back to their original Unicode encoding. The CodePage property can be used to change the
default code page used when converting the text.

The WriteLine method should only be used to send text, never binary data. In particular, the
function will discard any data that follows a null character and will append linefeed and carriage
return control characters to the data stream. Calling this this method will force the thread to block
until the complete line of text has been written, the write operation times out or the remote host
aborts the connection. If this function is called with the Blocking property set to False, it will
automatically switch the socket into a blocking mode, send the data and then restore the socket to
non-blocking mode. If another socket operation is attempted while the WriteLine method is
blocked sending data to the remote host, an error will occur. It is recommended that this method
only be used with blocking socket connections.

The Write and WriteLine function calls can be safely intermixed.

See Also

 



CodePage Property, IsWritable Property, Timeout Property, Read Method, ReadLine Method,
Write Method, WriteStream Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 WriteStream Method  

 

Writes data from the stream buffer to the socket.

Syntax
object.WriteStream( Buffer, [Length], [Options] )

Parameters
Buffer

A variable that contains the data to be written to the socket. If the variable is a String type, then
the data will be stored as a string of characters. This is the most appropriate data type to use if
the server is expecting text data that consists of printable characters. If the string contains
Unicode characters, it will be automatically converted to use standard UTF-8 encoding prior to
being sent. If the server is expecting binary data, a Byte array should be used instead.

Length

A numeric variable which specifies the maximum amount of data to be written to the socket.
When the method returns, this variable will be updated with the actual number of bytes written.
Note that because this argument is passed by reference and modified by the method, you must
provide a variable, not a numeric constant. If this argument is omitted or the value is initialized
to zero, this method will automatically determine the amount of data based on the length of the
string or the size of the byte array passed to the method.

Options

An optional integer value which specifies any options to be used when writing the data stream
to the socket. Currently this argument is reserved for future expansion and should either be
omitted or always specified with a value of zero.

Return Value
This method returns a Boolean value. If the function succeeds, the return value is True. If the
function fails, the return value is False. To get extended error information, check the value of the
LastError property.

Remarks
The WriteStream method enables an application to write an arbitrarily large stream of data from
a string buffer or byte array to the socket. Unlike the Write method, which may not write all of the
data in a single call, the WriteStream method will only return when all of the data has been
written or an error occurs.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the WriteStream
method. When you provide a String variable as the buffer, the control will process
the data as text. If the string contains Unicode characters, they will automatically be
converted to 8-bit ANSI encoded text prior to being written. Using a byte array
ensures that binary data will be sent as-is without being encoded. You can change
the default code page used to convert the text by setting the CodePage property.

This method will force the application to wait until the operation completes. If this method is called
with the Blocking property set to False, it will automatically switch the socket into a blocking
mode, write the data stream and then restore the socket to non-blocking mode when it has
finished. If another socket operation is attempted while WriteStream is blocked sending data to
the remote host, an error will occur. It is recommended that this function only be used with

 



blocking (synchronous) socket connections; if the application needs to establish multiple
simultaneous connections, it should create worker threads to manage each connection.

It is possible that some data will have been written to the socket even if the method returns False.
Applications should also check the value of the Length argument to determine if any data was
sent. For example, if a timeout occurs while the function is waiting to write more data, it will return
zero; however, some data may have already been written to the socket prior to the error
condition.

Because WriteStream can potentially cause the application to wait for long periods of time as the
data stream is being written, the control will periodically generate OnProgress events. An
application can use this event to update the user interface as the data is being written. Note that
an application should never perform a blocking operation inside the event handler.

Example
Dim hFile As Long
Dim nLength As Long
Dim dataBuffer() As Byte
Dim bResult As Boolean

' Open the file for binary access
hFile = FreeFile()
Open strFileName For Binary Access Read As hFile

' Determine the size of the file and allocate a byte
' array large enough to store the contents
nLength = LOF(hFile)
ReDim dataBuffer(nLength - 1) As Byte

' Read the file contents into the byte array and
' then close the file
Get hFile, , dataBuffer
Close hFile

' Write the data to the socket
bResult = SocketWrench1.WriteStream(dataBuffer, nLength)

See Also
Blocking Property, CodePage Property, ReadStream Method, StoreStream Method, Write Method,
OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketWrench Control Events  

 

Event Description

OnAccept This event is generated when a remote host connects to a listening socket

OnCancel This event is generated when a blocking operation is canceled

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnProgress This event is generated as a data stream is being read or written

OnRead This event is generated when data is available to be read

OnTimeout This event is generated when a blocking operation times out

OnTimer This event is generated when the control's preset timer interval expires

OnWrite This event is generated when data can be written to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnAccept Event  

 

The OnAccept event is generated when a remote host connects to a listening socket.

Syntax
Sub object_OnAccept ( [Index As Integer,] ByVal Handle As Variant )

Remarks
This event is generated for sockets that are listening for connections from a remote host. A
connection with the remote system is not actually established until it has been accepted by the
listening server. This event is only generated for asynchronous sockets when the Blocking
property is set to False.

The Handle argument specifies the socket descriptor of the listening socket. To accept the
connection, a socket calls its Accept method with argument Handle.

The PeerAddress or PeerName properties may be used to determine the name of the remote
host that is establishing the connection. Note that this information may not be available until after
the Accept method is called to accept the connection.

See Also
PeerAddress Property, PeerName Property, Accept Method, Reject Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ( [Index As Integer] )

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method.

To assist in determining which operation was canceled, consult the State property.

See Also
Cancel Method, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a remote host as a result of a
Connect method call, or when an Accept method call is completed. This event is only generated
for asynchronous sockets when the Blocking property is set to False.

See Also
Accept Method, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the remote host.
This event is only generated for asynchronous sockets when the Blocking property is set to False.

See Also
OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Visual Basic errors do not
generate this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnProgress Event  

 

The OnProgress event is generated as the data stream is being read or written.

Syntax
Sub object_OnProgress ( [Index As Integer], ByVal BytesTotal As Variant, ByVal BytesCopied
As Variant, ByVal Percent As Variant )

Remarks
The OnProgress event is generated as the control reads the data stream from the remote host or
writes a data stream to the remote host. If the data stream contains large amounts of data, this
event can be used to update a progress bar or other user-interface control to provide the user
with some visual feedback. The arguments to this event are:

BytesTotal

The total amount of data being read or written in bytes. This value will be the same as the
maximum size of the data stream specified by the caller. If the size was unknown or unspecified
at the time, then this value will always be the same as the BytesCopied value.

BytesCopied

The number of bytes that have been read or written.

Percent

The percentage of data that's been read or written, expressed as an integer value between 0
and 100, inclusive. If the maximum size of the data stream was not specified by the caller, this
value will always be 100.

Note that this event is only generated by the ReadStream, StoreStream and WriteStream
methods. If the control is reading or writing data using the Read or Write methods the
application is responsible for calculating the completion percentage and updating any user
interface controls.

See Also
Read Method, ReadStream Method, StoreStream Method, Write Method, WriteStream Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ( [Index As Integer] )

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only generated for asynchronous
sockets when the Blocking property is set to False.

See Also
IsReadable Property, Peek Method, Read Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimer Event  

 

The OnTimer event is fired when the control's preset timer interval expires.

Syntax
Sub object_OnTimer ( [Index As Integer] )

Remarks
This event is generated when the control's timer interval has elapsed. The frequency is specified in
milliseconds by setting the Interval property.

See Also
Interval Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ( [Index As Integer] )

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
generated for asynchronous sockets when the Blocking property is set to False.

This event will always be generated at least one time, after the connection to the server is initially
established. It will not fire again unless the Write method fails with the error
swErrorOperationWouldBlock, which indicates that the socket's send buffer is full. When the
socket can accept more data, this event will fire and the application can resume sending data to
the remote host.

See Also
IsWritable Property, Read Method, Write Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SocketWrench Control Error Codes  

Value Constant Description

10001 swErrorNotHandleOwner Handle not owned by the current thread

10002 swErrorFileNotFound The specified file or directory does not exist

10003 swErrorFileNotCreated The specified file could not be created

10004 swErrorOperationCanceled The blocking operation has been canceled

10005 swErrorInvalidFileType The specified file is a block or character device, not a regular file

10006 swErrorInvalidDevice The specified device or address does not exist

10007 swErrorTooManyParameters The maximum number of function parameters has been exceeded

10008 swErrorInvalidFileName The specified file name contains invalid characters or is too long

10009 swErrorInvalidFileHandle Invalid file handle passed to function

10010 swErrorFileReadFailed Unable to read data from the specified file

10011 swErrorFileWriteFailed Unable to write data to the specified file

10012 swErrorOutOfMemory Out of memory

10013 swErrorAccessDenied Access denied

10014 swErrorInvalidParameter Invalid argument passed to function

10015 swErrorClipboardUnavailable The system clipboard is currently unavailable

10016 swErrorClipboardEmpty The system clipboard is empty or does not contain any text data

10017 swErrorFileEmpty The specified file does not contain any data

10018 swErrorFileExists The specified file already exists

10019 swErrorEndOfFile End of file

10020 swErrorDeviceNotFound The specified device could not be found

10021 swErrorDirectoryNotFound The specified directory could not be found

10022 swErrorInvalidBuffer Invalid memory address passed to function

10024 swErrorNoHandles No more handles available to this process

10035 swErrorOperationWouldBlock The specified operation would block the current thread

10036 swErrorOperationInProgress A blocking operation is currently in progress

10037 swErrorAlreadyInProgress The specified operation is already in progress

10038 swErrorInvalidHandle Invalid handle passed to function

10039 swErrorInvalidAddress Invalid network address specified

10040 swErrorInvalidSize Datagram is too large to fit in specified buffer

10041 swErrorInvalidProtocol Invalid network protocol specified

10042 swErrorProtocolNotAvailable The specified network protocol is not available

10043 swErrorProtocolNotSupported The specified protocol is not supported

10044 swErrorSocketNotSupported The specified socket type is not supported

10045 swErrorInvalidOption The specified option is invalid



 

10046 swErrorProtocolFamily The specified protocol family is not supported

10047 swErrorProtocolAddress The specified address is invalid for this protocol family

10048 swErrorAddressInUse The specified address is in use by another process

10049 swErrorAddressUnavailable The specified address cannot be assigned

10050 swErrorNetworkUnavailable The networking subsystem is unavailable

10051 swErrorNetworkUnreachable The specified network is unreachable

10052 swErrorNetworkReset Network dropped connection on reset

10053 swErrorConnectionAborted Connection was aborted due to timeout or other failure

10054 swErrorConnectionReset Connection was reset by remote network

10055 swErrorOutOfBuffers No buffer space is available

10056 swErrorAlreadyConnected Connection already established with remote host

10057 swErrorNotConnected No connection established with remote host

10058 swErrorConnectionShutdown Unable to send or receive data after connection shutdown

10060 swErrorOperationTimeout The specified operation has timed out

10061 swErrorConnectionRefused The connection has been refused by the remote host

10064 swErrorHostUnavailable The specified host is unavailable

10065 swErrorHostUnreachable The specified host is unreachable

10067 swErrorTooManyProcesses Too many processes are using the networking subsystem

10091 swErrorNetworkNotReady Network subsystem is not ready for communication

10092 swErrorInvalidVersion This version of the operating system is not supported

10093 swErrorNetworkNotInitialized The networking subsystem has not been initialized

10101 swErrorRemoteShutdown The remote host has initiated a graceful shutdown sequence

11001 swErrorInvalidHostName The specified hostname is invalid or could not be resolved

11002 swErrorHostNameNotFound The specified hostname could not be found

11003 swErrorHostNameRefused Unable to resolve hostname, request refused

11004 swErrorHostNameNotResolved Unable to resolve hostname, no address for specified host

12001 swErrorInvalidLicense The license for this product is invalid

12002 swErrorProductNotLicensed This product is not licensed to perform this operation

12003 swErrorNotImplemented This function has not been implemented on this platform

12004 swErrorUnknownLocalHost Unable to determine local host name

12005 swErrorInvalidHostAddress Invalid host address specified

12006 swErrorInvalidServicePort Invalid service port number specified

12007 swErrorInvalidServiceName Invalid or unknown service name specified

12008 swErrorInvalidEventId Invalid event identifier specified

12009 swErrorOperationNotBlocking No blocking operation in progress on this socket

12101 swErrorSecurityNotInitialized Unable to initialize security interface for this process

12102 swErrorSecurityContext Unable to establish security context for this session

 



12103 swErrorSecurityCredentials Unable to open client certificate store or establish client credentials

12104 swErrorSecurityCertificate Unable to validate the certificate chain for this session

12105 swErrorSecurityDecryption Unable to decrypt data stream

12106 swErrorSecurityEncryption Unable to encrypt data stream

12337 swErrorMaximumConnections The maximum number of client connections exceeded

12338 swErrorThreadCreationFailed Unable to create a new thread for the current process

12339 swErrorInvalidThreadHandle The specified thread handle is no longer valid

12340 swErrorThreadTerminated The specified thread has been terminated

12341 swErrorThreadDeadlock The operation would result in the current thread becoming deadlocked

12342 swErrorInvalidClientMoniker The specified moniker is not associated with any client session

12343 swErrorClientMonikerExists The specified moniker has been assigned to another client session

12344 swErrorServerInactive The specified server is not listening for client connections

12345 swErrorServerSuspended The specified server is suspended and not accepting client connections

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Secure Shell Protocol Control

Establish an interactive terminal session with an SSH server and execute remote commands.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name SshClientCtl.SshClient

File Name CSTSHX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.SshClient.11

ClassID 46A9CAC5-33A2-4018-AA39-8CAB904A7294

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 4251

Overview
The Secure Shell (SSH) protocol ActiveX control is used to establish a secure connection with a
server which provides a virtual terminal session for a user. Its functionality is similar to how
character based consoles and serial terminals work, enabling a user to login to the server, execute
commands and interact with applications running on the server. The control provides an interface
for establishing the connection and handling the standard I/O functions needed by the program. It
also includes methods that enable a program to easily scan the data stream for specific sequences
of characters, making it very simple to write light-weight client interfaces to applications running
on the server. This control can be combined with the Terminal Emulation control to provide
complete terminal emulation services for a standard ANSI or DEC-VT220 terminal.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows



operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Shell Protocol Control Properties  

 

Property Description

AutoResolve Determines if host names and IP addresses are automatically resolved

Blocking Gets and sets the blocking state of the control

CipherStrength Return the length of the key used by the encryption algorithm

CodePage Gets and sets the code page used when reading and writing text

Columns Gets and sets the number of columns for the virtual terminal session

Command Gets and sets the command that will be executed on the server

ExitCode Return the exit code from the command executed on the server

Fingerprint Returns a string that uniquely identifies the server

HashStrength Return the length of the message digest that was selected

HostAddress Gets and sets the IP address of the server

HostName Gets and sets the name of the server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsReadable Return if data can be read from the server without blocking

IsWritable Return if data can be sent to the server without blocking

KeepAlive Gets and sets a value which determines if the client session should kept active

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

NewLine Gets and sets the end-of-line character sequences sent to the server

Options Gets and sets the options that are used in establishing a connection

Password Gets and sets the password used to authenticate the client session

PrivateKey Gets and sets the name of the private key file used to authenticate the client session

ProxyHost Gets and sets the hostname or IP address for the proxy server

ProxyPassword Gets and sets the password that will be used to authenticate the proxy connection

ProxyPort Gets and sets the port number for the proxy server

ProxyType Gets and sets the type of proxy server the connection will be established through

ProxyUser Gets and sets the user name that will be used to authenticate the proxy connection

RemotePort Gets and sets the port number for a remote connection

Rows Gets and sets the number of rows for the virtual terminal session

Secure Set or return if a connection to the server is secure

SecureCipher Return the encryption algorithm used to establish the secure connection with the server

SecureHash Return the message digest selected when establishing the secure connection with the server

SecureKeyExchange Return the key exchange algorithm used to establish the secure connection with the server

 



SecureProtocol Gets and sets the security protocol used to establish the secure connection with the server

Terminal Gets and sets the terminal type used by the control

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

UserName Gets and sets the current user name used to authenticate the client session

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnConnect, OnDisconnect,
OnRead and OnWrite are only fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, IsReadable Property, IsWritable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CodePage Property  

 

Gets and sets the code page used when reading and writing text.

Syntax
object.CodePage [= value ]

Remarks
The CodePage property is an integer value which specifies how strings are encoded when data is
sent or received. Any valid code page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale. This is the default encoding type.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. It is not recommended that you use this code page unless
you know that the remote host is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available  code page identifiers can be found in Microsoft's documentation for
the Win32 API.

All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to
as "octets" in networking terminology. However, the internal string type used by ActiveX controls
are Unicode where each character is represented by 16 bits. To send and receive data using
strings, these Unicode strings are converted to a stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale,
mapping the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into

 

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers


a string buffer, the stream of bytes received from the remote host are converted to Unicode
before they are returned to your application.

If you are exchanging text with another system and it appears to corrupted or characters are
being replaced with question marks or other symbols, it is likely the system is sending text which is
using a different character encoding. Most services use UTF-8 encoding to represent non-ASCII
characters and selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a
string data type is not recommended when reading or writing binary data to a
socket. If possible, you should always use a byte array as the buffer parameter for the
Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, the control defaults to using the code page for the current locale.
This property value directly corresponds to Windows code page identifiers, and will accept any
valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Data Type
Integer (Int32)

See Also
Read Method, ReadLine Method, Write Method, WriteLine Method



 Columns Property  

 

Gets and sets the number of columns for the virtual terminal session.

Syntax
object.Columns [= columns ]

Remarks
The Columns property returns the number of character columns for the virtual display. Setting this
property prior to calling the Connect method requests that the server create a pseudoterminal
with the specified number of columns. This property value is only meaningful for interactive
terminal sessions, and is not used when executing a command on the server.

The default value for this property is 80.

Data Type
Integer (Int32)

See Also
Rows Property, Terminal Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Command Property  

 

Gets and sets the command that will be executed on the server.

Syntax
object.Command [= command ]

Remarks
The Command property is used to specify a command and its arguments that should be
executed on the server. The output of the command will be returned to the application and can
be read using the Read or ReadLine method. If no command is specified, then the control will
establish an interactive terminal session instead.

The command and its arguments must follow the conventions used by the SSH server, and the
command will execute in the context of the authenticated user. The ExitCode property can be
used to obtain the numerical exit code of the remote program, if one is available.

Data Type
String

See Also
ExitCode Property, Connect Method, Execute Method, Read Method, ReadLine Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ExitCode Property  

 

Return the exit code from the command executed on the server.

Syntax
object.ExitCode

Remarks
The ExitCode property returns the numeric exit code for the command that was previously
executed on the server. This property value is only meaningful after the command has completed
and the connection closed by calling the Disconnect method. In most cases, an exit code value of
zero indicates success, while any other value indicates an error condition.

Note that the actual value is application dependent and is only meaningful in the context of that
particular program. A program may choose to use exit codes in a non-standard way, such as
having certain non-zero values indicate success.

The Reset method will reset the exit code back to its default value of zero.

Data Type
Integer (Int32)

See Also
Command Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Fingerprint Property  

 

Returns a string that uniquely identifies the server.

Syntax
object.Fingerprint

Remarks
The Fingerprint property returns a string that consists of a series of hexadecimal values separated
by colons. The value is unique to the server, and is an MD5 hash of the RSA host key. An
application can use this value to determine if a connection has been established with the server
previously by storing the server's host name, IP address and fingerprint in a file, registry key or a
database.

Data Type
String

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of true if the control is connected with a
server, otherwise the property has a value of false.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsReadable Property  

 

Return if data can be read from the server without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the server without blocking. For
non-blocking connections, this property can be checked before the application attempts to read
the data, preventing an error.

Data Type
Boolean

See Also
IsConnected Property, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Return if data can be sent to the server without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written without blocking. For non-blocking
connections, this property can be checked before the application attempts to send data to the
server, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
send data without an error. The next operation may result in an stErrorOperationWouldBlock or
stErrorOperationInProgress error. The application must treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
IsReadable Property, SendKey Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeepAlive Property  

 

Gets and sets a value which determines if the client session should kept active.

Syntax
object.KeepAlive [= { True | False } ]

Remarks
Setting the KeepAlive property to a value of true indicates that the client wishes to maintain a
long-duration session with the server. It is only necessary to set this property to a value of true if
the client session is interactive and the connection must be held open for more than two hours.

ta Type

Boolean

See Also
Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NewLine Property  

 

Gets and sets the end-of-line character sequences sent to the server.

Syntax
object.NewLine [= value ]

Remarks
The NewLine property is an integer value that specifies how newlines are sent to the server. It
may be one of the following values:

Value Constant Description

0 sshNewLineDefault There are no changes to how data is sent to the server.
Any carriage return or linefeed characters that are sent
using the Write method will be sent as-is. The WriteLine
method will terminate each line of text with a carriage
return and linefeed (CRLF) sequence. This is the default
line mode that is set when a new connection is
established.

1 sshNewLineCR A carriage return is used as the end-of-line character. Any
data sent using the Write method that contains only a
linefeed (LF) character or a carriage return and linefeed
(CRLF) sequence to indicate the end-of-line will be
replaced by a carriage return (CR) character. The
WriteLine method will terminate each line of text with a
single carriage return character.

2 sshNewLineLF A linefeed is used as the end-of-line character. Any data
sent using the Write method that contains only a carriage
return (CR) character or a carriage return an linefeed
(CRLF) sequence to indicate the end-of-line will be
replaced by a linefeed (LF) character. The WriteLine
method will terminate each line of text with a single
linefeed character.

3 sshNewLineCRLF A carriage return and linefeed (CRLF) character sequence
is used to indicate the end-of-line. Any data sent using the
Write method that contains only a carriage return (CR) or
linefeed (LF) will be replaced by a carriage return and
linefeed. The WriteLine method will terminate each line of
text with a carriage return and linefeed sequence.

When a connection is initially established with the server, it determines what characters are used to
indicate the end-of-line and how they are displayed. On UNIX based systems, this is controlled by
the settings for the pseudo-terminal that is allocated for the client session, and can be changed
using the stty command. In most cases, the client line mode can be left at the default. However, in
some cases you may need to change the line mode, particularly if you intend to send data from a
Windows text file or copied from the clipboard.

Windows uses a carriage return and linefeed (CRLF) sequence to indicate the end-of-line and a
UNIX based server may interpret that as multiple newlines. To prevent this, set the NewLine

 



property to sshNewLineCR and the CRLF sequence in the text will be replaced by a single
carriage return.

Data Type
Integer (Int32)

See Also
Write Method, WriteLine Method



 Options Property  

 

Gets and sets the options that are used in establishing a connection.

Syntax
object.Options [= value ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when connecting to the server. The property
value is created by using a bitwise operator with one or more of the following values:

Value Constant Description

0 sshOptionNone No options specified. A standard terminal
session will be established with the default
terminal type.

1 sshOptionKeepAlive This option specifies the library should attempt
to maintain an idle client session for long
periods of time. This option is only necessary if
you expect that the connection will be held open
for more than two hours. This option is the same
as setting the KeepAlive property to a value of
true.

2 sshOptionNoPTY This option specifies that a pseudoterminal (PTY)
should not be created for the client session. This
option is automatically set if the Command
property specifies a command to be executed
on the server.

4 sshOptionNoShell This option specifies that a command shell
should not be used when executing a command
on the server.

8 sshOptionNoAuthRSA This option specifies that RSA authentication
should not be used with SSH-1 connections. This
option is ignored with SSH-2 connections and
should only be specified if required by the
server.

16 sshOptionNoPwdNul This option specifies the user password cannot
be terminated with a null character. This option
is ignored with SSH-2 connections and should
only be specified if required by the server.

32 sshOptionNoRekey This option specifies the client should never
attempt a repeat key exchange with the server.
Some SSH servers do not support rekeying the
session, and this can cause the client to become
non-responsive or abort the connection after
being connected for an hour.

 



64 sshOptionCompatSID This compatibility option changes how the
session ID is handled during public key
authentication with older SSH servers. This
option should only be specified when
connecting to servers that use OpenSSH 2.2.0 or
earlier versions.

128 sshOptionCompatHMAC This compatibility option changes how the
HMAC authentication codes are generated. This
option should only be specified when
connecting to servers that use OpenSSH 2.2.0 or
earlier versions.

&H40000 sshOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option
has been specified.

Data Type
Integer (Int32)

See Also
Secure Property, Connect Method



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password used to authenticate the user. This property is
used as the default value for the Connect method if no password is specified as an argument.

Data Type
String

See Also
PrivateKey Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PrivateKey Property  

 

Gets and sets the name of the private key file used to authenticate the client session.

Syntax
object.PrivateKey [= filename ]

Remarks
The PrivateKey property specifies the name of the file that contains the private key that is used to
authenticate the client session. It is only necessary to set this property if the server requires the
user to provide a private key to establish the connection.

Data Type
String

See Also
Password Property, UserName Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyHost Property  

 

Gets and sets the host name of the proxy server.

Syntax
object.ProxyHost [= hostname ]

Remarks
The ProxyHost property should be set to the name of the proxy server that you want to connect
through. This property may be set to either a fully qualified domain name, or an IP address. This
property is only used if the ProxyType property is set to a non-zero value.

Data Type
String

See Also
ProxyPassword Property, ProxyPort Property, ProxyType Property, ProxyUser Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyPassword Property  

 

Gets and sets the proxy server password for the current user.

Syntax
object.ProxyPassword [= password ]

Remarks
The ProxyPassword property specifies the password used to authenticate the user to the proxy
server. If a password is not required by the server, this property is ignored.

Data Type
String

See Also
ProxyHost Property, ProxyPort Property, ProxyType Property, ProxyUser Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyPort Property  

 

Gets and sets the port number for the proxy server.

Syntax
object.ProxyPort [= portnumber ]

Remarks
The ProxyPort property is used to set the port number that the control will use to establish a
connection with the proxy server. A value of zero specifies that the client will connect to the proxy
server using the default port for the selected proxy type. If the client is connecting through an
HTTP proxy, the connection will be established on port 80 by default. If the client is connecting
through a Telnet proxy, the connection will be established on port 23 by default.

Data Type
Integer (Int32)

See Also
ProxyHost Property, ProxyPassword Property, ProxyType Property, ProxyUser Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyType Property  

 

Gets and sets the current proxy server type.

Syntax
object.ProxyType = [proxytype ]

Remarks
The ProxyType property specifies the type of proxy server that the client is connecting to. The
supported proxy server types are as follows:

Value Constant Description

0 sshProxyNone A direct connection will be established with the server.

1 sshProxyHttp Establish a connection through a proxy server using the
Hypertext Transfer Protocol.

2 sshProxyTelnet Establish a connection through a proxy server using the Telnet
protocol.

If the sshProxyNone proxy type is specified, then a direct connection is established to the server
and the proxy-related properties are ignored. If a port number for the proxy server is not explicitly
specified, then the default port number for the proxy server type will be used. If the client is
connecting through an HTTP proxy, the connection will be established on port 80 by default. If the
client is connecting through a Telnet proxy, the connection will be established on port 23 by
default.

Data Type
Integer (Int32)

See Also
ProxyHost Property, ProxyPassword Property, ProxyPort Property, ProxyUser Property, Secure
Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProxyUser Property  

 

Gets and sets the current proxy user name.

Syntax
object.ProxyUser [= username ]

Remarks
The ProxyUser property specifies the user that is logging in to the proxy server. If the proxy server
does not require user authentication, then this property is ignored.

Data Type
String

See Also
ProxyHost Property, ProxyPassword Property, ProxyPort Property, ProxyType Property, Connect
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Rows Property  

 

Gets and sets the number of rows for the virtual terminal session.

Syntax
object.Rows [= rows ]

Remarks
The Rows property returns the number of character rows for the virtual display. Setting this
property prior to calling the Connect method requests that the server create a pseudoterminal
with the specified number of rows. This property value is only meaningful for interactive terminal
sessions, and is not used when executing a command on the server.

The default value for this property is 24.

Data Type
Integer (Int32)

See Also
Columns Property, Terminal Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if a connection to the server is secure.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is true, and it is included only for compatibility with the other SocketTools
components. Because all SSH connections must be secure, attempting to set this property to a
value of false will result in an error.

Data Type
Boolean

See Also
Connect Method, Initialize Method

 



 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 stCipherNone No cipher has been selected. This is not a secure connection
with the server.

1 stCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

2 stCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

4 stCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 stCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 stCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 stCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 stCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 stCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 stCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Value Constant Description

0 stHashNone No message digest algorithm has been selected. This is not a
secure connection with the server.

1 stHashMD5 The MD5 algorithm was selected. This algorithm takes a message
of arbitrary length and produces a 128-bit message digest.

2 stHashSHA The SHA algorithm was selected. This algorithm produces a 160-
bit message digest.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 stKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 stKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 stKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 stKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 stKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange algorithm
was selected. This is a variant of the Diffie-Hellman
algorithm which uses elliptic curve cryptography. This
key exchange algorithm is only supported on Windows
XP SP3 and later versions of the operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use either
SSH-1 or SSH-2 to establish the connection, with the appropriate protocol automatically selected
based on the capabilities of the server. It is recommended that you only change this property
value if you fully understand the implications of doing so. Assigning a value to this property will
override the default and force the control to attempt to use only the protocol specified. One or
more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. Because all
connections to an SSH server are secure, this value indicates
that a connection has not been established.

16 stProtocolSSH1 The Secure Shell 1.0 protocol should be used. This version of
the protocol has been deprecated and is no longer widely
used. It is not recommended that this version of the protocol
be used to establish a connection.

32 stProtocolSSH2 The Secure Shell 2.0 protocol should be used. This is the most
commonly used version of the protocol. It is recommended
that this version of the protocol be used unless the server
explicitly requires the client to use an earlier version.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been
established will result in an exception being thrown. This property should only be set before calling
the Connect method.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Terminal Property  

 

Gets and sets the terminal type used by the control.

Syntax
object.Terminal [= termtype ]

Remarks
The Terminal property specifies the terminal type of the server for display purposes. On UNIX
based systems, the terminal name corresponds to a termcap or terminfo entry as set in the TERM
environment variable. On Windows based systems which implement the ssh service, this property
may be ignored and the server will assume that the client is capable of displaying ANSI escape
sequences. On VMS systems, the terminal name should correspond to the terminal type used with
the SET TERMINAL/DEVICE command.

If this property is set to an empty string and no terminal type is specified when the Connect
method is called, a default terminal type named "unknown" will be used. On most UNIX and VMS
systems this defines a terminal which is not capable of cursor positioning using control or escape
sequences. This terminal type may not be recognized and an error may be displayed when the
user logs in indicating that the terminal type is invalid.

Refer to the documentation for the server system to determine what terminal type names are
available to you. Remember that on UNIX systems, the terminal type is case-sensitive. Some of the
more common terminal types are:

Terminal Type Description

ansi This terminal type is usually available on UNIX based servers. This
specifies that the client is capable of displaying standard ANSI escape
sequences for cursor control.

dumb This terminal type typically specifies a terminal display which does not
support control or escape sequences for cursor positioning. If you do
not want escape sequences embedded in the data stream and the
server returns an error if the terminal type is not specified, try using this
terminal type.

pcansi This terminal type is usually available on UNIX based servers. This
specifies that the client is a using a PC terminal emulator that supports
basic ANSI escape sequences for cursor control. This may also enable
escape sequences which can set the display colors.

vt100 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT100. This specifies that the client is capable of emulating a DEC
VT100 terminal. The VT100 supports many of the same cursor control
sequences as an ANSI terminal.

vt220 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT220. This specifies that the client is capable of emulating a DEC
VT220 terminal, which is a later version of the VT100.

vt320 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-

 



VT320. This specifies that the client is capable of emulating a DEC
VT320 terminal, which is similar to the VT100 and VT220 and provides
advanced features such as the ability to set display colors.

xterm This terminal type is may be available on UNIX based servers which
have X Windows installed. This specifies that the client is a using the X
Windows xterm emulator which supports standard ANSI escape
sequences for cursor control.

Data Type
String

See Also
Columns Property, Rows Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

SshClient1.ThrowError = False
nError = SshClient1.Connect(strHostName)

If nError > 0 Then
    MsgBox SshClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

SshClient1.ThrowError = True
SshClient1.Connect strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 sshTraceInfo All function calls are written to the trace file, including
information about successful calls made to the networking
library. This is the default value.

1 sshTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 sshTraceWarning Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 sshTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII and
hexadecimal format. This is useful for examining the actual
byte stream that is exchanged between the application
and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= username ]

Remarks
The UserName property identifies the user that is connecting to the server and is required for
authentication purposes. This property is used as the default value for the Connect method if no
username is specified as an argument.

Data Type
String

See Also
Password Property, Connect Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Shell Protocol Control Methods  

 

Method Description

Break Sends a break signal to the server

Cancel Cancels the current blocking network operation

Connect Establish a connection with a server

Control Send a control message to the server

Disconnect Terminate the connection with the server

Execute Execute a command on the server and return the output

Initialize Initialize the control and validate the runtime license key

Peek Read data returned by the server, but do not remove it from the receive buffer

Read Return data read from the server

ReadLine Read a line of text from the server

Reset Reset the internal state of the control

Search Search for a specific character sequence in the data stream

SendKey Send a key code to the server

Uninitialize Uninitialize the control and release any system resources that were allocated

Write Write data to the server

WriteLine Write a line of text to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Break Method  

 

Sends a break signal to the server.

Syntax
object.Break

Parameters
None.

Return Value
A value of zero is returned if the break signal was sent successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The Break method a control message to the server which simulates a break signal on a physical
terminal. This is used by some operating systems as an instruction to enter a privileged
configuration mode. Note that this is not the same as sending an interrupt character such as
Ctrl+C to the server. This control code is ignored for SSH 1.0 sessions.

See Also
Cancel Method, Control Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Break Method, Control Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

Establish a connection with a server.

Syntax
object.Connect( [RemoteHost], [RemotePort], [UserName], [Password], [Timeout], [Options] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero indicates that the default
port number for this service should be used to establish the connection.

UserName

A string which specifies the user name which will be used to authenticate the client session. This
value must specify a valid user name and cannot be an empty string. If this argument is not
specified, it defaults to the value of UserName property.

Password

A string which specifies the password which will be used to authenticate the client session. If the
user does not have a password, this value can be an empty string. If this argument is not
specified, it defaults to the value of the Password property.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

A numeric value which specifies one or more options. If this argument is omitted or a value of
zero is specified, a default connection will be established. This argument is constructed by using
a bitwise operator with any of the following values:

Value Constant Description

0 sshOptionNone No options specified. A standard terminal
session will be established with the default
terminal type.

1 sshOptionKeepAlive This option specifies the library should attempt
to maintain an idle client session for long
periods of time. This option is only necessary if
you expect that the connection will be held open
for more than two hours. This option is the same
as setting the KeepAlive property to a value of
true.

2 sshOptionNoPTY This option specifies that a pseudoterminal (PTY)
should not be created for the client session. This
option is automatically set if the Command



 

property specifies a command to be executed
on the server.

4 sshOptionNoShell This option specifies that a command shell
should not be used when executing a command
on the server.

8 sshOptionNoAuthRSA This option specifies that RSA authentication
should not be used with SSH-1 connections. This
option is ignored with SSH-2 connections and
should only be specified if required by the
server.

16 sshOptionNoPwdNul This option specifies the user password cannot
be terminated with a null character. This option
is ignored with SSH-2 connections and should
only be specified if required by the server.

32 sshOptionNoRekey This option specifies the client should never
attempt a repeat key exchange with the server.
Some SSH servers do not support rekeying the
session, and this can cause the client to become
non-responsive or abort the connection after
being connected for an hour.

64 sshOptionCompatSID This compatibility option changes how the
session ID is handled during public key
authentication with older SSH servers. This
option should only be specified when
connecting to servers that use OpenSSH 2.2.0 or
earlier versions.

128 sshOptionCompatHMAC This compatibility option changes how the
HMAC authentication codes are generated. This
option should only be specified when
connecting to servers that use OpenSSH 2.2.0 or
earlier versions.

&H40000 sshOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option
has been specified.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

See Also

 



HostAddress Property, HostName Property, Options Property, Password Property, RemotePort
Property, UserName Property, Disconnect Method, OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Control Method  

 

Send a control message to the server.

Syntax
object.Control( ControlCode )

Parameters
ControlCode

A numeric control code which specifies the control message which should be sent to the server.
This may be one of the following values:

Value Constant Description

1 sshControlBreak Sends a control message to the server which simulates a
break signal on a physical terminal. This is used by some
operating systems as an instruction to enter a privileged
configuration mode. Note that this is not the same as
sending an interrupt character such as Ctrl+C to the server.
This control code is ignored for SSH 1.0 sessions. This is the
same as calling the Break method.

2 sshControlNoop Sends a control message to the server, but it does not
perform any operation. This is typically used by clients to
prevent the server from automatically closing a session that
has been idle for a long period of time.

3 sshControlEof Sends a control message to the server indicating that the
client has finished sending data. Note that this option is
normally not used with interactive terminal sessions, and
should only be used when required by the server.

4 sshControlPing Sends a control message to the server which is used to test
whether or not the server is responsive to the client. This is
typically used by clients to attempt to detect if the
connection to the server is still active.

5 sshControlRekey Sends a control message to the server requesting that the
key exchange be performed again. This control code is
ignored for SSH 1.0 sessions.

Return Value
A value of zero is returned if the control code was sent successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The Control method enables an application to send control messages to the server, which can
cause it to take specific actions such as simulate a terminal break or request that the key exchange
be performed again. Some control messages are not supported by the SSH 1.0 protocol, in which
case the control message is ignored.

See Also
Break Method, Cancel Method

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
IsConnected Property, ExitCode Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Execute Method  

Execute a command on the server and return the output.

Syntax
object.Execute( [RemoteHost], [RemotePort], [UserName], [Password], [Command], [Timeout],
[Options] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero indicates that the default
port number for this service should be used to establish the connection.

UserName

A string which specifies the user name which will be used to authenticate the client session. If
this argument is not specified, it defaults to the value of UserName property.

Password

A string which specifies the password which will be used to authenticate the client session. If this
argument is not specified, it defaults to the value of the Password property.

Command

A string which specifies the command that will be executed on the server. If this argument is not
specified, it defaults to the value of the Command property.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

A numeric value which specifies one or more options. If this argument is omitted or a value of
zero is specified, a default connection will be established. This argument is constructed by using
a bitwise operator with any of the following values:

Value Constant Description

0 sshOptionNone No options specified. A standard terminal session
will be established with the default terminal type.

1 sshOptionKeepAlive This option specifies the library should attempt to
maintain an idle client session for long periods of
time. This option is only necessary if you expect that
the connection will be held open for more than two
hours. This option is the same as setting the
KeepAlive property to a value of true.

2 sshOptionNoPTY This option specifies that a pseudoterminal (PTY)
should not be created for the client session. This



 

option is automatically set if the Command
property specifies a command to be executed on
the server.

4 sshOptionNoShell This option specifies that a command shell should
not be used when executing a command on the
server.

8 sshOptionNoAuthRSA This option specifies that RSA authentication should
not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server.

16 sshOptionNoPwdNul This option specifies the user password cannot be
terminated with a null character. This option is
ignored with SSH-2 connections and should only be
specified if required by the server.

32 sshOptionNoRekey This option specifies the client should never attempt
a repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and this
can cause the client to become non-responsive or
abort the connection after being connected for an
hour.

64 sshOptionCompatSID This compatibility option changes how the session
ID is handled during public key authentication with
older SSH servers. This option should only be
specified when connecting to servers that use
OpenSSH 2.2.0 or earlier versions.

128 sshOptionCompatHMAC This compatibility option changes how the HMAC
authentication codes are generated. This option
should only be specified when connecting to servers
that use OpenSSH 2.2.0 or earlier versions.

Return Value
A string that contains the output of the command that was executed on the server. To get the exit
code returned by the program, check the value of the ExitCode property. If an empty string is
returned, this indicates that there was either no data available, or an error has occurred and the
LastError property will return a non-zero value.

Remarks
This method establishes a network connection with a server and executes the specified command.
The output from the command is returned as a string. This method should not be used if the
connection to the server must be established through a proxy server. If the connection must be
made through a proxy server, then you should set the Command property to the specify the
command to execute, call the Connect method to establish the connection, and then use either
the Read or ReadLine methods to read the output.

When the command output is being read from the server, this method will automatically convert
the data to match the end-of-line convention used on the Windows platform. This is useful when
executing a command on a UNIX based system where the end-of-line is indicated by a single
linefeed, while on Windows it is a carriage-return and linefeed pair. If the output contains

 



embedded nulls or escape sequences, then this conversion will not be performed.

Example
The following example demonstrates how to use the Execute method and check for an error
condition:

Dim strOutput As String

SshClient1.HostName = strServerName
SshClient1.UserName = strUserName
SshClient1.Password = strPassword
SshClient1.Command = "/bin/ls -l"

strOutput = SshClient1.Execute()

If Len(strOutput) = 0 Then
    If SshClient1.LastError > 0 Then
        MsgBox SshClient1.LastErrorString, vbExclamation
        Exit Sub
    End If
End If

See Also
Command Property, ExitCode Property, LastError Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set sshClient = CreateObject("SocketTools.SshClient.11")

nError = sshClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Peek Method  

 

Read data returned by the server, but do not remove it from the receive buffer.

Syntax
object.Peek( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, it is recommended
that a Byte array be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the server is returned by this method. If there is no data
available to be read, a value of zero is returned. If an error occurs, a value of -1 is returned.

Remarks
The Peek method can be used to examine the data that is available to be read from the internal
receive buffer. If there is no data in the receive buffer at that time, a value of zero is returned. It
should be noted that this differs from the Read method, where a return value of zero indicates
that there is no more data available to be read and the connection has been closed. The Peek
method will never cause the client to block, and so may be safely used with asynchronous
connections. Note that it is possible for the returned data to contain embedded null characters.

See Also
IsConnected Property, IsReadable Property, Read Method, ReadLine Method, Search Method,
Write Method, OnRead Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Read Method  

 

Return data read from the server.

Syntax
object.Read( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned as
a string of characters. This is the most appropriate data type to use if the server is sending data
that consists of printable characters. If the server is sending binary data, it is recommended that
a Byte array be used instead.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the server is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will stop until data is returned by the server
or the connection is closed. Note that it is possible for the returned data to contain embedded null
characters.

See Also
CodePage Property, IsConnected Property, IsReadable Property, ReadLine Method, Search
Method, Write Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadLine Method  

 

Read up to a line of data from the server and returns it in a string buffer.

Syntax
object.ReadLine( Buffer, [Length] )

Parameters
Buffer

A string that the data will be stored in when the method returns. This parameter must be
passed by reference.

Length

An optional parameter that specifies the maximum number of bytes to read. If this argument is
omitted, then the control will return up to 4096 characters in the string. If the application
expects that a single line of text will exceed this value, then it must be explicitly specified.

Return Value
This method will return true if a line of data has been read. If an error occurs or there is no more
data available to read, then the method will return False. It is possible for data to be returned in
the string buffer even if the return value is false. Applications should check the length of the string
after the method returns to determine if any data was copied into the buffer. For example, if a
timeout occurs while the method is waiting for more data to arrive on the socket, it will return
zero; however, data may have already been copied into the string buffer prior to the error
condition. It is the responsibility of the application to process that data, regardless of the function
return value.

Remarks
The ReadLine method reads data from the server up to the specified number of bytes or until an
end-of-line character sequence is encountered. Unlike the Read method which reads arbitrary
bytes of data, this function is specifically designed to return a single line of text data in a string
variable. When an end-of-line character sequence is encountered, the function will stop and
return the data up to that point; the string will not contain the carriage-return or linefeed
characters.

There are some limitations when using the ReadLine method. The method should only be used to
read text, never binary data. In particular, it will discard nulls, linefeed and carriage return control
characters. This method will force the thread to block until an end-of-line character sequence is
processed, the read operation times out or the server closes its end of the socket connection. If
the Blocking property is set to False, calling this method will automatically switch the socket into a
blocking mode, read the data and then restore the socket to non-blocking mode. If another
network operation is attempted while ReadLine is blocked waiting for data from the server, an
error will occur. It is recommended that this method only be used with blocking connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method
will consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
CodePage Property, IsReadable Property, Timeout Property, Read Method, Write Method,
WriteLine Method

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Search Method  

 

Search for a specific character sequence in the data stream.

Syntax
object.Search( String, [Buffer], [Length], [Options] )

Parameters
String

A string value which specifies the sequence of characters to search for in the data stream. When
the control encounters this sequence, the method will return.

Buffer

An optional string or byte array buffer that will contain the output sent by the server, up to and
including the search string character sequence. If this argument is omitted, the control will still
search for the character sequence but any output sent by the server will be discarded.

Length

An optional integer value which specifies the maximum number of bytes of data to store in the
buffer. If this argument is omitted, no limit will be placed on the amount of output buffered by
the control.

Options

An optional integer value which is reserved for future use. This argument should be omitted.

Return Value
This method returns a Boolean value. A return value of true indicates that the search string was
found in the data stream. A return value of False indicates that the search string was not found in
the amount of time specified by the Timeout property or that the server closed the connection.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when
it is found. This is useful when the client wants to automate responses to the server, such as
executing a command and processing the output. The function collects the output from the server
and stores it in a buffer provided by the caller. When the function returns, the buffer will contain
everything sent by the server up to and including the search string.

See Also
IsReadable Property, Timeout Property, Connect Method, Read Method, ReadLine Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendKey Method  

 

Send a key code to the server.

Syntax
object.SendKey( Key )

Parameters
Key

A value which specifies the key code to send to the server. This may be a single byte, in which
case it is sent to the server as-is. If a numeric value is specified, then this is considered to be an
ASCII character value and it is sent to the server as a single byte. The value must be between 1
and 255. If the key code value is 0, then the method returns without sending any data. If the
value is greater than 255, an error will be raised. If the Key argument is a string, then the
method will send that string to the server. An empty string is ignored and the method will return
without sending any data. An error will be returned if the string is longer than 128 bytes.

Return Value
This method will return a value of true if the key code was successfully sent to the server. If the key
cannot be sent, the method will return False and the LastError property will contain the error
code that indicates the reason for the failure. This method will also return False if the key code
value is zero or an empty string is passed by the caller.

Remarks
The SendKey method sends a key code to the server. This method is useful if the application
needs to send a single character to the server, as opposed to using the Write method which
should be used for sending large amounts of data.

The strings sent by the SendKey method are typically short escape sequences which are
generated by a terminal emulator when the user presses a special key, such as a function key. For
example, a DEC VT100 terminal sends the escape sequence <ESC>[M when the user presses the
F1 function key. To simulate this, those three bytes could be passed as the Key value.

Example
The following example demonstrates how to use the SendKey method in conjunction with the
KeyMapped and KeyPress events in the Terminal Emulator control:

Private Sub Terminal1_KeyMapped(KeyIndex As Integer, Shift As Integer, KeyString 
As String)
    SshClient1.SendKey KeyString
End Sub

Private Sub Terminal1_KeyPress(KeyAscii As Integer)
    SshClient1.SendKey KeyAscii
End Sub

See Also
IsWritable Property, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the server.

Syntax
object.Write( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the server is
expecting binary data, it is recommended that a Byte array be used instead.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the server, or -1 if an error was
encountered.

Remarks
The Write method sends the data in buffer to the server. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is blocking, the application will wait until the data can be sent. If the control
is non-blocking and the write fails because it could not send all of the data to the server, the
OnWrite event will be fired when the server can accept data again.

See Also
CodePage Property, IsConnected Property, IsWritable Property, Timeout Property, Read Method,
ReadLine Method, SendKey Method, WriteLine Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 WriteLine Method  

 

Send a line of text to the server, terminated by a carriage-return and linefeed.

Syntax
object.WriteLine( [Buffer] )

Parameters
Buffer

A string which contains the data that will be sent to the server. The data will always be
terminated with a carriage-return and linefeed control character sequence. If this argument is
omitted, then a only a carriage-return and linefeed are written to the socket. Note that if the
string contains a null character, any data that follows the null character will be discarded.

Return Value
This method returns true if the contents of the string has been written to the server. If an error
occurs, the method will return False.

Remarks
The WriteLine method writes a line of text to the server and terminates the line with a carriage-
return and linefeed control character sequence. Unlike the Write method which writes arbitrary
bytes of data to the socket, this method is specifically designed to write a single line of text data
from a string.

If the Buffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the number of characters sent to the remote host will typically
be larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

The WriteLine method should only be used to send text, never binary data. In particular, the
function will discard any data that follows a null character and will append linefeed and carriage
return control characters to the data stream. Calling this this method will force the thread to block
until the complete line of text has been written, the write operation times out or the server aborts
the connection. If this function is called with the Blocking property set to False, it will automatically
switch the socket into a blocking mode, send the data and then restore the socket to non-blocking
mode. If another socket operation is attempted while the WriteLine method is blocked sending
data to the server, an error will occur. It is recommended that this method only be used with
blocking socket connections.

The Write and WriteLine methods can be safely intermixed.

See Also
CodePage Property, IsWritable Property, Timeout Property, Read Method, ReadLine Method,
Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Shell Protocol Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnRead This event is generated when data is available to be read

OnTimeout This event is generated when a blocking operation times out

OnWrite This event is generated when data can be written to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a server as a result of a
Connect method call. This event is only triggered when the Blocking property is set to False.

See Also
Blocking Property, Connect Method, OnDisconnect Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server. This
event is only triggered when the Blocking property is set to False.

When the OnDisconnect event fires, it is possible that there may still be buffered data available to
read from the server. Before disconnecting from the server, the application should attempt to read
any remaining data until the Read method returns a value of zero, or returns an error indicating
that the operation would block.

See Also
Blocking Property, IsConnected Property, IsReadable Property, Connect Method, Disconnect
Method, Read Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ([Index As Integer] )

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only triggered when the Blocking
property is set to False.

See Also
IsReadable Property, Read Method, ReadLine Method, Write Method, WriteLine Method, OnWrite
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property. This event is only triggered when the Blocking property is
set to True.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ( [Index As Integer] )

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
triggered when the Blocking property is set to False.

See Also
IsWritable Property, Read Method, ReadLine Method, SendKey Method, Write Method, WriteLine
Method, OnConnect Event, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Telnet Protocol Control

Establish an interactive terminal session with a server.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name TelnetClientCtl.TelnetClient

File Name CSTNTX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.TelnetClient.11

ClassID 20552896-1108-4EC5-95B3-19741C1CF8BC

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 854

Overview
The Telnet protocol is used to establish a connection with a server which provides a virtual
terminal session for a user. Its functionality is similar to how character based consoles and serial
terminals work, enabling a user to login to the server, execute commands and interact with
applications running on the server. The control provides an interface for establishing the
connection, negotiating certain options (such as whether characters will be echoed back to the
client) and handling the standard I/O functions needed by the program.

The control also provides methods that enable a program to easily scan the data stream for
specific sequences of characters, making it very simple to write light-weight client interfaces to
applications running on the server. This control can be combined with the SocketTools Terminal
control to provide complete terminal emulation services for a standard ANSI or DEC-VT220
terminal.

This control supports secure connections using the standard SSL and TLS protocols. To establish a
secure connection to the server using the Secure Shell (SSH) protocol, use the SocketTools
SshClient control.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the



desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Telnet Protocol Control Properties  

 

Property Description

AutoResolve Determines if host names and IP addresses are automatically resolved

Binary Enable or disable binary input and output

Blocking Gets and sets the blocking state of the control

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the client certificate

CertificatePassword Gets and sets the password associated with the client certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the client certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was issued

CertificateUser Gets and sets the user that owns the client certificate

CipherStrength Return the length of the key used by the encryption algorithm

CodePage Gets and sets the code page used when reading and writing text

HashStrength Return the length of the message digest that was selected

HostAddress Gets and sets the IP address of the server

HostName Gets and sets the name of the server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsReadable Return if data can be read from the server without blocking

IsWritable Return if data can be sent to the server without blocking

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

LocalEcho Enable or disable the echoing of characters by the server

Options Gets and sets the options that are used in establishing a connection

Password Gets and sets the password for the current user

RemotePort Gets and sets the port number for a remote connection

Secure Set or return if a connection to the server is secure

SecureCipher Return the encryption algorithm used to establish the secure connection with the server

SecureHash Return the message digest selected when establishing the secure connection with the server

SecureKeyExchange Return the key exchange algorithm used to establish the secure connection with the server

SecureProtocol Gets and sets the security protocol used to establish the secure connection with the server

Terminal Gets and sets the terminal type used by the control

 



ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

UserName Gets and sets the current user name

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Binary Property  

 

Enable or disable binary input and output.

Syntax
object.Binary [= { True | False } ] ]

Remarks
The Binary property enables or disables the exchange of binary data between the client and
server. If set to False, all characters have the high-bit stripped off and single linefeed characters are
automatically converted to carriage-return/linefeed sequences. The default value is True, which
specifies that data is to be received unchanged from the server.

Data Type
Boolean

See Also
LocalEcho Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnConnect, OnDisconnect,
OnRead and OnWrite are only fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, IsReadable Property, IsWritable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateExpires Property  

 

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssued Property  

 

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateIssuer Property  

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function
     End If



      nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the name of the company who issued the server
certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = TelnetClient1.CertificateIssuer
If Len(strIssuer) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strCompanyName = GetCertNameValue(strIssuer, "O")
     MsgBox "This certificate was issued by " & strCompanyName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateName Property  

 

Gets and sets the common name for the client certificate.

Syntax
object.CertificateName [= name ]

Remarks
This property sets the common name or friendly name of the certificate that should be used to
establish the connection with the server. It is only required that you set this property value if the
server requires a client certificate for authentication. If this property is not set, a client certificate
will not be provided to the server. If a certificate name is specified, the certificate must have a
private key associated with it, otherwise the connection attempt will fail because the control will be
unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificatePassword Property  

 

Gets and sets the password associated with the client certificate.

Syntax
object.CertificatePassword [= password ]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStatus Property  

 

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property returns an integer value which identifies the status of the server
certificate. This property may return one of the following values:

Constant Value Description

stCertificateNone 0 No certificate information is available. A secure
connection was not established with the server.

stCertificateValid 1 The certificate is valid.

stCertificateNoMatch 2 The certificate is valid, however the domain name
specified in the certificate does not match the domain
name of the site that the client has connected to. This is
typically the case if the HostAddress property is used
rather than the HostName property. It is
recommended that the client examine the
CertificateSubject property to determine the domain
name of the site that the certificate was issued for.

stCertificateExpired 3 The certificate has expired and is no longer valid. The
client can examine the CertificateExpires property to
determine when the certificate expired.

stCertificateRevoked 4 The certificate has been revoked and is no longer valid.
It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateUntrusted 5 The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the local
host. It is recommended that the client application
immediately terminate the connection if this status is
returned.

stCertificateInvalid 6 The certificate is invalid. This typically indicates that the
internal structure of the certificate is damaged. It is
recommended that the client application immediately
terminate the connection if this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
Integer (Int32)

Example

 



The following example establishes a secure connection to a server:

TelnetClient1.HostName = strHostName
TelnetClient1.Secure = True

nError = TelnetClient1.Connect()
If nError > 0 Then
     MsgBox "Unable to connect to server " & strHostName, vbExclamation
     Exit Sub
End If

If TelnetClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          TelnetClient1.Disconnect
          Exit Sub
     End If
End If

TelnetClient1.Disconnect

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateStore Property  

 

Gets and sets the name of the client certificate store or file.

Syntax
object.CertificateStore [= store ]

Remarks
This property sets the name of the certificate store that contains the client certificate that should
be used when establishing a secure connection with the server. The certificate may either be
stored in the registry or in a file. If the certificate is stored in the registry, then this property should
be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateSubject Property  

Returns information about the organization that the server certificate was issued to.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the subject's company or country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site
the certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As 
String) As String
     Dim strFieldValue As String
     Dim cchValue As Integer, cchFieldName As Integer
     Dim nOffset As Integer

     GetCertNameValue = ""
     cchValue = Len(strValue)
     cchFieldName = Len(strFieldName)

     If cchValue = 0 Or cchFieldName = 0 Then
          Exit Function



 

     End If

     nOffset = InStr(strValue, strFieldName & "=")

     If nOffset > 0 Then

          '
          ' If the field name was found in the string, then
          ' remove everything to the left of the token from
          ' the string
          '

          strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

          '
          ' If the value is quoted, then strip off the leading
          ' quote and look for the ending quote in the string;
          ' otherwise look for the comma that marks the end of
          ' the field name/value pair
          '

          If Left(strFieldValue, 1) = Chr(34) Then
               strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
               nOffset = InStr(strFieldValue, Chr(34))
          Else
               nOffset = InStr(strFieldValue, ",")
          End If

          '
          ' If the offset is 0, then the name/value pair is
          ' the last token in the string; otherwise, remove
          ' everything to the right of that position
          '

          If nOffset > 0 Then
               strFieldValue = Left(strFieldValue, nOffset - 1)
          End If

          GetCertNameValue = strFieldValue
     End If

End Function

This function could then be used to return the domain name that the server certificate was issued
for:

Dim strSubject As String
Dim strDomainName As String

strSubject = TelnetClient1.CertificateSubject
If Len(strSubject) = 0 Then
     MsgBox "A secure connection has not been established"
Else
     strDomainName = GetCertNameValue(strSubject, "CN")
     MsgBox "This certificate was issued for " & strDomainName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus

 



Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CertificateUser Property  

 

Gets and sets the user that owns the client certificate.

Syntax
object.CertificateUser [= username ]

Remarks
This property sets the name of the user that owns the client certificate that will be used to establish
a secure connection with the server. If this property is not set, the certificate store for the current
user will be used when searching for the certificate. If this property is used to specify another user,
the process must have the appropriate permission to access the registry location that contains the
client certificate. On Windows Vista and later versions of the operating system, this requires that
the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CipherStrength Property  

 

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CodePage Property  

 

Gets and sets the code page used when reading and writing text.

Syntax
object.CodePage [= value ]

Remarks
The CodePage property is an integer value which specifies how strings are encoded when data is
sent or received. Any valid code page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale. This is the default encoding type.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. It is not recommended that you use this code page unless
you know that the remote host is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available  code page identifiers can be found in Microsoft's documentation for
the Win32 API.

All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to
as "octets" in networking terminology. However, the internal string type used by ActiveX controls
are Unicode where each character is represented by 16 bits. To send and receive data using
strings, these Unicode strings are converted to a stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale,
mapping the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into

 

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers


a string buffer, the stream of bytes received from the remote host are converted to Unicode
before they are returned to your application.

If you are exchanging text with another system and it appears to corrupted or characters are
being replaced with question marks or other symbols, it is likely the system is sending text which is
using a different character encoding. Most services use UTF-8 encoding to represent non-ASCII
characters and selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a
string data type is not recommended when reading or writing binary data to a
socket. If possible, you should always use a byte array as the buffer parameter for the
Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, the control defaults to using the code page for the current locale.
This property value directly corresponds to Windows code page identifiers, and will accept any
valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Data Type
Integer (Int32)

See Also
Read Method, ReadLine Method, Write Method, WriteLine Method



 HashStrength Property  

 

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of true if the control is connected with a
server, otherwise the property has a value of false.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsReadable Property  

 

Return if data can be read from the server without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the server without blocking. For
non-blocking connections, this property can be checked before the application attempts to read
the data, preventing an error.

Data Type
Boolean

See Also
IsConnected Property, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsWritable Property  

 

Return if data can be sent to the server without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written without blocking. For non-blocking
connections, this property can be checked before the application attempts to send data to the
server, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
send data without an error. The next operation may result in an stErrorOperationWouldBlock or
stErrorOperationInProgress error. The application must treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
IsReadable Property, SendKey Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalEcho Property  

 

Enable or disable the echoing of characters by the server.

Syntax
object.LocalEcho [= { True | False } ] ]

Remarks
The LocalEcho property enables or disables the echoing of characters by the server. If set to True,
the server will be instructed to not echo characters, making the client responsible for displaying
user input. The default value for this property is False, specifying that the server should echo user
input back to the client.

Data Type
Boolean

See Also
Binary Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Options Property  

 

Gets and sets the options that are used in establishing a connection.

Syntax
object.Options [= value ]

Remarks
The Options property is an integer value which specifies one or more options. The value specified
for this property will be used as the default options when connecting to the server. The property
value is created by using a bitwise operator with one or more of the following values:

Value Constant Description

0 telnetOptionNone No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used.

&H400 telnetOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 telnetOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This
option only affects connections using either
the SSL or TLS protocols.

&H1000 telnetOptionSecure This option specifies the client should attempt
to establish a secure connection with the
server. Note that the server must support
secure connections using either the SSL or TLS
protocol.

&H2000 telnetOptionSecureExplicit This option specifies the client should attempt
to establish a secure connection with the
server using the START_TLS option. The client
initiates a standard connection with the server,
then requests a secure connection during the
option negotiation process.

&H8000 telnetOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option
is specified, the client will allow connections
using TLS 1.0 and cipher suites that use RC4,
MD5 and SHA1.

&H40000 telnetOptionPreferIPv6 This option specifies the client should prefer

 



the use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address.
This option is ignored if the local system does
not have IPv6 enabled, or when the hostname
can only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to
establish a connection using IPv6 regardless if
this option has been specified.

Data Type
Integer (Int32)

See Also
Secure Property, Connect Method



 Password Property  

 

Gets and sets the password for the current user.

Syntax
object.Password [= password ]

Remarks
The Password property specifies the password used to authenticate the user. This property is
used as the default value for the Login method if no password is specified as an argument.

Data Type
String

See Also
UserName Property, Connect Method, Login Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Set or return if a connection to the server is secure.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application must set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may request files or
submit queries to the server as with standard connections.

It is strongly recommended that any application that sets this property True use error handling to
trap an errors that may occur. If the control is unable to initialize the security libraries, or otherwise
cannot create a secure session for the client, an error will be generated when this property value is
set.

Data Type
Boolean

Example
The following example establishes a secure connection to a server:

TelnetClient1.HostName = strHostName
TelnetClient1.RemotePort = 992
TelnetClient1.Secure = True

nError = TelnetClient1.Connect()
If nError > 0 Then
    MsgBox "Unable to connect to server " & strHostName, vbExclamation
    Exit Sub
End If

If TelnetClient1.CertificateStatus <> stCertificateValid Then
     nResult = MsgBox("The server certificate could not be validated" & vbCrLf & 
_
                      "Are you sure you wish to continue?", vbYesNo)

     If nResult = vbNo Then
          TelnetClient1.Disconnect
          Exit Sub
     End If
End If

See Also
CertificateStatus Property, Connect Method

 



 SecureCipher Property  

 

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 stCipherNone No cipher has been selected. This is not a secure connection
with the server.

1 stCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

2 stCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-bits
in length, in 8-bit increments.

4 stCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 stCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 stCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 stCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 stCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 stCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 stCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

 



CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureHash Property  

 

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Value Constant Description

1 stHashMD5 The MD5 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

2 stHashSHA1 The SHA-1 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be
cryptographically secure.

4 stHashSHA256 The SHA-256 algorithm has been selected.

8 stHashSHA384 The SHA-384 algorithm has been selected.

16 stHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureKeyExchange Property  

 

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 stKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 stKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 stKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 stKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 stKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange algorithm
was selected. This is a variant of the Diffie-Hellman
algorithm which uses elliptic curve cryptography. This
key exchange algorithm is only supported on Windows
XP SP3 and later versions of the operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SecureProtocol Property  

 

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol ]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

 



established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Terminal Property  

 

Gets and sets the terminal type used by the control.

Syntax
object.Terminal [= termtype ]

Remarks
The Terminal property specifies the terminal type of the server for display purposes. On UNIX
based systems, the terminal name corresponds to a termcap or terminfo entry as set in the TERM
environment variable. On Windows based systems which implement the telnet service, this
property may be ignored and the server will assume that the client is capable of displaying ANSI
escape sequences. On VMS systems, the terminal name should correspond to the terminal type
used with the SET TERMINAL/DEVICE command.

If this property is set to an empty string and no terminal type is specified when the Connect
method is called, a default terminal type named "unknown" will be used. On most UNIX and VMS
systems this defines a terminal which is not capable of cursor positioning using control or escape
sequences. This terminal type may not be recognized and an error may be displayed when the
user logs in indicating that the terminal type is invalid.

Refer to the documentation for the server system to determine what terminal type names are
available to you. Remember that on UNIX systems, the terminal type is case-sensitive. Some of the
more common terminal types are:

Terminal Type Description

ansi This terminal type is usually available on UNIX based servers. This
specifies that the client is capable of displaying standard ANSI escape
sequences for cursor control.

dumb This terminal type typically specifies a terminal display which does not
support control or escape sequences for cursor positioning. If you do
not want escape sequences embedded in the data stream and the
server returns an error if the terminal type is not specified, try using this
terminal type.

pcansi This terminal type is usually available on UNIX based servers. This
specifies that the client is a using a PC terminal emulator that supports
basic ANSI escape sequences for cursor control. This may also enable
escape sequences which can set the display colors.

vt100 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT100. This specifies that the client is capable of emulating a DEC
VT100 terminal. The VT100 supports many of the same cursor control
sequences as an ANSI terminal.

vt220 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT220. This specifies that the client is capable of emulating a DEC
VT220 terminal, which is a later version of the VT100.

vt320 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-

 



VT320. This specifies that the client is capable of emulating a DEC
VT320 terminal, which is similar to the VT100 and VT220 and provides
advanced features such as the ability to set display colors.

xterm This terminal type is may be available on UNIX based servers which
have X Windows installed. This specifies that the client is a using the X
Windows xterm emulator which supports standard ANSI escape
sequences for cursor control.

Data Type
String

See Also
Login Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

TelnetClient1.ThrowError = False
nError = TelnetClient1.Connect(strHostName)

If nError > 0 Then
    MsgBox TelnetClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

TelnetClient1.ThrowError = True
TelnetClient1.Connect strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 telnetTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 telnetTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 telnetTraceWarning Only those function calls which fail, or return values
which indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 telnetTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the current user name.

Syntax
object.UserName [= username ]

Remarks
The UserName property specifies the user that is logging in to the server, and is required for
authentication purposes. This property is used as the default value for the Login method if no
password is specified as an argument.

Data Type
String

See Also
Password Property, Connect Method, Login Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Telnet Protocol Control Methods  

 

Method Description

Abort Aborts the current session and terminates the connection

Break Sends a break signal to the server

Cancel Cancels the current blocking network operation

Connect Establish a connection with a server

Disconnect Terminate the connection with a server

Initialize Initialize the control and validate the runtime license key

Login Authenticate the user and log them in to the current session

Read Return data read from the server

ReadLine Read a line of text from the server and return it in a string buffer

Reset Reset the internal state of the control

Search Search for a specific character sequence in the data stream

SendKey Send a key code to the server

Uninitialize Uninitialize the control and release any system resources that were allocated

Write Write data to the server

WriteLine Write a line of text to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Abort Method  

 

Aborts the current session and terminates the connection.

Syntax
object.Abort

Parameters
None.

Return Value
A value of zero is returned if the break signal was sent successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The Abort method sends an abort sequence to the server and the connection to the server is
terminated. Once this method returns, the client is no longer connected to the server. If a program
is currently executing on the server at the time this function is called, that program may be
terminated as a result of the session being aborted. Applications should normally call the
Disconnect method to gracefully disconnect from the server and should only use this function
when the connection must be aborted immediately.

See Also
Break Method, Cancel Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Break Method  

 

Sends a break signal to the server.

Syntax
object.Break

Parameters
None.

Return Value
A value of zero is returned if the break signal was sent successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The Break method sends a signal to the server which may terminate an application that is
currently running. The actual response to the break signal depends on the application.

See Also
Abort Method, Cancel Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Abort Method, Break Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

 

Establish a connection with a server.

Syntax
object.Connect( [RemoteHost], [RemotePort], [Timeout], [Options] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero indicates that the default
port number for this service should be used to establish the connection.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

A numeric value which specifies one or more options. If this argument is omitted or a value of
zero is specified, a default connection will be established. This argument is constructed by using
a bitwise operator with any of the following values:

Value Constant Description

0 telnetOptionNone No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used.

&H400 telnetOptionTunnel This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

&H800 telnetOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This
option only affects connections using either
the SSL or TLS protocols.

&H1000 telnetOptionSecure This option specifies the client should attempt
to establish a secure connection with the
server. Note that the server must support
secure connections using either the SSL or TLS
protocol.

 



&H2000 telnetOptionSecureExplicit This option specifies the client should attempt
to establish a secure connection with the
server using the START_TLS option. The client
initiates a standard connection with the server,
then requests a secure connection during the
option negotiation process.

&H8000 telnetOptionSecureFallback This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option
is specified, the client will allow connections
using TLS 1.0 and cipher suites that use RC4,
MD5 and SHA1.

&H40000 telnetOptionPreferIPv6 This option specifies the client should prefer
the use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address.
This option is ignored if the local system does
not have IPv6 enabled, or when the hostname
can only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to
establish a connection using IPv6 regardless if
this option has been specified.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

See Also
HostAddress Property, HostName Property, Options Property, RemotePort Property, Disconnect
Method, OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
IsConnected Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set telnetClient = CreateObject("SocketTools.TelnetClient.11")

nError = telnetClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Login Method  

 

Authenticate the user and log them in to the current session.

Syntax
object.Login( [UserName], [Password] )

Parameters
UserName

An optional string argument which specifies the username which should be used to authenticate
the client session. If this argument is omitted, the value of the UserName property will be used.

Password

An optional string argument which specifies the password which should be used to authenticate
the client session. If this argument is omitted, the value of the Password property will be used.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Login method is specifically designed to work with most UNIX based servers, and may work
with other servers that use a similar login process. The method works by scanning the data stream
for a username prompt and then replying with the specified username. If that is successful, it will
then scan for a password prompt and provide the specified password. If no recognized prompt is
found, or if the server responds with an error indicating that the username or password is invalid,
the method will fail.

If the Login method succeeds, the next call to the Read method by the client will return any
welcome message to the user. This is typically followed by a command prompt where the user can
enter commands to be executed on the server. The data sent by the server during the login
process is discarded and not available when the function returns. If the client requires this
information, use the Search method to automate the login process instead.

Because the Login method is designed for UNIX based systems, it may not work with servers
running on other operating system platforms such as Windows or VMS. In this case, applications
should use the Search method to search for the appropriate login prompts in the data stream.

See Also
Connect Method, Disconnect Method, Read Method, Search Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Read Method  

 

Return data read from the server.

Syntax
object.Read( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, a Byte array
should be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the server is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will stop until data is returned by the server
or the connection is closed.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Read method.
When you provide a String variable as the buffer, the control will process the data as
text. Binary characters may be interpreted as 8-bit ANSI encoding and embedded
null characters will corrupt the data. Reading the data into a byte array ensures that
you receive the data exactly as it was sent by the server.

See Also
CodePage Property, IsConnected Property, IsReadable Property, Search Method, Write Method,
OnRead Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ReadLine Method  

 

Read up to a line of data from the server and returns it in a string buffer.

Syntax
object.ReadLine( Buffer, [Length] )

Parameters
Buffer

A string that the data will be stored in when the method returns. This parameter must be
passed by reference.

Length

An optional parameter that specifies the maximum number of bytes to read. If this argument is
omitted, then the control will return up to 4096 characters in the string. If the application
expects that a single line of text will exceed this value, then it must be explicitly specified.

Return Value
This method will return true if a line of data has been read. If an error occurs or there is no more
data available to read, then the method will return False. It is possible for data to be returned in
the string buffer even if the return value is false. Applications should check the length of the string
after the method returns to determine if any data was copied into the buffer. For example, if a
timeout occurs while the method is waiting for more data to arrive on the socket, it will return
zero; however, data may have already been copied into the string buffer prior to the error
condition. It is the responsibility of the application to process that data, regardless of the function
return value.

Remarks
The ReadLine method reads data from the server up to the specified number of bytes or until an
end-of-line character sequence is encountered. Unlike the Read method which reads arbitrary
bytes of data, this function is specifically designed to return a single line of text data in a string
variable. When an end-of-line character sequence is encountered, the function will stop and
return the data up to that point; the string will not contain the carriage-return or linefeed
characters.

There are some limitations when using the ReadLine method. The method should only be used to
read text, never binary data. In particular, it will discard nulls, linefeed and carriage return control
characters. This method will force the thread to block until an end-of-line character sequence is
processed, the read operation times out or the server closes its end of the socket connection. If
the Blocking property is set to False, calling this method will automatically switch the socket into a
blocking mode, read the data and then restore the socket to non-blocking mode. If another
network operation is attempted while ReadLine is blocked waiting for data from the server, an
error will occur. It is recommended that this method only be used with blocking connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method
will consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
CodePage Property, IsReadable Property, Timeout Property, Read Method, Write Method,
WriteLine Method

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Search Method  

 

Search for a specific character sequence in the data stream.

Syntax
object.Search( String, [Buffer], [Length], [Options] )

Parameters
String

A string argument which specifies the sequence of characters to search for in the data stream.
When the control encounters this sequence, the method will return.

Buffer

An optional string or byte array buffer that will contain the output sent by the server, up to and
including the search string character sequence. If this argument is omitted, the control will still
search for the character sequence but any output sent by the server will be discarded.

Length

An optional integer value which specifies the maximum number of bytes of data to store in the
buffer. If this argument is omitted, no limit will be placed on the amount of output buffered by
the control.

Options

An optional integer argument which is reserved for future use. This argument should be
omitted.

Return Value
This method returns a Boolean value. A return value of true indicates that the search string was
found in the data stream. A return value of False indicates that the search string was not found in
the amount of time specified by the Timeout property or that the server closed the connection.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when
it is found. This is useful when the client wants to automate responses to the server, such as
executing a command and processing the output. The function collects the output from the server
and stores it in a buffer provided by the caller. When the function returns, the buffer will contain
everything sent by the server up to and including the search string.

See Also
IsReadable Property, Timeout Property, Connect Method, Login Method, Read Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendKey Method  

 

Send a key code to the server.

Syntax
object.SendKey( Key )

Parameters
Key

A value which specifies the key code to send to the server. This may be a single byte, in which
case it is sent to the server as-is. If a numeric value is specified, then this is considered to be an
ASCII character value and it is sent to the server as a single byte. The value must be between 1
and 255. If the key code value is 0, then the method returns without sending any data. If the
value is greater than 255, an error will be raised. If the Key argument is a string, then the
method will send that string to the server. An empty string is ignored and the method will return
without sending any data. An error will be returned if the string is longer than 128 bytes.

Return Value
This method will return a value of true if the key code was successfully sent to the server. If the key
cannot be sent, the method will return False and the LastError property will contain the error
code that indicates the reason for the failure. This method will also return False if the key code
value is zero or an empty string is passed by the caller.

Remarks
The SendKey method sends a key code to the server. This method is useful if the application
needs to send a single character to the server, as opposed to using the Write method which
should be used for sending large amounts of data.

The strings sent by the SendKey method are typically short escape sequences which are
generated by a terminal emulator when the user presses a special key, such as a function key. For
example, a DEC VT100 terminal sends the escape sequence <ESC>[M when the user presses the
F1 function key. To simulate this, those three bytes could be passed as the Key value.

Example
The following example demonstrates how to use the SendKey method in conjunction with the
KeyMapped and KeyPress events in the Terminal Emulator control:

Private Sub Terminal1_KeyMapped(KeyIndex As Integer, Shift As Integer, KeyString 
As String)
    TelnetClient1.SendKey KeyString
End Sub

Private Sub Terminal1_KeyPress(KeyAscii As Integer)
    TelnetClient1.SendKey KeyAscii
End Sub

See Also
IsWritable Property, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to the server.

Syntax
object.Write( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the server is
expecting binary data, it is recommended that a Byte array be used instead.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the server, or -1 if an error was
encountered.

Remarks
The Write method sends the data in buffer to the server. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is blocking, the application will wait until the data can be sent. If the control
is non-blocking and the write fails because it could not send all of the data to the server, the
OnWrite event will be fired when the server can accept data again.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Write method.
When you provide a String variable as the buffer, the control will process the data as
text. If the string contains Unicode characters, it will automatically be converted to 8-
bit ANSI encoded text prior to being written. Using a byte array ensures that binary
data will be sent as-is without being encoded.

See Also
CodePage Property, IsConnected Property, IsWritable Property, Timeout Property, Read Method,
SendKey Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 WriteLine Method  

 

Send a line of text to the server, terminated by a carriage-return and linefeed.

Syntax
object.WriteLine( [Buffer] )

Parameters
Buffer

A string which contains the data that will be sent to the server. The data will always be
terminated with a carriage-return and linefeed control character sequence. If this argument is
omitted, then a only a carriage-return and linefeed are written to the socket. Note that if the
string contains a null character, any data that follows the null character will be discarded.

Return Value
This method returns true if the contents of the string has been written to the server. If an error
occurs, the method will return False.

Remarks
The WriteLine method writes a line of text to the server and terminates the line with a carriage-
return and linefeed control character sequence. Unlike the Write method which writes arbitrary
bytes of data to the socket, this method is specifically designed to write a single line of text data
from a string.

If the Buffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the number of characters sent to the remote host will typically
be larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

The WriteLine method should only be used to send text, never binary data. In particular, the
function will discard any data that follows a null character and will append linefeed and carriage
return control characters to the data stream. Calling this this method will force the thread to block
until the complete line of text has been written, the write operation times out or the server aborts
the connection. If this function is called with the Blocking property set to False, it will automatically
switch the socket into a blocking mode, send the data and then restore the socket to non-blocking
mode. If another socket operation is attempted while the WriteLine method is blocked sending
data to the server, an error will occur. It is recommended that this method only be used with
blocking socket connections.

The Write and WriteLine methods can be safely intermixed.

See Also
CodePage Property, IsWritable Property, Timeout Property, Read Method, ReadLine Method,
Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Telnet Protocol Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnRead This event is generated when data is available to be read

OnTimeout This event is generated when a blocking operation times out

OnWrite This event is generated when data can be written to the server

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a server as a result of a
Connect method call. This event is only triggered when the Blocking property is set to False.

See Also
Blocking Property, Connect Method, OnDisconnect Event, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server. This
event is only triggered when the Blocking property is set to False.

When the OnDisconnect event fires, it is possible that there may still be buffered data available to
read from the server. Before disconnecting from the server, the application should attempt to read
any remaining data until the Read method returns a value of zero, or returns an error indicating
that the operation would block.

See Also
Blocking Property, IsConnected Property, IsReadable Property, Connect Method, Disconnect
Method, Read Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ([Index As Integer] )

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only triggered when the Blocking
property is set to False.

See Also
IsReadable Property, Read Method, Write Method, OnWrite Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property. This event is only triggered when the Blocking property is
set to True.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnWrite Event  

 

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ( [Index As Integer] )

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
triggered when the Blocking property is set to False.

See Also
IsWritable Property, Read Method, SendKey Method, Write Method, OnConnect Event, OnRead
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Terminal Emulation Control

Emulate an ANSI or DEC VT-220 character mode display terminal.

Reference

Properties
Methods
Events

Control Information

Object Name TerminalCtl.Terminal

File Name CSNVTX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.Terminal.11

ClassID BD5466AA-B72B-4BB0-824B-F5F8F70DBE01

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Remarks
The Terminal Emulation control provides a comprehensive interface for emulating an ANSI or
DEC-VT220 terminal, with full support for all standard escape and control sequences, color
mapping and other advanced features. The control provides both a high level interface for parsing
escape sequences and updating a display, as well as lower level primitives for directly managing
the virtual display, such as controlling the individual display cells, moving the cursor position and
specifying display attributes.

This control can be used in conjunction with the Remote Command, Secure Shell or Telnet
Protocol controls to provide terminal emulation services for an application, or it can be used
independently. For example, this control could be used to provide emulation services for a
program that connects to a device using an RS-232 serial port.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.



Distribution
When you distribute an application that uses this control, you should install the appropriate file in
the Windows system directory. ActiveX controls must be registered on the target system by the
installation program before they can be used by an application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Terminal Emulator Control Properties  

 

Property Description

Attributes Gets and sets the current display attribute for the terminal emulator

AutoRefresh Enable or disable the automatic refreshing of the virtual display

AutoSelect Enable or disable the automatic selection of text in the display

AutoWrap Enable or disable the wrapping of text in the emulation window

BackColor Sets or returns the background color for the control.

Bell Enable or disable the audible bell

BoldColor Sets or returns the bold color for the control.

Cell Returns information about the specified character cell in the display

CellHeight Return the height of a text cell

CellWidth Return the width of a text cell

CodePage Gets and sets the code page used when reading and writing text

ColorMap Gets and sets the RGB value used when displaying color text attributes

Columns Gets and sets the number of columns in the emulation display

Cursor Enable or disable the display of the cursor in the emulation window

CursorStyle Gets and sets the style of cursor used in the emulator

CursorX Gets and sets the current cursor position in the display

CursorY Gets and sets the current cursor position in the display

Emulation Gets and sets the emulation used by the control

Font Returns the Font object used by the terminal emulator

FontBold Gets and sets the bold style for the current font

FontName Gets and sets the name of the current font

FontSize Gets and sets the point size of the current font

ForeColor Sets or returns the foreground color for the control.

hWnd Returns a handle to the control window

KeyMap Gets and sets the character sequence mapped to a special key

MouseX Return the current mouse pointer position in the display

MouseY Return the current mouse pointer position in the display

MousePointer Gets and sets the type of pointer which is displayed when the mouse is positioned over the control window

NewLine Determine how carriage returns and linefeeds are displayed

Rows Gets and sets the number of rows in the emulation display

ScrollBars Returns or sets a value indicating whether the control has horizontal or vertical scroll bars

SelLength Gets and sets the number of characters selected

SelStart Gets and sets the starting position of the current text selection

SelText Returns the selected text or text from a specific portion of the display

Text Gets and sets the text displayed by the control

Version Return the current version of the object

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Attributes Property  

 

Gets and sets the current display attribute for the terminal emulator.

Syntax
object.Attributes [= attributes ]

Remarks
The Attributes property can be used to determine the current display attributes, or to change the
current attribute for subsequent text. The following table lists the attributes that are recognized by
the control.

Value Constant Description

0 nvtAttributeNormal Normal, default attributes.

1 nvtAttributeReverse Foreground and background cell colors are reversed.

2 nvtAttributeBold The character is displayed using a higher intensity color.

4 nvtAttributeDim The character is displayed using a lower intensity color.

16 nvtAttributeUnderline The character is displayed with an underline.

32 nvtAttributeHidden The character is stored in display memory, but not
shown.

64 nvtAttributeProtect The character is protected and cannot be cleared.

Data Type
Integer (Int32)

See Also
BoldColor Property, Cell Property, CursorStyle Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoRefresh Property  

 

Enable or disable the automatic refreshing of the virtual display.

Syntax
object.AutoRefresh [= { True | False } ] ]

Remarks
The AutoRefresh property is used to enable or disable the automatic refreshing of the virtual
display whenever characters are written or the cursor position changes. By setting the property to
False, the display can be changed and those changes will not be displayed until the property is
reset to True. This allows an application to make a series of changes to the display text, attributes
or cursor position without causing it to flicker.

Data Type
Boolean

See Also
Attributes Property, Refresh Method, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoSelect Property  

 

Enable or disable the automatic selection of text in the display.

Syntax
object.AutoSelect [= { True | False } ] ]

Remarks
The AutoSelect property is used to enable or disable the automatic selection of text in the virtual
display. When the property is set to True, the user can select text by clicking and dragging the
mouse over the text to be selected. When set to False, no text is selected if the user drags the
mouse over the display.

Data Type
Boolean

See Also
SelText Property, Select Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoWrap Property  

 

Enable or disable the wrapping of text in the emulation window.

Syntax
object.AutoWrap [= { True | False } ] ]

Remarks
The AutoWrap property enables or disables the wrapping of text in the emulation window. If set to
True, when text reaches last column in the display, the cursor is re-positioned to the first column
on the next line. If set to False, any text displayed beyond the last column is discarded.

Data Type
Integer (Int32)

See Also
Bell Property, Columns Property, Emulation Property, Rows Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 BackColor Property  

 

Sets or returns the background color for the control.

Syntax
object.BackColor [= color ]

Remarks
The BackColor property returns the current background color for the control. Setting the property
changes the color to the specified value.

Colors are RGB (Red Green Blue) values which range from 0 to 16,777,215 (&HFFFFFF). The high
byte of a number in this range equals 0; the lower 3 bytes, from least to most significant byte,
determine the amount of red, green, and blue, respectively. The red, green, and blue components
are each represented by a number between 0 and 255 (&HFF). If the high byte isn't 0, the control
uses the system colors, as defined in the user's Control Panel settings.

The following table lists the standard system color values and the Control panel settings that they
correspond to:

Color Value Definition Control Panel Setting

80000000h Scrollbar background

80000001h Desktop Desktop

80000002h Active window caption Active Title Bar

80000003h Inactive window caption Inactive Title Bar

80000004h Menu background Menu

80000005h Window background Window

80000006h Window frame

80000007h Menu text Menu

80000008h Window text Window

80000009h Window caption text Active Title Bar

8000000Ah Active window border Active Window Border

8000000Bh Inactive window border Inactive Window Border

8000000Ch Background color Application Background

8000000Dh Items selected in a control Selected Items

8000000Eh Text of items selected in a control Selected Items

8000000Fh Face shading on push buttons

80000010h Edge shading on push buttons

80000011h Disabled text

80000012h Text on push buttons Caption Buttons

80000013h Text color for an inactive caption Inactive Title Bar

80000014h Highlight color for buttons

 



80000015h Dark color for 3D display elements

80000016h Light color for 3D display elements

80000017h Text color for ToolTip controls ToolTip

80000018h Background color for ToolTip controls ToolTip

Data Type
Integer (Int32)

See Also
BoldColor Property, ColorMap Property, ForeColor Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Bell Property  

 

Enable or disable the audible bell.

Syntax
object.Bell [= { True | False } ] ]

Remarks
The Bell property enables or disables the audible bell which is played whenever the control
character Ctrl+G is encountered. The default property value is True.

Data Type
Boolean

See Also
AutoWrap Property, Cursor Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 BoldColor Property  

 

Sets or returns the bold color for the control.

Syntax
object.BoldColor [= color ]

Remarks
The BoldColor property returns the current color used for bold text in the control. Setting the
property changes the color to the specified value.

Colors are RGB (Red Green Blue) values which range from 0 to 16,777,215 (&HFFFFFF). The high
byte of a number in this range equals 0; the lower 3 bytes, from least to most significant byte,
determine the amount of red, green, and blue, respectively. The red, green, and blue components
are each represented by a number between 0 and 255 (&HFF). If the high byte isn't 0, the control
uses the system colors, as defined in the user's Control Panel settings.

The following table lists the standard system color values and the Control panel settings that they
correspond to:

Color Value Definition Control Panel Setting

80000000h Scrollbar background

80000001h Desktop Desktop

80000002h Active window caption Active Title Bar

80000003h Inactive window caption Inactive Title Bar

80000004h Menu background Menu

80000005h Window background Window

80000006h Window frame

80000007h Menu text Menu

80000008h Window text Window

80000009h Window caption text Active Title Bar

8000000Ah Active window border Active Window Border

8000000Bh Inactive window border Inactive Window Border

8000000Ch Background color Application Background

8000000Dh Items selected in a control Selected Items

8000000Eh Text of items selected in a control Selected Items

8000000Fh Face shading on push buttons

80000010h Edge shading on push buttons

80000011h Disabled text

80000012h Text on push buttons Caption Buttons

80000013h Text color for an inactive caption Inactive Title Bar

80000014h Highlight color for buttons

 



80000015h Dark color for 3D display elements

80000016h Light color for 3D display elements

80000017h Text color for ToolTip controls ToolTip

80000018h Background color for ToolTip controls ToolTip

Data Type
Integer (Int32)

See Also
BackColor Property, ColorMap Property, ForeColor Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cell Property  

 

Returns information about the specified character cell in the display.

Syntax
object.Cell( X, Y )

Remarks
The Cell property returns information about the specified character cell in the display at the
specified X and Y cursor position.

The value returned by the Cell property is a 32-bit integer value, where the low order word
specifies the ANSI character stored at that position and the high order word specifies the display
attributes for that cell.

The character cell attributes may be one or more of the following values:

Value Constant Description

0 nvtAttributeNormal Normal, default attributes.

1 nvtAttributeReverse Foreground and background cell colors are reversed.

2 nvtAttributeBold The character is displayed using a higher intensity color.

4 nvtAttributeDim The character is displayed using a lower intensity color.

16 nvtAttributeUnderline The character is displayed with an underline.

32 nvtAttributeHidden The character is stored in display memory, but not
shown.

64 nvtAttributeProtect The character is protected and cannot be cleared.

One or more attributes may be combined using a bitwise Or operator. Certain attributes, such as
nvtAttributeBold and nvtAttributeDim are mutually exclusive.

Data Type
Integer (Int32)

Example
To access the high and low words of the value returned by the Cell property in Visual Basic 6, it's
useful to implement two helper functions:

Public Function LoWord(DWord As Long) As Integer
    If DWord And &H8000& Then
        LoWord = DWord Or &HFFFF0000
    Else
        LoWord = DWord And &HFFFF&
    End If
End Function

Public Function HiWord(DWord As Long) As Integer
    HiWord = (DWord And &HFFFF0000) \ &H10000
End Function

You can then use those functions to get the character and attributes for the cell:

Dim nCell As Long
Dim nChar As Integer

 



Dim nAttribute As Integer

nCell = Terminal1.Cell(xPos, yPos)
nChar = LoWord(nCell)
nAttribute = HiWord(nCell)

See Also
Attributes Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CellHeight Property  

 

Return the height of a text cell.

Syntax
object.CellHeight

Remarks
The CellHeight property returns the height of a text cell in pixels. This value can be used in
calculating the minimum height of the display window in order to display all lines of text.

Data Type
Integer (Int32)

See Also
CellWidth Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CellWidth Property  

 

Return the width of a text cell.

Syntax
object.CellWidth

Remarks
The CellWidth property returns the width of a text cell in pixels. This value can be used in
calculating the minimum width of the display window in order to display all text columns.

Data Type
Integer (Int32)

See Also
CellHeight Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CodePage Property  

 

Gets and sets the code page used when reading and writing text.

Syntax
object.CodePage [= value ]

Remarks
The CodePage property is an integer value which specifies how strings are encoded when data is
sent or received. Any valid code page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale. This is the default encoding type.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. It is not recommended that you use this code page unless
you know that the remote host is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available  code page identifiers can be found in Microsoft's documentation for
the Win32 API.

By default, strings are converted to an array of bytes using the code page for the current locale,
mapping the 16-bit Unicode characters to bytes which are written to the virtual display. Similarly,
when copying characters from the display into a string buffer, those characters are converted to
Unicode before they are returned to your application.

For backwards compatibility, the control defaults to using the code page for the current locale.
This property value directly corresponds to Windows code page identifiers, and will accept any

 

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers


valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Data Type
Integer (Int32)

See Also
SelText Property, Text Property, Write Method



 ColorMap Property  

 

Gets and sets the RGB value used when displaying color text attributes.

Syntax
object.ColorMap(Index) [= color ]

Remarks
The ColorMap property array provides access to the virtual display color table which determines
what RGB values are used to display foreground and background text color attributes.

When the emulator processes an escape sequence that changes the current foreground or
background color, the actual RGB color value is determined by looking up the value in the virtual
display's color table. The ColorMap property is useful for determining what values are being used
when a color attribute is set and enables an application to change those colors. The emulator
currently supports a maximum of sixteen (16) color values, and the index into the table
corresponds to the color as defined by the standard for ANSI terminals:

Index Color Default (Hex) Default (Integer) Default (RGB)

0 Black 0 0 RGB(0,0,0)

1 Red 000000A0h 160 RGB(160,0,0)

2 Green 0000A000h 40960 RGB(0,160,0)

3 Yellow 0000A0A0h 41120 RGB(160,160,0)

4 Blue 00A00000h 10485760 RGB(0,0,160)

5 Magenta 00A000A0h 10485920 RGB(160,0,160)

6 Cyan 00A0A000h 10526720 RGB(0,160,160)

7 White 00E0E0E0h 14737632 RGB(224,224,224)

8 Gray 00C0C0C0h 12632256 RGB(192,192,192)

9 Light Red 008080FFh 8421631 RGB(255,128,128)

10 Light Green 0090EE90h 9498256 RGB(144,238,144)

11 Light Yellow 00C0FFFFh 12648447 RGB(255,255,192)

12 Light Blue 00E6D8ADh 15128749 RGB(173,216,230)

13 Light Magenta 00FFC0FFh 16761087 RGB(255,192,255)

14 Light Cyan 00FFFFE0h 16777184 RGB(224,255,255)

15 High White 00FFFFFFh 16777215 RGB(255,255,255)

A standard ANSI color terminal supports eight standard colors (0-7). To select a
foreground color, you add 30 to the color index and pass that value as a parameter to
the SGR (select graphic rendition) escape sequence. To select a background color, you
add 40 to the color index. For example, to set the current foreground color to white and
the background color to blue, you could send the following escape sequence:

ESC [ 37;44 m

Note that if you wanted to set the foreground color to a bold version of standard yellow,

 



you would first set the bold attribute, and then use the index value of 3, such as:

ESC [ 1;33m

Changing the value of the ColorMap property array allows the application to make
selective changes to the actual RGB color value that is used when a color attribute is set.
Note that changes to the color map will only affect new characters as they are displayed,
not any previously displayed characters.

Data Type
Integer (Int32)

See Also
BackColor Property, BoldColor Property, Cell Property, ForeColor Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Columns Property  

 

Gets and sets the number of columns in the emulation display.

Syntax
object.Columns [= columns ]

Remarks
The Columns property returns the number of columns in the emulation window, or allows the
application to change the number of columns. Currently, the number of columns may only be set
to 80 or 132. Note that changing the number of columns in the display causes the current display
to be invalidated, and the window will be cleared.

Data Type
Integer (Int32)

See Also
CellHeight Property, CellWidth Property, Rows Property, ScrollBars Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cursor Property  

 

Enable or disable the display of the cursor in the emulation window.

Syntax
object.Cursor [= { True | False } ] ]

Remarks
The Cursor property enables or disables the display of the cursor in the emulation window. The
default property value is True.

Data Type
Boolean

See Also
CursorStyle Property, Emulation Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CursorStyle Property  

 

Gets and sets the style of cursor used in the emulator.

Syntax
object.CursorStyle [= style ]

Remarks
The CursorStyle property determines how the cursor is displayed in the emulation window. The
following values may be used.

Value Constant Description

0 nvtUnderline The cursor is displayed as an underline

1 nvtBlock The cursor is displayed as a block that is the full height of the
character cell

Data Type
Integer (Int32)

See Also
Cursor Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CursorX Property  

 

Gets and sets the current cursor position in the display.

Syntax
object.CursorX [= column ]

Remarks
The CursorX property returns the current position of the cursor in the display, or can be used to
change the current position. The current position is given in columns and indicates where the next
text character will be displayed. To calculate the pixel offset where the cursor is located in the
control window, multiply this value by the CellWidth property value.

Data Type
Integer (Int32)

See Also
CellWidth Property, Cursor Property, CursorStyle Property, CursorY Property, MouseX Property,
MouseY Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CursorY Property  

 

Gets and sets the current cursor position in the display.

Syntax
object.CursorY [= row ]

Remarks
The CursorY property returns the current position of the cursor in the display, or can be used to
change the current position. The current position is given in rows and indicates where the next text
character will be displayed. To calculate the pixel offset where the cursor is located in the control
window, multiply this value by the CellHeight property value.

Data Type
Integer (Int32)

See Also
CellHeight Property, Cursor Property, CursorStyle Property, CursorX Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Emulation Property  

 

Gets and sets the emulation used by the control.

Syntax
object.Emulation [= type ]

Remarks
The Emulation property can be used to set or return the type of emulation performed by the
control. The following values may be used:

Value Constant Description

0 nvtNone The virtual display does not emulate any specific terminal type, and
does not process any escape sequences.

1 nvtANSI The virtual display processes ANSI escape sequences for screen
management and cursor positioning. This emulation also supports
escape sequences to control the foreground and background color.
The default keymap for ANSI function key escape sequences will be
selected. This is the default value.

2 nvtVT100 The virtual display processes DEC VT-100 escape sequences for
screen management and cursor positioning. The default keymap for
a DEC VT-100 terminal will be selected.

3 nvtVT220 The virtual display processes DEC VT-220 escape sequences for
screen management and cursor positioning. This emulation also
supports DEC VT-320 escape sequences to control the foreground
and background color. The default keymap for a DEC VT-220
terminal will be selected.

Data Type
Integer (Int32)

See Also
AutoWrap Property, Cursor Property, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Font Property  

 

Returns the Font object used by the terminal emulator.

Syntax
object.Font

Remarks
The Font property returns the Font object which is used by the control. The Font object
determines the font name and attributes which are used when drawing text in the virtual display.
The control expects that the font will be fixed-width, where the width and height of each character
is the same. The use of a variable width font may cause the control to display the cursor in the
wrong location.

By default, the control will use the standard Terminal font, which is a fixed-width OEM font that is
suitable for most applications.

Data Type
Font Object

Example
The following example demonstrates how to use the Font property to change the name of the
font used by the control:

Terminal1.Font.Name = "Lucida Console"

See Also
FontBold Property, FontName Property, FontSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FontBold Property  

 

Gets and sets the bold style for the current font.

Syntax
object.FontBold [= { True | False } ]

Remarks
The FontBold property returns True if the current font style has the bold attribute enabled. Setting
this property changes the style for the current font. Changing the Bold property of the object
returned by the Font property will automatically update this property.

This property is provided for compatibility with languages which do not support the standard Font
object, or where using the Font object interface is difficult. When possible, it is recommended that
programs use the Font property instead.

Data Type
Boolean

See Also
Font Property, FontName Property, FontSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FontName Property  

 

Gets and sets the name of the current font.

Syntax
object.FontName [= fontname ]

Remarks
The FontName property returns the name of the current font. Setting this property changes the
font which is used by the control to display text. Changing the Name property of the object
returned by the Font property will automatically update this property.

The control expects that the font will be fixed-width, where the width and height of each character
is the same. The use of a variable width font may cause the control to display the cursor in the
wrong location.

This property is provided for compatibility with languages which do not support the standard Font
object, or where using the Font object interface is difficult. When possible, it is recommended that
programs use the Font property instead.

Data Type
String

See Also
Font Property, FontBold Property, FontSize Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FontSize Property  

 

Gets and sets the point size of the current font.

Syntax
object.FontSize [= fontsize ]

Remarks
The FontSize property returns the size of the current font. Setting this property changes the size
of the font which the control uses to display text. Changing the Size property of the object
returned by the Font property will automatically update this property.

This property is provided for compatibility with languages which do not support the standard Font
object, or where using the Font object interface is difficult. When possible, it is recommended that
programs use the Font property instead.

Data Type
Integer (Int32)

See Also
Font Property, FontBold Property, FontName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ForeColor Property  

 

Sets or returns the foreground color for the control.

Syntax
object.ForeColor [= color ]

Remarks
The ForeColor property returns the current foreground color for the control. Setting the property
changes the color to the specified value.

Colors are RGB (Red Green Blue) values which range from 0 to 16,777,215 (&HFFFFFF). The high
byte of a number in this range equals 0; the lower 3 bytes, from least to most significant byte,
determine the amount of red, green, and blue, respectively. The red, green, and blue components
are each represented by a number between 0 and 255 (&HFF). If the high byte isn't 0, the control
uses the system colors, as defined in the user's Control Panel settings.

The following table lists the standard system color values and the Control panel settings that they
correspond to:

Color Value Definition Control Panel Setting

80000000h Scrollbar background

80000001h Desktop Desktop

80000002h Active window caption Active Title Bar

80000003h Inactive window caption Inactive Title Bar

80000004h Menu background Menu

80000005h Window background Window

80000006h Window frame

80000007h Menu text Menu

80000008h Window text Window

80000009h Window caption text Active Title Bar

8000000Ah Active window border Active Window Border

8000000Bh Inactive window border Inactive Window Border

8000000Ch Background color Application Background

8000000Dh Items selected in a control Selected Items

8000000Eh Text of items selected in a control Selected Items

8000000Fh Face shading on push buttons

80000010h Edge shading on push buttons

80000011h Disabled text

80000012h Text on push buttons Caption Buttons

80000013h Text color for an inactive caption Inactive Title Bar

80000014h Highlight color for buttons

 



80000015h Dark color for 3D display elements

80000016h Light color for 3D display elements

80000017h Text color for ToolTip controls ToolTip

80000018h Background color for ToolTip controls ToolTip

Data Type
Integer (Int32)

See Also
BackColor Property, BoldColor Property, ColorMap Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 hWnd Property  

 

Returns a handle to the control window.

Syntax
object.hWnd

Remarks
The hWnd property returns the handle to the control window. The Windows operating system
identifies each form or control in an application by assigning it a numeric value called a handle, or
hWnd. This handle is required by many Windows API functions which can be used to control the
behavior and appearance of a window. For more information, refer to the Windows User Interface
documentation or the Windows API technical reference which is part of the Microsoft Windows
SDK.

Note that because the hWnd property value can change while the program is running, you
should never store the value in a variable.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeyMap Property  

 

Gets and sets the character sequence mapped to a special key.

Syntax
object.KeyMap(Index) [= value ]

Remarks
The KeyMap property array allows the application to define character sequences that should be
mapped to special keys. When a special key is pressed in the emulation window and there is an
entry for it in the key map, the KeyMapped event is fired.

The property array index identifies the key which will be mapped. Refer to the KeyMap Constants
table for a list of keys and their corresponding values which may be mapped by the application.

Data Type
String

See Also
KeyMapped Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MousePointer Property  

 

Gets and sets the type of pointer which is displayed when the mouse is positioned over the control
window.

Syntax
object.MousePointer [= pointer ]

Remarks
The MousePointer property returns the type of pointer that is currently displayed when the
mouse is positioned over the control window. Setting the property changes the type of mouse
pointer that is displayed. This can be useful if you wish to indicate a change in functionality, such
as changing the pointer to an hourglass when the program is busy processing information.

The following values may be assigned to this property:

Value Constant Description

0 nvtDefault The default mouse pointer

1 nvtArrow Arrow pointer

2 nvtCrosshair Crosshair pointer

3 nvtIBeam I-beam pointer, commonly used when editing text

4 nvtIcon Icon pointer, a small square within a square

5 nvtSize Size pointer, four point arrow pointing north, south, east
and west

6 nvtSizeNESW Size pointer, arrows pointing northeast and southwest

7 nvtSizeSN Size pointer, arrows pointing north and south

8 nvtSizeNWSE Size pointer, arrows pointing northwest and southeast

9 nvtSizeWE Size pointer, arrows pointing west and east

10 nvtUpArrow Up arrow pointer

11 nvtHourglass Hourglass pointer

12 nvtNoDrop No drop pointer, a circle with a slash through it

13 nvtArrowHourglass Arrow pointer with a small hourglass

14 nvtArrowQuestion Arrow pointer with a small question mark

15 nvtArrowSizeAll Size all pointer

Data Type
Integer (Int32)

Example
The following example sets the MousePointer to an hourglass, which is typically used to indicate to
the user that they program is busy and that they should wait for it to complete the current
operation:

Terminal1.MousePointer = nvtHourglass

 



See Also
MouseMove Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MouseX Property  

 

Return the current mouse pointer position in the display.

Syntax
object.MouseX

Remarks
The MouseX property returns the current position of the mouse pointer in the display. The
current position is given in columns, not pixels. To calculate the pixel offset where the mouse
pointer is located in the control window, multiply this value by the CellWidth property value.

Data Type
Integer (Int32)

See Also
CellWidth Property, CursorX Property, CursorY Property, MouseY Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MouseY Property  

 

Return the current mouse pointer position in the display.

Syntax
object.MouseY

Remarks
The MouseY property returns return the current position of the mouse pointer in the display. The
current position is given in rows, not pixels. To calculate the pixel offset where the mouse pointer is
located in the control window, multiply this value by the CellHeight property value.

Data Type
Integer (Int32)

See Also
CellHeight Property, CursorX Property, CursorY Property, MouseX Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 NewLine Property  

 

Determine how carriage returns and linefeeds are displayed.

Syntax
object.NewLine [= newline ]

Remarks
The NewLine property controls how carriage returns and linefeeds are processed by the
emulator. The following values may be used:

Value Constant Description

0 nvtCRLF A carriage return positions the cursor to the first column, and a
linefeed advances the cursor to the next row, scrolling the display if
necessary. This is the default value.

1 nvtCR A carriage return positions the cursor to the first column and
advances to the next row, scrolling the display if necessary.

2 nvtLF A linefeed positions the cursor to the first column and advances to
the next row, scrolling the display if necessary.

Data Type
Integer (Int32)

See Also
AutoWrap Property, Columns Property, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Rows Property  

 

Gets and sets the number of rows in the emulation display.

Syntax
object.Rows [= rows ]

Remarks
The Rows property returns the number of rows in the emulation window, or allows the application
to change the number of rows. Changing the number of rows in the display causes the current
display to be invalidated, and the window will be cleared.

Data Type
Integer (Int32)

See Also
CellHeight Property, CellWidth Property, Columns Property, ScrollBars Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ScrollBars Property  

 

Description

Returns or sets a value indicating whether the control has horizontal or vertical scroll bars.

Syntax
object.ScrollBars [= bartype ]

Remarks
The ScrollBars property determines what kind of scroll bars are displayed if the virtual display is
larger than the emulation control's window. It may be one of the following values:

Value Constant Description

0 nvtSBNone Do not display scrollbars

1 nvtHorizontal Display a horizontal scrollbar if necessary

2 nvtVertical Display a vertical scrollbar if necessary

3 nvtBoth Display both horizontal and vertical scrollbars if necessary

Scroll bars are only displayed if needed. If the emulation window is large enough to display all of
the columns and rows, no scrollbars will be drawn even if they are enabled using this property.

Data Type
Integer (Int32)

See Also
CellHeight Property, CellWidth Property, Columns Property, Rows Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SelLength Property  

 

Gets and sets the number of characters selected.

Syntax
object.SelLength [= length ]

Remarks
The SelLength property is used to return the number of characters currently selected in the
emulation window. When used in conjunction with the SelStart property, it can be used to select
text from the display.

Data Type
Integer (Int32)

See Also
AutoSelect Property, SelStart Property, SelText Property, Text Property, Deselect Method, Select
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SelStart Property  

 

Gets and sets the starting position of the current text selection.

Syntax
object.SelStart [= offset ]

Remarks
The SelStart property specifies an offset which is the starting position of the selected text. This
property can be used in conjunction with the SelLength property to select text in the virtual
display.

To convert the cursor position to an offset, multiply the y-position by the number of columns and
add the x-position. The SelLength property determines the number of characters to copy from
the starting position. Reading the SelText property returns the text displayed at the selected
location.

Data Type
Integer (Int32)

See Also
SelLength Property, SelText Property, Text Property, Deselect Method, Select Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SelText Property  

 

Returns the selected text or text from a specific portion of the display.

Syntax
object.SelText

Remarks
The SelText property returns the text which is currently selected in the virtual display. If no text has
been selected and the SelLength property is greater than zero, then the text starting at the
position specified by the SelStart property will be returned.

To read a single character a specific location in the display, it is preferable to use the Cell property
rather than calculating the offset, setting the SelStart property and then reading the SelText
property.

Data Type
String

See Also
AutoSelect Property, Cell Property, CodePage Property, SelLength Property, SelStart Property, Text
Property, Deselect Method, Select Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Text Property  

 

Gets and sets the text displayed by the control.

Syntax
object.Text [= value ]

Remarks
The Text property returns the text displayed by the control. The string that is returned contains
each row of text in the display, terminated with a carriage-return linefeed. Empty cells at the end
of a row are ignored so there are no extraneous spaces in the text. In other words, the value
returned by the Text property is similar to how text is returned from a multi-line edit control. If
you need to access a character at a specific location in the display, use the Cell property. If you
need to access the text in a specific part of the display, including any empty cells, then use the
SelStart, SelLength and SelText properties instead.

Setting the Text property will cause the current contents of the display to be replaced by the
contents of the specified string. If the string contains escape sequences and/or control characters,
they will be processed according to how the Emulation property is set.

Data Type
String

See Also
Cell Property, CodePage Property, Emulation Property, SelLength Property, SelStart Property,
SelText Property, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Terminal Emulator Control Methods  

 

Method Description

Clear Clear the terminal emulation window

ClearEol Erase all characters from the current column to the end of the line

DelLine Delete the current line in the terminal emulation display

Deselect Deselects any selected text in the display

Initialize Initialize the control and validate the runtime license key

InsLine Insert an empty line at the current position in the terminal emulation display

Refresh Forces a complete redraw of the virtual display

Reset Reset the internal state of the control

ScrollDown Scroll the display down by one line

ScrollUp Scroll the display up by one line

Select Selects a region of the virtual display and returns the selected text

Uninitialize Uninitialize the control

Write Write data to virtual display

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CellAttributes Method  

 

Return the display attributes for the terminal emulator for a specified cell.

Syntax
object.Attribute( X, Y )

Parameters
X

An integer value that specifies a horizontal position in the virtual display buffer. This value must
be in the range of 0 through the number of Columns -1.

Y

An integer value that specifies a vertical position in the virtual display buffer. This value must be
in the range of 0 through the number of Rows -1.

Return Value
If an invalid position is specified, the method returns -1. Otherwise, the method returns a mask of
graphic attributes for the display position. The following table lists the attributes that are
recognized by the control. The value returned by the method is a combination of the bits that
correspond to these values.

Value Description

0 Normal display, no attributes enabled

1 Reverse video attribute

2 Bold attribute (use BoldColor color to display text)

4 Dim attribute

8 Blink attribute (not supported)

16 Underline attribute

32 Hidden attribute

64 Protected attribute (not supported)

128 Graphics attribute

See Also
Attributes Property, Columns Property, Rows Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Clear Method  

 

Clear the terminal emulation window.

Syntax
object.Clear

Parameters
None.

Return Value
None.

See Also
ClearEol Method, DelLine Method, InsLine Method, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ClearEol Method  

 

Erase all characters from the current column to the end of the line.

Syntax
object.ClearEol

Parameters
None.

Return Value
None.

See Also
Clear Method, DelLine Method, InsLine Method, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DelLine Method  

 

Delete the current line in the terminal emulation display.

Syntax
object.DelLine

Parameters
None.

Return Value
None.

See Also
Clear Method, ClearEol Method, InsLine Method, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Deselect Method  

 

Deselects any selected text in the display.

Syntax
object.Deselect

Parameters
None.

Return Value
None.

Remarks
The Deselect method deselects any text that has been previously selected.

See Also
AutoSelect Property, SelText Property, Select Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

See Also
Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 InsLine Method  

 

Insert an empty line at the current position in the terminal emulation display.

Syntax
object.InsLine

Parameters
None.

Return Value
No value is returned by this method.

See Also
Clear Method, ClearEol Method, DelLine Method, Write Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Refresh Method  

 

Forces a complete redraw of the virtual display.

Syntax
object.Refresh

Parameters
None.

Return Value
None.

Remarks
The Refresh method forces the control to redraw the virtual display. Normally, the virtual display
is automatically redrawn after the display has been modified and there are no other events being
processed. However, there may be situations where you want the display updated immediately.

To prevent the control from automatically redrawing when the virtual display has been modified,
set the AutoRefresh property to False. You can then call the Refresh method to force the control
to be redrawn as needed.

See Also
AutoRefresh Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults and the virtual display is recreated.

See Also
Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ScrollDown Method  

 

Scroll the display down by one line.

Syntax
object.ScrollDown

Parameters
None.

Return Value
None.

See Also
DelLine Method, InsLine Method, ScrollUp Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ScrollUp Method  

 

Scroll the display up by one line.

Syntax
object.ScrollUp

Parameters
None.

Return Value
None.

See Also
DelLine Method, InsLine Method, ScrollDown Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Select Method  

 

Selects a region of the virtual display and returns the selected text.

Syntax
object.Select( [Column1], [Row1], [Column2], [Row2], [Options )

Parameters
Column1

A optional integer which specifies the starting column for the text selection. If this argument is
omitted, the first column in the display is used.

Row1

A optional integer which specifies the starting row for the text selection. If this argument is
omitted, the first row in the display is used.

Column2

A optional integer which specifies the ending column for the text selection. If this argument is
omitted, the last column in the display is used.

Row2

A optional integer which specifies the ending row for the text selection. If this argument is
omitted, the last row in the display is used.

Options

An optional integer value which specifies one or more options. More than one option can be
combined using a bitwise operator. The following values may be used:

Value Constant Description

0 nvtSelectDefault The default selection option. If there is a region of the
display already selected, it will be cleared and the new
region is selected. The selected text is buffered and can
be accessed using the SelText property.

1 nvtSelectClipboard Copy the selected text to the clipboard. If this option is
not specified, the selected text is buffered and may be
accessed using the SelText property.

&H1000 nvtSelectNoRefresh The display is not refreshed when the region is
selected. This is useful if the application is going to be
selecting multiple regions of the display, or combining
more than one region, in order to minimize output to
the window.

&H2000 nvtSelectNoBuffer Do not buffer the text in the selected region of the
display. The display will show any text as being
selected, but it will not be available to the application.
This can be useful if the application is going to select
multiple regions and combine them.

&H4000 nvtSelectCombine If there is already a region of the display that has been
selected, the new region is combined with the previous
region, selecting all of the text.

 



Return Value
The method will return the selected text. If the method fails because incorrect row or column
values were used, or because an invalid option was specified, it will return an empty string.

Remarks
The Select method selects a region of the virtual display. This enables the application to select text
in the same way that a user would by clicking and dragging the mouse over the display window.
The SelText property can be used to return the text that has been selected by this method.

See Also
AutoSelect Property, SelText Property, Deselect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method destroys the virtual display and resets the internal state of the control.
This method is not typically used because any resources that have been allocated by an instance
of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Write Method  

 

Write data to virtual display.

Syntax
object.Write( Buffer, [Length] )

Parameters
Buffer

A buffer variable that contains the data to be written to the display. If the variable is a String
type, then then the data will be written as a string of characters. This is the most appropriate
data type to use for text data that consists of printable characters. This method will also accept a
Byte array of characters to be written to the virtual display.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of characters to write is
determined by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the display, or -1 if an error was
encountered.

Remarks
The Write method copies the data in Buffer to the virtual display at the current cursor location. If
the data contains control characters or escape sequences, they will be processed according the
Emulation property setting.

See Also
CodePage Property, Emulation Property, SelText Property Text Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Terminal Emulator Control Events  

 

Event Description

Change This event is generated when the contents of a control has changed

Click This event is generated when the user presses and releases a mouse button

DblClick This event is generated when the user presses and releases a mouse button twice

KeyDown This event is generated when a key is pressed

KeyMapped This event is generated when a mapped key is pressed

KeyPress This event is generated when a key is pressed and released

KeyUp This event is generated when a key is released

MouseDown This event is generated when a mouse button is pressed

MouseMove This event is generated when the user moves the mouse

MouseUp This event is generated when a mouse button is released

Resize The Resize event is generated after the control has been resized

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Change Event  

 

The Change event is generated when the contents of a control has changed.

Syntax
Sub object_Change( [Index As Integer] )

Remarks
The Change event is generated when the contents of a control have changed and can be used to
synchronize or coordinate data display among controls. For example, you can use the control's
Change event to check for text at certain screen location and then a list box which contains that
text.

Modifying the contents of the virtual display by setting the Text property or calling the Write
method in the event handler can cause a cascading event. It is recommended that you only read,
not modify, the contents of the virtual display when this even occurs.

See Also
Resize Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Click Event  

 

The Click event is generated when the user presses and releases a mouse button.

Syntax
Sub object_Click( [Index As Integer] )

Remarks
The Click event is generated when the user presses and releases the mouse button anywhere over
the control's window. To distinguish between the user pressing the left or right mouse buttons, use
the MouseDown and MouseUp events. To determine the column and row in the virtual display
where the mouse button was clicked, check the MouseX and MouseY properties.

When debugging events, do not use message boxes to show when the event occurred, as this will
interfere with the normal functioning of many events. For example, displaying a message box in
the Click event may prevent the DblClick event from being raised.

See Also
MouseX Property, MouseY Property, DblClick Event, MouseDown Event, MouseUp Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DblClick Event  

 

The DblClick event is generated when the user presses and releases a mouse button twice.

Syntax
Sub object_DblClick( [Index As Integer] )

Remarks
The DblClick event is generated when the user presses and releases the mouse button, then
quickly presses and releases the mouse button again, anywhere over the control's window. To
distinguish between the user pressing the left or right mouse buttons, use the MouseDown and
MouseUp events. To determine the column and row in the virtual display where the mouse
button was clicked, check the MouseX and MouseY properties.

If the user doesn't double-click within the system's time limit, the control receives another Click
event instead. The double-click time limit may vary because the user can set the double-click
speed in the Control Panel. When you're attaching procedures for these related events, be sure
that their actions don't conflict. Controls that don't receive DblClick events may receive two clicks
instead of a double-click.

When debugging events, do not use message boxes to show when the event occurred, as this will
interfere with the normal functioning of many events. For example, displaying a message box in
the Click event may prevent the DblClick event from being raised.

See Also
MouseX Property, MouseY Property, Click Event, MouseDown Event, MouseUp Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeyDown Event  

 

The KeyDown event is generated when a key is pressed.

Syntax
Sub object_KeyDown( [Index As Integer], KeyCode As Integer, Shift As Integer )

Remarks
The KeyDown event is generated when the user presses a key on the keyboard. The following
arguments are passed to the event handler:

KeyCode

A key code which identifies the key being pressed. If the key is a number or letter on the
keyboard, then the code corresponds to its ASCII equivalent. For example, the key code for the
'A' key is 65. It is important to note that shift states are handled differently in that the key code is
the same regardless if the shift or control key is being pressed at the same time. For keys other
than numbers or letters, consult the Virtual Key Constants table.

Shift

An integer that corresponds to the state of the Shift, Ctrl, and Alt keys at the time the key is
pressed. The Shift argument is a bit field with the least-significant bits corresponding to the Shift
key (bit 0), the Ctrl key (bit 1), and the Alt key (bit 2 ). These bits correspond to the values 1, 2,
and 4, respectively. Some, all, or none of the bits can be set, indicating that some, all, or none of
the keys are pressed. For example, if both Ctrl and Alt keys are pressed, the value of Shift is 6.

See Also
KeyMapped Event, KeyPress Event, KeyUp Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeyMapped Event  

 

The KeyMapped event is generated when a mapped key is pressed.

Syntax
Sub object_KeyMapped( [Index As Integer,] KeyIndex As Integer, Shift As Integer, KeyString
As String )

Remarks
This event is generated when the user presses a special key while the emulation window has focus,
and that key is mapped to a string using the KeyMap property array.

KeyIndex

An integer which specifies which mapped key was pressed, and is the same as the index value
used with the KeyMap property array. Refer to the KeyMap Constants table for a list of keys
and their corresponding values which may be mapped by the application. Note that the
KeyIndex value is different than the key codes used by the KeyDown and KeyUp events.

Shift

An integer that corresponds to the state of the Shift, Ctrl, and Alt keys at the time the key is
pressed. The Shift argument is a bit field with the least-significant bits corresponding to the Shift
key (bit 0), the Ctrl key (bit 1), and the Alt key (bit 2 ). These bits correspond to the values 1, 2,
and 4, respectively. Some, all, or none of the bits can be set, indicating that some, all, or none of
the keys are pressed. For example, if both Ctrl and Alt keys are pressed, the value of Shift is 6.

KeyString

A string that contains the control and/or escape sequence that the key has been mapped to.
This is the same value that was assigned to the KeyMap property array for this key.

Example
The following example demonstrates how to use the KeyMapped event in conjunction with the
SendKey method in the Telnet control:

Private Sub Terminal1_KeyMapped(KeyIndex As Integer, Shift As Integer, KeyString 
As String)
    TelnetClient1.SendKey KeyString
End Sub

See Also
KeyMap Property, KeyDown Event, KeyPress Event, KeyUp Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeyPress Event  

 

The KeyPress event is generated when a key is pressed and released.

Syntax
Sub object_KeyPress( [Index As Integer], KeyAscii As Integer )

Remarks
The KeyPress event is generated when the user presses and releases key on the keyboard. The
following arguments are passed to the event handler:

KeyAscii

An integer which specifies the standard ASCII value of the key that was pressed. In Visual Basic,
you can convert the key value into a character by using the Chr function.

Example
The following example demonstrates how to use the KeyPress event in conjunction with the
SendKey method in the Telnet control:

Private Sub Terminal1_KeyPress(KeyAscii As Integer)
    TelnetClient1.SendKey KeyAscii
End Sub

See Also
KeyDown Event, KeyMapped Event, KeyUp Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeyUp Event  

 

The KeyUp event is generated when a key is released.

Syntax
Sub object_KeyUp( [Index As Integer], KeyCode As Integer, Shift As Integer )

Remarks
The KeyUp event is generated when the user releases a previously pressed key. The following
arguments are passed to the event handler:

KeyCode

A key code which identifies the key being released. If the key is a number or letter on the
keyboard, then the code corresponds to its ASCII equivalent. For example, the key code for the
'A' key is 65. It is important to note that shift states are handled differently in that the key code is
the same regardless if the shift or control key is being pressed at the same time. For keys other
than numbers or letters, consult the Virtual Key Constants table.

Shift

An integer that corresponds to the state of the Shift, Ctrl, and Alt keys at the time the key is
released. The Shift argument is a bit field with the least-significant bits corresponding to the
Shift key (bit 0), the Ctrl key (bit 1), and the Alt key (bit 2 ). These bits correspond to the values
1, 2, and 4, respectively. Some, all, or none of the bits can be set, indicating that some, all, or
none of the keys are pressed. For example, if both Ctrl and Alt keys are pressed, the value of
Shift is 6.

See Also
KeyDown Event, KeyMapped Event, KeyPress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MouseDown Event  

 

The MouseDown event is generated when a mouse button is pressed.

Syntax
Sub object_MouseDown( [Index As Integer], Button As Integer, Shift As Integer, X As Integer,
Y As Integer )

Remarks
The MouseDown event is generated when the user presses a button on the mouse. The following
arguments are passed to the event handler:

Button

Returns an integer that identifies the button that was pressed to cause the event. The Button
argument is a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and
middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of
the bits is set, indicating the button that caused the event.

Shift

An integer that corresponds to the state of the Shift, Ctrl, and Alt keys at the time the button is
pressed. The Shift argument is a bit field with the least-significant bits corresponding to the Shift
key (bit 0), the Ctrl key (bit 1), and the Alt key (bit 2 ). These bits correspond to the values 1, 2,
and 4, respectively. Some, all, or none of the bits can be set, indicating that some, all, or none of
the keys are pressed. For example, if both Ctrl and Alt keys are pressed, the value of Shift is 6.

X, Y

Returns the current location of the mouse pointer. The X and Y values are always expressed in
terms of the coordinate system set by the container. To determine the current row and column
where the mouse is positioned in the virtual display, use the MouseX and MouseY properties.

See Also
MouseX Property, MouseY Property, MouseMove Event, MouseUp Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MouseMove Event  

 

The MouseMove event is generated when the user moves the mouse.

Syntax
Sub object_MouseMove( [Index As Integer], Button As Integer, Shift As Integer, X As Integer,
Y As Integer )

Remarks
The MouseMove event is generated when the user moves the mouse over the control window.
The following arguments are passed to the event handler:

Button

Returns an integer that corresponds to the state of the mouse buttons when the mouse was
moved. The Button argument is a bit field with bits corresponding to the left button (bit 0), right
button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4,
respectively. It indicates the complete state of the mouse buttons; some, all, or none of these
three bits can be set, indicating that some, all, or none of the buttons are pressed.

Shift

An integer that corresponds to the state of the Shift, Ctrl, and Alt keys at the time the mouse
was moved. The Shift argument is a bit field with the least-significant bits corresponding to the
Shift key (bit 0), the Ctrl key (bit 1), and the Alt key (bit 2 ). These bits correspond to the values
1, 2, and 4, respectively. Some, all, or none of the bits can be set, indicating that some, all, or
none of the keys are pressed. For example, if both Ctrl and Alt keys are pressed, the value of
Shift is 6.

X, Y

Returns the current location of the mouse pointer. The X and Y values are always expressed in
terms of the coordinate system set by the container. To determine the current row and column
where the mouse is positioned in the virtual display, use the MouseX and MouseY properties.

See Also
MouseX Property, MouseY Property, MouseDown Event, MouseUp Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 MouseUp Event  

 

The MouseUp event is generated when a mouse button is released.

Syntax
Sub object_MouseUp( [Index As Integer], Button As Integer, Shift As Integer, X As Integer, Y
As Integer )

Remarks
The MouseUp event is generated when the user releases a previously pressed mouse button. The
following arguments are passed to the event handler:

Button

Returns an integer that identifies the button that was released to cause the event. The Button
argument is a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and
middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of
the bits is set, indicating the button that caused the event.

Shift

An integer that corresponds to the state of the Shift, Ctrl, and Alt keys at the time the button is
released. The Shift argument is a bit field with the least-significant bits corresponding to the
Shift key (bit 0), the Ctrl key (bit 1), and the Alt key (bit 2 ). These bits correspond to the values
1, 2, and 4, respectively. Some, all, or none of the bits can be set, indicating that some, all, or
none of the keys are pressed. For example, if both Ctrl and Alt keys are pressed, the value of
Shift is 6.

X, Y

Returns the current location of the mouse pointer. The X and Y values are always expressed in
terms of the coordinate system set by the container. To determine the current row and column
where the mouse is positioned in the virtual display, use the MouseX and MouseY properties.

See Also
MouseX Property, MouseY Property, MouseDown Event, MouseMove Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Resize Event  

 

The Resize event is generated after the control has been resized.

Syntax
Sub object_Resize ( [Index As Integer] )

Remarks
This event can be used to move or resize other controls when the control is resized. You can also
use the Resize event to recalculate the width and/or height of controls that depend on the size of
the control window.

See Also
Change Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Terminal Emulator Control Sequences  

Terminal Control Sequences
<ESC>c Reset display to initial state
<ESC>8 Display alignment test

Cursor Control Sequences
<ESC>D Move cursor down to next line
<ESC>E Move cursor to first column and down one line
<ESC>M Move cursor up one line
<ESC>7 Save cursor position, attributes and colors
<ESC>8 Restore saved cursor position, attributes and colors
<ESC>[nA Move cursor up n lines
<ESC>[nB Move cursor down n lines
<ESC>[nC Move cursor forward n spaces
<ESC>[nD Move cursor backward n spaces
<ESC>[nE Move cursor to beginning of line, down n lines
<ESC>[nF Move cursor to beginning of line, up n lines
<ESC>[xG Move cursor to column x
<ESC>[y;xH Move cursor to line y, column x
<ESC>[nI Move cursor forward n tabstops
<ESC>[nZ Move cursor backwards n tabstops
<ESC>[na Move cursor forward n spaces
<ESC>[yd Move cursor to row y
<ESC>[ne Move cursor down n lines
<ESC>[y;xf Move cursor to line y, column x
<ESC>[s Save cursor position
<ESC>[u Return to saved cursor position
<ESC>[x` Move cursor to column x

Attribute and Color Sequence
Select display attributes and color

n Value Description

0 Reset to default attributes and colors

1 Bold attribute

2 Dim attribute

4 Underline attribute

5 Blink attribute (same as reverse)

7 Reverse attribute

8 Hidden attribute

22 Clear bold attribute

24 Clear underline attribute

25 Clear blink attribute



 

<ESC>[nm

27 Clear reverse attribute

29 Clear color attributes

30 Black foreground

31 Red foreground

32 Green foreground

33 Yellow foreground

34 Blue foreground

35 Magenta foreground

36 Cyan foreground

37 White foreground

40 Black background

41 Red background

42 Green background

43 Yellow background

44 Blue background

45 Magenta background

46 Cyan background

47 White background

Character Set Sequences
<ESC>(A Assign ISO Latin 1 character set to font bank G0
<ESC>(B Assign United States ASCII character set to font bank G0
<ESC>(0 Assign graphics character set to font bank G0
<ESC>)A Assign ISO Latin 1 character set to font bank G1
<ESC>)B Assign United States ASCII character set to font bank G1
<ESC>)0 Assign graphics character set to font bank G1

Erase Sequences
<ESC>[n@ Insert n blank spaces

<ESC>[nJ

Erase all or part of the display

n Value Description

0 From current position to end of display

1 From beginning of display to current position

2 Erase the entire display

<ESC>[nK

Erase all or part of a line

n Value Description

0 From current position to end of line

1 From beginning of line to current position

2 Erase the entire line

<ESC>[nL Insert n new blank lines
 



<ESC>[nM Delete n lines from current cursor position
<ESC>[nP Delete n characters from current cursor position

Scrolling Sequences
<ESC>[nS Scroll display up n lines
<ESC>[nT Scroll display down n lines
<ESC>[nX Erase n characters from the current position
<ESC>[y1;y2r Set scrolling region from lines y1 to y2

Keypad Sequences
<ESC>= Place keypad into applications mode
<ESC>> Place keypad into numeric mode

Emulation Option Sequences

<ESC>[?nh

Set emulation option

n Value Description

1 Enable cursor key application mode

2 Enable ANSI escape sequences

5 Reverse foreground and background colors

6 Enable origin mode

7 Enable auto-wrap mode

20 Enable linefeed/newline mode

25 Display caret

66 Place keypad in applications mode

<ESC>[?n1

Set emulation option

n Value Description

1 Disable cursor key application mode

2 Enable VT52 escape sequences

5 Restore foreground and background colors

6 Disable origin mode

7 Disable auto-wrap mode

20 Disable linefeed/newline mode

25 Hide caret

66 Place keypad in numeric mode

Console Escape Sequences
<ESC>[=nA Set the overscan color (ignored)
<ESC>[=n1;n2B Set bell sound (parameters ignored)
<ESC>[=n1;n2C Set the caret size

<ESC>[=nD

Set background color intensity

n Value Description

0 Decrease background color intensity



1 Increase background color intensity

<ESC>[=nE Set blink vs. bold attribute (ignored)
<ESC>[=nF Set normal foreground color
<ESC>[=nG Set normal background color
<ESC>[=nH Set reverse foreground color
<ESC>[=nI Set reverse background color
<ESC>[=nJ Set graphics foreground color

<ESC>[=nK

Set graphics background color

n Value Description

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 White

8 Gray

9 Light blue

10 Light green

11 Light cyan

12 Light red

13 Light magenta

14 Yellow

15 High White

Control Character Sequences
<CTL>G Ring audible bell, if enabled
<CTL>H Move cursor one character backwards
<CTL>I Move cursor forward to next tabstop
<CTL>J Move cursor down to next line
<CTL>M Move cursor to beginning of line
<CTL>N Select G1 character set
<CTL>O Select G0 character set
<CTL>Z Abort current escape sequence
<DEL> Erase and move cursor one character backwards

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 KeyMap Constants  

 

The following table lists the constants which can be used as the index value with the KeyMap
property array to map control or escape sequences to certain keys. These values are also used by
the KeyMapped event when the user presses a mapped key.

Value Constant Description

0 nvtF1 F1 function key

1 nvtF2 F2 function key

2 nvtF3 F3 function key

3 nvtF4 F4 function key

4 nvtF5 F5 function key

5 nvtF6 F6 function key

6 nvtF7 F7 function key

7 nvtF8 F8 function key

8 nvtF9 F9 function key

9 nvtF10 F10 function key

10 nvtF11 F11 function key

11 nvtF12 F12 function key

12 nvtShiftF1 Shift F1 function key

13 nvtShiftF2 Shift F2 function key

14 nvtShiftF3 Shift F3 function key

15 nvtShiftF4 Shift F4 function key

16 nvtShiftF5 Shift F5 function key

17 nvtShiftF6 Shift F6 function key

18 nvtShiftF7 Shift F7 function key

19 nvtShiftF8 Shift F8 function key

20 nvtShiftF9 Shift F9 function key

21 nvtShiftF10 Shift F10 function key

22 nvtShiftF11 Shift F11 function key

23 nvtShiftF12 Shift F12 function key

24 nvtEnter Enter key

25 nvtErase Backspace key

  

Value Constant Description

26 nvtUp Cursor up key

27 nvtDown Cursor down key

28 nvtLeft Cursor left key

29 nvtRight Cursor right key

30 nvtInsert Insert key

31 nvtDelete Delete key

32 nvtHome Home key

33 nvtEnd End key

34 nvtPageUp Page up key

35 nvtPageDown Page down key

36 nvtArrowUp Up arrow key

37 nvtArrowDown Down arrow key

38 nvtArrowLeft Left arrow key

39 nvtArrowRight Right arrow key

40 nvtKeypadEnter Keypad enter key

41 nvtKeypad0 Numeric keypad 0

42 nvtKeypad1 Numeric keypad 1

43 nvtKeypad2 Numeric keypad 2

44 nvtKeypad3 Numeric keypad 3

45 nvtKeypad4 Numeric keypad 4

46 nvtKeypad5 Numeric keypad 5

47 nvtKeypad6 Numeric keypad 6

48 nvtKeypad7 Numeric keypad 7

49 nvtKeypad8 Numeric keypad 8

50 nvtKeypad9 Numeric keypad 9

   

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Virtual Key Constants  

 

The following table lists the virtual key codes which are used by the KeyDown, KeyMapped and
KeyUp events. The constants listed are those that are defined by Visual Basic. If you are using
another programming language, consult your technical reference documentation for more
information about the constants used to define virtual key codes.

Value Constant Description

1 vbKeyLButton Left mouse
button

2 vbKeyRButton Right mouse
button

4 vbKeyMButton Middle mouse
button

8 vbKeyBack Backspace key

9 vbKeyTab Tab key

13 vbKeyReturn Return or enter
key

16 vbKeyShift Shift key

17 vbKeyControl Control key

19 vbKeyPause Pause/Break key

20 vbKeyCaptial Caps Lock key

27 vbKeyEscape Escape key

32 vbKeySpace Space key

33 vbKeyPageUp Page Up key

34 vbKeyPageDown Page Down key

35 vbKeyEnd End key

36 vbKeyHome Home key

37 vbKeyLeft Left arrow key

38 vbKeyUp Up arrow key

39 vbKeyRight Right arrow key

40 vbKeyDown Down arrow key

42 vbKeyPrint Print key

45 vbKeyInsert Insert key

46 vbKeyDelete Delete key

47 vbKeyHelp Help key

96 vbKeyNumpad0 Number pad 0
key

  

Value Constant Description

101 vbKeyNumpad5 Number pad 5 key

102 vbKeyNumpad6 Number pad 6 key

103 vbKeyNumpad7 Number pad 7 key

104 vbKeyNumpad8 Number pad 8 key

105 vbKeyNumpad9 Number pad 9 key

106 vbKeyMultiply Number pad * key

107 vbKeyAdd Number pad + key

109 vbKeySubtract Number pad - key

110 vbKeyDecimal Number pad
decimal key

111 vbKeyDivide Number pad / key

112 vbKeyF1 F1 key

113 vbKeyF2 F2 key

114 vbKeyF3 F3 key

115 vbKeyF4 F4 key

116 vbKeyF5 F5 key

117 vbKeyF6 F6 key

118 vbKeyF7 F7 key

119 vbKeyF8 F8 key

120 vbKeyF9 F9 key

121 vbKeyF10 F10 key

122 vbKeyF11 F11 key

123 vbKeyF12 F12 key

124 vbKeyF13 F13 key

125 vbKeyF14 F14 key

126 vbKeyF15 F15 key

127 vbKeyF16 F16 key

144 vbKeyNumlock Num Lock key

145 vbKeyScrollLock Scroll Lock key

 



97 vbKeyNumpad1 Number pad 1
key

98 vbKeyNumpad2 Number pad 2
key

99 vbKeyNumpad3 Number pad 3
key

100 vbKeyNumpad4 Number pad 4
key

   

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Text Message Control

Send text messages to a mobile communications device using a gateway service.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name TextMessageCtl.TextMessage

File Name CSTXTX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.TextMessage.11

ClassID B39C74C3-F9CB-487A-A1B0-E69F7FF807A2

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Overview
Short Message Service (SMS) is a text messaging service used by mobile communication devices
to exchange brief text messages. Most service providers also provide gateway servers that can be
used to send messages to a wireless device on their network using standard email protocols. The
TextMessage control provides methods that can be used to determine the provider associated
with a specific telephone number and send a text message to the device using the provider's mail
gateway.

This control has been designed to assist developers in sending text message notifications as part
of their application. For example, it can be used to enable your software to automatically send
notifications when a specific event occurs, such as an error condition. This control is not designed
to be used with software that will send out a large number of text messages to many users, and
there are limitations on the number of messages that may be sent to different phone numbers
over a short period of time. Because many recipients must pay a fee for each text message they
receive, text messages should only be sent to those who explicitly request them.

Note: This component only supports service providers in North America and cannot be used to
send text messages to mobile devices that use providers outside of the United States and Canada.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.



This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Text Message Control Properties  

 

Property Description

IsInitialized Determine if the control has been initialized

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

Message Gets and sets the current message text

Password Gets and sets the password used to authenticate the session

PhoneNumber Gets and sets the phone number for the mobile device

Provider Gets and sets the name of the preferred wireless service provider

ProviderCount Gets the number of supported wireless service providers

ProviderName Gets the name of a supported wireless service provider

Relay Enable or disable the use of an intermediate relay server to send messages

Secure Enable or disable secure connections to the server

Sender Gets and sets the value that identifies the sender of the message

ServerName Gets and sets the name of the server that is used to send messages

ServerPort Gets and sets the port number used to establish a connection

ServiceType Gets and sets the type of service used to send messages

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

Urgent Enable or disable the option that flags a message as urgent

UserName Gets and sets the user name or ID used to authenticate the session

Version Gets the current version of the object

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/sms/control/property/isinitialized.html


 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, ThrowError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Message Property  

 

Gets and sets the current message text.

Syntax
object.Message [= value ]

Remarks
The Message property returns the current message text. Changing the value of this property will
change the message text sent by the SendMessage method if no message is explicitly specified.
In most cases, a message should not exceed 160 characters in length, although some service
providers may accept longer messages. If a message exceeds the maximum number of characters
accepted by a service provider, the message may be ignored or it may be split into multiple
messages.

Data Type
String

See Also
PhoneNumber Property, Sender Property, Urgent Property, SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Password Property  

 

Gets and sets the password used to authenticate the session.

Syntax
object.Password [= value ]

Remarks
The Password property is used to authenticate the current session. If the message is being sent
using SMTP, this property is used to specify a password when connecting to the mail server . If no
authentication is required, this property may be an empty string. Note that some service providers
may use terminology other than "password" with their documentation; in that case, this property
will always specify the second of a pair of authentication tokens sent to the server to identify the
client.

Data Type
String

See Also
ServerName Property, ServerPort Property, UserName Property, SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PhoneNumber Property  

 

Gets and sets the phone number for the mobile device.

Syntax
object.PhoneNumber [= value ]

Remarks
The PhoneNumber property returns the current phone number. Changing the value of this
property will change the default phone number the SendMessage method will use when sending
a message. This can be a standard E.164 formatted phone number or an unformatted number.
Any extraneous whitespace, punctuation or other non-numeric characters in the string will be
ignored.

Data Type
String

See Also
Message Property, Provider Property, Sender Property, SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Provider Property  

 

Gets and sets the name of the preferred wireless service provider.

Syntax
object.Provider [= value ]

Remarks
The Provider property returns the preferred wireless service provider associated with the current
phone number. Changing the value of this property will change the preferred wireless service
provider. If this property is an empty string, the default provider assigned to the recipient's phone
number will be used. This property is only used with messages sent using SMTP and is ignored for
other message services.

In the United States and Canada, most wireless common carriers are required to provide wireless
number portability (WNP) which allows a customer to continue to use their current phone number
even if they switch to another service provider. This can result in a situation where a specific phone
number is shown as allocated to one provider, but in actuality that user has switched to a different
provider. For example, a user may have originally purchased a phone and service with AT&T and
then later switched to Verizon, but decided to keep their phone number. In this case, if Verizon
was not specified as the preferred provider, the library would attempt to send the message to the
AT&T gateway, since that was the original provider who allocated the phone number.

For most applications, the correct way to handle the situation in which a user may have switched
to a different service provider is to allow them to select a preferred provider in your user interface.
For example, you could display a drop-down list of available providers for them to select from,
populated using the ProviderName property array. If they select a preferred provider, then you
would assign that value to this property. If they choose to use the default provider, set this
property to an empty string.

Data Type
String

See Also
ProviderCount Property, ProviderName Property, GetAddress Method, GetProvider Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProviderCount Property  

 

Gets the number of supported wireless service providers.

Syntax
object.ProviderCount

Remarks
The ProviderCount property returns the number of wireless service providers supported by the
control. This property is used in conjunction with the ProviderName property to enumerate all of
the supported service providers. Typically this done to populate a user-interface control that
enables the user to select a preferred service provider.

Data Type
Integer (Int32)

Example
With TextMessage1
    For nIndex = 0 To .ProviderCount - 1
        ComboBox1.AddItem .ProviderName(nIndex)
    Next
End With
          

See Also
Provider Property, ProviderName Property, GetAddress Method, GetProvider Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ProviderName Property  

 

Gets the name of a supported wireless service provider.

Syntax
object.ProviderName( index )

Remarks
The ProviderName property array returns the name of supported wireless service provider. This
property is used in conjunction with the ProviderCount property to enumerate all of the
supported service providers. Typically this done to populate a user-interface control that enables
the user to select a preferred service provider. The first provider name has an index value of zero.
Specifying an invalid index value will cause the control to throw an exception.

Data Type
String

Example
With TextMessage1
    For nIndex = 0 To .ProviderCount - 1
        ComboBox1.AddItem .ProviderName(nIndex)
    Next
End With
          

See Also
Provider Property, ProviderCount Property, GetAddress Method, GetProvider Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Relay Property  

 

Enable or disable the use of an intermediate relay server to send messages.

Syntax
object.Relay [= { True | False } ]

Remarks
The Relay property is used to determine if the control will send the message directly to the
wireless service provider's gateway server, or if the message will be relayed through another mail
server. The default value for this property is False. Setting this property to True will cause the
control to connect to the mail server specified by the ServerName property, authenticate the
client session if necessary and then submit the message.

When a text message is sent using the SMTP service, the default action is to attempt to connect
directly to the wireless service provider's gateway server. However, many residential Internet
service providers (ISPs) do not permit their customers to connect to third-party mail servers and
will block the outbound connection. Some wireless service providers may also reject messages that
originate from residential IP addresses.

To resolve this issue, the developer should allow the user to specify an alternate mail server that
will relay the message to the wireless service provider. For residential users, this will typically be the
mail server provided by their ISP. For business users, this will usually be their corporate mail server.
The ServerName and ServerPort properties are used to identify the relay server, and the
UserName and Password properties provide the credentials to authenticate the client session.

Data Type
Boolean

See Also
Password Property, ServerName Property, ServerPort Property, UserName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Secure Property  

 

Enable or disable secure connections to the server.

Syntax
object.Secure [= { True | False } ]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application must set this property value to True prior to calling
the SendMessage method.

This property is only used when sending a message through a relay server using the SMTP service.
Messages that are sent directly to the wireless service provider's gateway do not use
authentication and are not secure, regardless of the value of this property.

Data Type
Boolean

See Also
Relay Property, ServerName Property, ServerPort Property, SendMessage Method

 



 Sender Property  

 

Gets and sets the value that identifies the sender of the message.

Syntax
object.Sender [= value ]

Remarks
The Sender property returns the email address of the sender when the SMTP service is used to
send the message. For other service types, this property typically specifies the phone number or
shortcode associated with the sender. Assigning a value to this property will set the default sender
when the SendMessage method is called.

Data Type
String

See Also
Message Property, PhoneNumber Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerName Property  

 

Gets and sets the name of the server that is used to send messages.

Syntax
object.ServerName [= value ]

Remarks
The ServerName property is used to specify an alternate server that is used to deliver messages.
When the SMTP service is used, this property is used in conjunction with the Relay property to
enable the relaying of messages through another mail server.

By default, the phone number is used to automatically determine the host name of the gateway
server that is responsible for accepting messages for the mobile device. However, under some
circumstances it may not be possible to send messages directly to the wireless service provider's
gateway. For example, many Internet service providers (ISPs) require that customers relay all
messages through their servers and block any attempt to establish a direct connection with
another mail server. This property can be used to specify an alternate server that will be
responsible for sending the message.

Data Type
String

See Also
Relay Property, ServerName Property, ServerPort Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServerPort Property  

 

Gets and sets the port number used to establish a connection.

Syntax
object.ServerPort [= value ]

Remarks
The ServerPort property defines the port number which is used to establish a connection with the
server. This property is used in conjunction with the ServerName property to specify an alternate
server which is responsible for delivering messages.

Data Type
Integer (Int32)

See Also
Relay Property, ServerName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ServiceType Property  

 

Gets and sets the type of service used to send messages.

Syntax
object.ServiceType [= value ]

Remarks
The ServiceType property identifies the service used to send the text message. This property is
provided for future expansion where different types of services may be used to send a message.
Currently, the only service type that is supported is SMTP, where the message is sent through a
gateway mail server.

The following values may be assigned to or returned by this property:

Value Constant Description

1 smsServiceSmtp The text message will be sent through the mail gateway for
the specified service provider. This service uses SMTP to
submit the message for delivery, either directly to the server
provider's mail gateway server or through a relay server. This
is the default service type.

Data Type
Integer (Int32)

See Also
Message Property, PhoneNumber Property, Sender Property, SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError [= { True | False } ]

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

TextMessage1.ThrowError = False
nError = TextMessage1.SendMessage()

If nError > 0 Then
    MsgBox TextMessage1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

TextMessage1.ThrowError = True
TextMessage1.SendMessage

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error. This includes the amount of time the control will spend attempting to
connect to a server and if the connection is not established within the given time period, the
connection attempt will fail.

Data Type
Integer (Int32)

See Also
SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the TextMessage and NewsFeed controls, and you set the Trace
property to True on the TextMessage control, function calls made by both controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 controlTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 controlTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 controlTraceWarning Only those function calls which fail, or return values
which indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 controlTraceHexDump All functions calls are written to the trace file, plus all
the data that is sent or received is displayed in both
ASCII and hexadecimal format. This is useful for
examining the actual byte stream that is exchanged
between the application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Urgent Property  

 

Enable or disable the option that flags a message as urgent.

Syntax
object.Urgent [= { True | False } ]

Remarks
The Urgent property specifies whether a message will be flagged as urgent or not. If this property
is set to True, the message will sent with a high priority. Note that this does not guarantee the
message will be received any differently than a standard text message. Each wireless service
provider may handle urgent messages differently, and some providers may simply ignore the
message priority. By default, this property is False.

Data Type
Boolean

See Also
Message Property, SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UserName Property  

 

Gets and sets the user name or ID used to authenticate the session.

Syntax
object.UserName [= value ]

Remarks
The UserName property is used to authenticate the current session. If the message is being sent
using SMTP, this property is used to specify a user name when connecting to the mail server . If no
authentication is required, this property may be an empty string. Note that some service providers
may use terminology other than "username" with their documentation; in that case, this property
will always specify the first of a pair of authentication tokens sent to the server to identify the client.

Data Type
String

See Also
Password Property, ServerName Property, ServerPort Property, SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Text Message Control Methods  

 

Method Description

GetAddress Get the email address associated with the specified phone number

GetProvider Get the name of the wireless service provider associated with a phone number

Initialize Initialize the control and validate the runtime license key

Reset Reset the internal state of the control

SendMessage Send a text message to the specified mobile device

Uninitialize Uninitialize the control and release any system resources that were allocated

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetAddress Method  

 

Get the email address associated with the specified phone number.

Syntax
object.GetAddress( PhoneNumber, Address )

Parameters
PhoneNumber

A string value which specifies the phone number of the mobile device. This can be a standard
E.164 formatted number or an unformatted number. Any extraneous whitespace, punctuation
or other non-numeric characters in the string will be ignored.

Address

A string that will contain the email address associated with the specified phone number when
the method returns. A mail message sent to this address will be forwarded to the mobile device
as a text message. This parameter must be passed by reference.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure. If the method fails, the value of the LastError property can
be used to determine cause of the failure.

Remarks
The GetAddress method can be used to determine if a phone number is associated with a mobile
device and obtain the email address for the wireless service provider's gateway. This is done by
sending an query to a server that will check the phone number against a database of known
providers and the phone numbers that have been allocated for wireless devices.

By default, this method will attempt to automatically determine which service provider is
associated with the phone number. If the service provider cannot be determined, this method will
fail and return an error code. If the Provider property has been set to to the name of a specific
service provider, that provider will be used to determine the gateway email address.

This method sends an HTTP query to the server api.sockettools.com to obtain information about
the phone number and wireless service provider. This requires that the local system can establish a
standard network connection over port 80. If the client cannot connect to the server, the method
will fail and an appropriate error will be returned. The server imposes a limit on the maximum
number of connections that can be established and the maximum number of requests that can be
issued per minute. If this method is called multiple times over a short period, the control may also
force the application to block briefly. Server responses are cached per session, so calling this
method multiple times using the same phone number will not increase the request count.

See Also
Provider Property, ProviderCount Property, ProviderName Property, GetProvider Method,
SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetProvider Method  

 

Get the name of the wireless service provider associated with a phone number.

Syntax
object.GetProvider( PhoneNumber, ProviderName )

Parameters
PhoneNumber

A string value which specifies the phone number of the mobile device. This can be a standard
E.164 formatted number or an unformatted number. Any extraneous whitespace, punctuation
or other non-numeric characters in the string will be ignored.

ProviderName

A string that will contain the name of the wireless service provider associated with the specified
phone number when the method returns. This parameter must be passed by reference.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure. If the method fails, the value of the LastError property can
be used to determine cause of the failure.

Remarks
The GetProvider method can be used to determine if a phone number is associated with a
mobile device and obtain the name of the service provider associated with the number. This is
done by sending an query to a server that will check the phone number against a database of
known providers and the phone numbers that have been allocated for wireless devices.

This method sends an HTTP query to the server api.sockettools.com to obtain information about
the phone number and wireless service provider. This requires that the local system can establish a
standard network connection over port 80. If the client cannot connect to the server, the method
will fail and an appropriate error will be returned. The server imposes a limit on the maximum
number of connections that can be established and the maximum number of requests that can be
issued per minute. If this method is called multiple times over a short period, the control may also
force the application to block briefly. Server responses are cached per session, so calling this
method multiple times using the same phone number will not increase the request count.

See Also
Provider Property, ProviderCount Property, ProviderName Property, GetAddress Method,
SendMessage Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set smsClient = CreateObject("SocketTools.TextMessage.11")

nError = smsClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/sms/control/property/isinitialized.html


 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SendMessage Method  

 

Send a text message to the specified mobile device.

Syntax
object.SendMessage( [PhoneNumber, ] [Sender, ] [Message, ] [Options] )

Parameters
PhoneNumber

An optional string value which specifies the phone number of the mobile device. This can be a
standard E.164 formatted number or an unformatted number. Any extraneous whitespace,
punctuation or other non-numeric characters in the string will be ignored. If this parameter is
omitted, the current value of the PhoneNumber property will be used.

Sender

An optional string value that identifies the sender of the message. For messages being sent
using SMTP, this should be a valid email address. If this parameter is omitted, the current value
of the Sender property will be used.

Message

An optional string value that contains the text message that will be sent. If this parameter is
omitted, the current value of the Message property will be used.

Options

An optional integer value that is reserved for future use. If it is specified, it should have a value
of zero.

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure. If the method fails, the value of the LastError property can
be used to determine cause of the failure.

Remarks
The SendMessage method is used to send a text message to the specified mobile device. This
control is designed to support multiple methods of sending text messages, with the ServiceType
property determining how the message is sent:

smsServiceSmtp
This message service sends the message through the wireless service provider's mail gateway
using the SMTP protocol. However, it is important to note that many of these gateways will not
accept messages from a client that is connected to them using a residential Internet service
provider. If the application is being run on a system that uses a residential provider, that service
provider may also block outbound connections to all mail servers other than their own. These anti-
spam measures typically require that most end-user applications specify a relay mail server rather
than submitting the message directly to the wireless provider's gateway.

By default, this method will attempt to automatically determine which service provider is
associated with the phone number. If the service provider cannot be determined, this method will
fail and return an error code. If the Provider property has been set to to the name of a specific
service provider, that provider will be used to determine the gateway email address.

Because most wireless carriers in the United States and Canada must provide for wireless number
portability, there is the possibility that the provider information returned may no longer

 



correspond to the telephone number. It is recommended that you provide your end-user with the
ability to specify an alternate preferred provider to use when sending the text message. For more
information, refer to ProviderCount and ProviderName properties.

This method sends an HTTP query to the server api.sockettools.com to obtain information about
the phone number and wireless service provider. This requires that the local system can establish a
standard network connection over port 80. If the client cannot connect to the server, the method
will fail and an appropriate error will be returned. The server imposes a limit on the maximum
number of connections that can be established and the maximum number of requests that can be
issued per minute. If this method is called multiple times over a short period, the control may also
force the application to block briefly. Server responses are cached per session, so calling this
method multiple times using the same phone number will not increase the request count.

See Also
Message Property, PhoneNumber Property, Provider Property, Sender Property, ServiceType
Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Text Message Control Events  

 Event Description

OnError This event is generated when a control error occurs
 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Time Protocol Control

Query a time server for the current time and synchronize the local system clock with that value.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name TimeClientCtl.TimeClient

File Name CSTIMX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.TimeClient.11

ClassID F23074C6-02B3-4B88-8A8B-8AD2C6FB52F0

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 868

Overview
The Time Protocol control provides an interface for synchronizing the local system's time and date
with that of a server. The time values returned are in in Coordinated Universal Time and be
adjusted for the local host's timezone. The control enables developers to query a server for the
current time and then update the system clock if desired.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version



for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Time Protocol Control Properties  

 

Property Description

AutoResolve Determines if host names and IP addresses are automatically resolved

HostAddress Gets and sets the IP address of the server

HostName Gets and sets the name of the server

Interval Gets and sets the timer interval in milliseconds

IsBlocked Return if the control is blocked performing an operation

IsInitialized Determine if the control has been initialized

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

LocalDate Returns the network date adjusted for the local timezone

LocalTime Returns the network time adjusted for the local timezone

RemotePort Gets and sets the port number for a remote connection

SystemDate Returns the network date adjusted for the local timezone

SystemTime Returns the network time adjusted for the local timezone

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

Version Return the current version of the object

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/time/control/property/isinitialized.html


 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Interval Property  

 

Gets and sets the timer interval in milliseconds.

Syntax
object.Interval [= milliseconds ]

Remarks
The Interval property specifies the number of milliseconds between calls to the Timer event. A
value of zero indicates that the timer is disabled and no events will be generated. The maximum
interval value is 65536 milliseconds, which is slightly more than one minute.

Data Type
Integer (Int32)

See Also
Timer Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalDate Property  

 

Returns the network date adjusted for the local timezone.

Syntax
object.LocalDate

Remarks
The LocalDate property returns the network date and adjusts the value for the local timezone.
The date is returned as a string formatted using the Short Date format for the current locale.

Data Type
String

See Also
LocalTime Property, SystemDate Property, SystemTime Property, GetTime Method, SetTime
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalTime Property  

 

Returns the network time adjusted for the local timezone.

Syntax
object.LocalTime

Remarks
The LocalTime property returns the network time and adjusts the value for the local timezone.
The time is returned as a string formatted using the standard format for the current locale.

Data Type
String

See Also
LocalDate Property, SystemDate Property, SystemTime Property, GetTime Method, SetTime
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SystemDate Property  

 

Returns the network date adjusted for the local timezone.

Syntax
object.SystemDate

Remarks
The SystemDate property returns the network date in Coordinated Universal Time (UTC). The
date is returned as a string formatted using the Short Date format for the current locale.

Data Type
String

See Also
LocalDate Property, LocalTime Property, SystemTime Property, GetTime Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SystemTime Property  

 

Returns the network time adjusted for the local timezone.

Syntax
object.LocalTime

Remarks
The SystemTime property returns the network time in Coordinated Universal Time (UTC). The
time is returned as a string formatted using the standard format for the current locale.

Data Type
String

See Also
LocalDate Property, LocalTime Property, SystemDate Property, GetTime Method, SetTime Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

TimeClient1.ThrowError = False
strValue = TimeClient1.GetTime(strHostName)

If Len(strValue) = 0 Then
    MsgBox TimeClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

TimeClient1.ThrowError = True
strValue = TimeClient1.GetTime(strHostName)

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 timeTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 timeTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 timeTraceWarning Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 timeTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Time Protocol Control Methods  

 

Method Description

Cancel Cancels the current blocking network operation

GetTime Obtain the current system date and time

Initialize Initialize the control and validate the runtime license key

Reset Reset the internal state of the control

SetTime Set the local system clock to the value returned by the network time server

Uninitialize Uninitialize the control and release any system resources that were allocated

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Reset Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetTime Method  

 

Obtain the current system date and time.

Syntax
object.GetTime( [RemoteHost], [RemotePort], [Timeout], [Localize] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero indicates that the default
port number for this service should be used to establish the connection.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Localize

A boolean argument which specifies if the time should be localized to the timezone on the
current system. If the value is True, then the time returned by the server will be adjusted so that
it reflects the current time in the local timezone. If this argument is omitted or a value of false is
passed to the method, the date and time are returned in Coordinated Universal Time (UTC).

Return Value
The time and date retrieved from the server will be returned as a string formatted according to the
user's current locale. If the date could not be retrieved, an empty string will be returned. To
determine the cause of the failure, check the value of the LastError property.

Remarks
The GetTime method causes the control to connect to the specified server and request the
current date and time. In the United States, the National Institute of Standards and Technology
(NIST) hosts a number of public servers which can be used to obtain the current time. The
following table lists the current host names and addresses:

Server Name IP Address Location

time-a.nist.gov 129.6.15.28 Gaithersburg, Maryland

time-b.nist.gov 129.6.15.29 Gaithersburg, Maryland

time-nw.nist.gov 131.107.13.100 Redmond, Washington

time-a.timefreq.bldrdoc.gov 132.163.4.101 Boulder, Colorado

time-b.timefreq.bldrdoc.gov 132.163.4.102 Boulder, Colorado

time-c.timefreq.bldrdoc.gov 132.163.4.103 Boulder, Colorado

Time servers are also commonly maintained by Internet service providers and universities. If you
are unable to obtain the time from a server, contact the system administrator to determine if they

 



have the standard time service available on port 37.

See Also
LocalDate Property, LocalTime Property, SystemDate Property, SystemTime Property, SetTime
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set timeClient = CreateObject("SocketTools.TimeClient.11")

nError = timeClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/time/control/property/isinitialized.html


 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SetTime Method  

 

Set the local system clock to the value returned by the network time server.

Syntax
object.SetTime( [NetworkTime] )

Parameters
NetworkTime

An optional date value which specifies the new system time. If this is passed as a string, it will be
parsed according to the local system settings; if the string is not in a recognizable format, the
method will return an error. Note that the string must specify the full date and time, not simply
a time value. If this argument is omitted, the date and time value last returned from a call to the
GetTime method will be used. This enables an application to synchronize the local system time
with the time returned by the server.

Return Value
A boolean value of true is returned if the operation was successful, otherwise the method will
return false. Check the value of the LastError property to determine the cause of the failure.

Remarks
The SetTime method causes the control to update the local system's clock to the specified date
and time. It is required that the user have the appropriate privileges required to change the
system clock, otherwise an error will be returned.

See Also
LocalDate Property, LocalTime Property, SystemDate Property, SystemTime Property, GetTime
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Time Protocol Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnError This event is generated when a control error occurs

OnTimeout This event is generated when a blocking operation times out

OnTimer This event is generated when the control's preset timer interval expires

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimer Event  

 

The OnTimer event is fired when the control's preset timer interval expires.

Syntax
Sub object_OnTimer ([Index As Integer])

Remarks
The OnTimer is generated when the control's timer interval has elapsed. The frequency is
specified in milliseconds by setting the Interval property.

See Also
Interval Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Web Location Control

Get physical location information for the local computer system.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name WebLocationCtl.WebLocation

File Name CSWIPX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.WebLocation.11

ClassID D4356555-4D0E-4EB7-B280-25464D1CA23A

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Overview
The Web Location control returns information about the location associated with the with the
external IP address of the local system. The accuracy of this information can vary depending on
the location, with the most detailed information being available for North America. The country
and time zone information for all locations is generally accurate. However, as the location
information becomes more precise, details such as city names, postal codes and specific
geographic locations (e.g.: longitude and latitude) may have reduced accuracy.

This location information should not be used by programs that require extremely accurate map
coordinates, such as navigation applications. The location information in North America should be
generally accurate within a 25 mile (40km) radius. However, given the nature of how IP address
location works, there is no guarantee that location information for any specific IP address or
network will be accurate.

Software that is designed to protect the privacy of users, such as those which route all Internet
traffic through proxy servers or VPNs, can significantly impact the accuracy of this information. In
this case, the data returned by this control may reflect the location of the network or proxy server,
and not the location of the person using your application. It is recommended that you always
request permission from the user before acquiring their location, have them confirm that the
location is correct and provide a mechanism for them to update that information.

This control uses SocketTools Web Services and will only function if there is an active Internet
connection and the local system is capable of establishing a secure connection to the location
service.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any



programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Web Location Control Properties  

 

Property Description

ASNumber Gets the autonomous system number for the network

CityName Gets the city name for the current location

Coordinates Gets the GPS coordinates for the current location

CountryAlpha Gets the ISO alpha-2 code for the country at the current location

CountryCode Gets the numeric code for the country at the current location

CountryName Gets the name of the country for the current location

IPAddress Gets the external IP address for the local system

IsInitialized Determine if the control has been initialized

LastError Gets and sets the last error that occurred on the control

LastErrorString Returns a description of the last error to occur

LastUpdate Gets the number of seconds since the last location update

Latitude Gets the latitude for the current location

LocalTime Gets the local time adjusted for the location's time zone

LocationId Gets a unique identifier for the current location

Longitude Gets the longitude for the current location

Organization Gets the name of the organization that owns the network

PostalCode Gets the postal code for the current location

RegionCode Gets the numeric region code for the current location

RegionName Gets the region name for the current location

Subdivision Gets the subdivision name for the current location

SubdivisionCode Gets the alphanumeric code for the current subdivision

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Timezone Gets the time zone for the current location

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

TzOffset Gets the time zone offset in seconds for the current location

TzShortName Gets an abbreviated time zone name for the current location

Version Return the current version of the object

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 ASNumber Property  

 

Gets the autonomous system number for the network.

Syntax
object.ASNumber

Remarks
This property returns an integer value which is used to uniquely identify a global network
(autonomous system) that is connected to the Internet. This number is assigned by regional
registries and used by large networks, such as Internet Service Providers, for exchanging routing
information with one another. This value can be used to determine the ownership of a particular
network.

Data Type
Integer (Int32)

See Also
IPAddress Property, LocationId Property, Organization Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CityName Property  

 

Gets the city name for the current location.

Syntax
object.CityName

Remarks
This property returns a string which identifies the city in which the external IP address is located.
These names will always be in English, regardless of the current system locale. If the city name
cannot be determined, this property may return an empty string.

Data Type
String

See Also
CountryName Property, PostalCode Property, RegionName Property, Subdivision Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Coordinates Property  

 

Gets the GPS coordinates for the current location.

Syntax
object.Coordinates

Remarks
This property returns a string which specifies the location expressed using the Universal Transverse
Mercator (UTM) coordinate system with the WGS-84 ellipsoid. UTM coordinates are commonly
used with the Global Positioning System (GPS) and are comprised of three parts: the zone, the
easting (the eastward-measured distance or x-coordinate) and the northing (the northward-
measured distance or y-coordinate). An example of a string value returned by this property would
be "14S 702089E 3646476N".

Data Type
String

See Also
Latitude Property, Longitude Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CountryAlpha Property  

 

Gets the ISO alpha-2 code for the country at the current location.

Syntax
object.CountryAlpha

Remarks
This property returns a string which contains the ISO 3166-1 alpha-2 code for the country the
external IP address is located in. This is a two-letter country code established by the International
Organization for Standardization (ISO).

The SubdivisionCode property can be used to determine the standard ISO standard code for a
regional subdivision (such as a state, province or territory). For example, if the IP address is located
in Los Angeles, California the CountryAlpha property would return "US" and the
SubdivisionCode property would return "CA".

Data Type
String

See Also
CountryCode Property, CountryName Property, RegionName Property, Subdivision Property,
SubdivisionCode Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CountryCode Property  

 

Gets the numeric code for the country at the current location.

Syntax
object.CountryCode

Remarks
This property returns an integer value which identifies the country where the external IP address is
located. These codes can be up to three digits (usually displayed with leading zeros as necessary)
and correspond to the country codes assigned by the United Nations. For example, the code for
the United States is 840. It is important to note that these are not international dialing codes and
should not be used with telephony applications.

Data Type
Integer (Int32)

See Also
CountryAlpha Property, CountryName Property, RegionName Property, Subdivision Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CountryName Property  

 

Gets the name of the country for the current location.

Syntax
object.CountryName

Remarks
This property returns a string which contains the full name of the country in which the external IP
address is located. These names will always be in English, regardless of the current system locale.

Data Type
String

See Also
CountryAlpha Property, CountryCode Property, RegionName Property, Subdivision Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IPAddress Property  

 

Gets the external IP address for the local system.

Syntax
object.IPAddress

Remarks
This property returns a string which specifies the external IP address for the local system. If the
system has been assigned multiple IP addresses, it reflects the address of the interface that was
used to establish a connection with the SocketTools server. If the connection is made through a
Virtual Private Network (VPN) it will use that assigned IP address. If a connection is made through
a proxy server, the IP address may be address of the proxy rather than the local host, depending
on how the connection is made.

This property cannot be assigned a value to query the location of different IP addresses. If the
external IP address of the local system cannot be determined, this property will return an empty
string.

Data Type
String

See Also
ASNumber Property, LocationId Property, Organization Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Latitude Property  

 

Gets the latitude for the current location.

Syntax
object.Latitude

Remarks
This property returns a value which specifies the latitude of the location in decimal format. A
positive value indicates a location that is north of the equator, while a negative value is a location
that is south of the equator.

Data Type
Double

See Also
Coordinates Property, Longitude Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastUpdate Property  

 

Gets the number of seconds since the last location update.

Syntax
object.LastUpdate

Remarks
This property returns an integer value which specifies the number of seconds since the last
location query was performed by the control. A return value of zero indicates that the current
location has not been updated.

Data Type
Integer (Int32)

See Also
Reset Method, Update Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocalTime Property  

 

Gets the local time adjusted for the location's time zone.

Syntax
object.LocalTime

Remarks
This property returns a string which contains the current date and time at the location, adjusted
for its time zone and whether or not it's in daylight savings time. The format of the date and time
is determined by the current locale and system configuration.

Data Type
String

See Also
Timezone Property, TzOffset Property, TzShortName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LocationId Property  

 

Gets a unique identifier for the current location.

Syntax
object.LocationId

Remarks
This property returns a string of hexadecimal characters which uniquely identifies the location for
this computer system. This value is used internally by the location service, and may also be used
by the application for its own purposes. If this value changes in subsequent queries, it indicates the
external IP address for the local system has changed.

Data Type
String

See Also
ASNumber Property, IPAddress Property, Organization Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Longitude Property  

 

Gets the longitude for the current location.

Syntax
object.Longitude

Remarks
This property returns a value which specifies the longitude of the location in decimal format. A
positive value indicates a location that is east of the prime meridian, while a negative value is a
location that is west of the prime meridian.

Data Type
Double

See Also
Coordinates Property, Latitude Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Organization Property  

 

Gets the name of the organization that owns the network.

Syntax
object.Organization

Remarks
This property returns a string which identifies the organization associated with the local system's
external IP address. For residential end-users this is typically the name of their Internet Service
provider, however it may also identify a private company such as Microsoft, Google or Amazon.
Because of the nature of how this information is updated, the organization names can change
over time due to acquisitions or changes of ownership. If the owner of the network cannot be
determined, this property may return an empty string.

Data Type
String

See Also
ASNumber Property, IPAddress Property, LocationId Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PostalCode Property  

 

Gets the postal code for the current location.

Syntax
object.PostalCode

Remarks
This property returns a string which contains the postal code associated with the area where the IP
address is located. In the United States, this is a 5-digit numeric code. In Canada, this will contain
the forward sortation area (the first three characters of the six character postal code). Local
delivery portions of a postal code (such as the ZIP+4 code in the United States, or the local
delivery unit in Canada) are not included.

This information will be most accurate within the geographic region of North America. Postal
codes are locale specific, and this property may return an empty string if the postal code for the
location cannot be determined.

Data Type
String

See Also
CityName Property, CountryName Property, RegionName Property, Subdivision Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RegionCode Property  

 

Gets the numeric region code for the current location.

Syntax
object.RegionCode

Remarks
This property returns an integer value which identifies the geographical region in which the
external IP address is located. This value corresponds to the name returned by the RegionName
property. The numeric values use the UN M49 standard established by the United Nations
Statistics Division.

Data Type
Integer (Int32)

See Also
CityName Property, CountryName Property, RegionName Property, Subdivision Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RegionName Property  

 

Gets the region name for the current location.

Syntax
object.RegionName

Remarks
This property returns a string which identifies the region in which the external IP address is located.
This refers to a broad geographical area, such as "North America" or "Southeast Asia" and uses
the conventions for supranational regions as defined by UN M49 codes. These names will always
be in English, regardless of the current system locale.

Data Type
String

See Also
CityName Property, CountryName Property, RegionCode Property, Subdivision Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Subdivision Property  

 

Gets the subdivision name for the current location.

Syntax
object.Subdivision

Remarks
This property returns a string which identifies the geopolitical subdivision within a country where
the external IP address is located. In the United States, this will contain the full name of the state or
commonwealth. In Canada, this will contain the name of the province or territory. These names will
always be in English, regardless of the current system locale.

If a subdivision name does not exist for the location, this property will return an empty string.

The SubdivisionCode property will return a standardized abbreviation for the area. For example,
in the United States it would return the two-character code for the state.

Data Type
String

See Also
CityName Property, CountryName Property, RegionName Property, SubdivisionCode Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SubdivisionCode Property  

 

Gets the alphanumeric code for the current subdivision.

Syntax
object.SubdivisionCode

Remarks
This property returns a string which is either a two- or three-letter code which identifies a
geopolitical subdivision within the country where the external IP address is located. These codes
are defined by the ISO 3166-2 standard. For example, the code for the state of California in the
United States is "CA".

For international specificity, these subdivision codes are often combined with the value of the ISO
alpha-2 code returned by the CountryAlpha property. For example, to identify the state of
California, you could combine with the alpha-2 code for the United States, creating "US-CA" as an
identifier.

If a subdivision code does not exist for the location, this property will return an empty string.

Data Type
String

See Also
CountryAlpha Property, CountryCode Property, RegionCode Property, Subdivision Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the number of seconds to wait until a location query fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting this property specifies the number of seconds until a request for location information fails
and returns an error. This includes the amount of time spent attempting to connect to the location
service. If a connection cannot be established within the given time period, the operation will fail.

Data Type
Integer (Int32)

See Also
Update Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timezone Property  

 

Gets the time zone for the current location.

Syntax
object.Timezone

Remarks
This property returns a string which specifies the full time zone name in which the external IP
address is located. These names are defined by the Internet Assigned Numbers Authority (IANA)
and have values like "America/Los_Angeles" and "Europe/London". These time zones may also be
defined as "Etc/GMT+10" if there is not a regional name associated with the time zone.

The TzShortName property will return an abbreviated time zone name, such as "PST".

Data Type
String

See Also
LocalTime Property, TzOffset Property, TzShortName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 webTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 webTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 webTraceWarning Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 webTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TzOffset Property  

 

Gets the time zone offset in seconds for the current location.

Syntax
object.TzOffset

Remarks
This property returns an integer which specifies the number of seconds east or west of the prime
meridian (UTC). A positive value indicates a time zone that is east of the prime meridian and a
negative value indicates a time zone that is west of the prime meridian. For example, the Pacific
time zone in the western United States during daylight savings time would have a value of -25200
(7 hours).

Data Type
Integer (Int32)

See Also
LocalTime Property, Timezone Property, TzShortName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TzShortName Property  

 

Gets an abbreviated time zone name for the current location.

Syntax
object.TzShortName

Remarks
This property returns a string which specifies the abbreviated time zone code in which the external
IP address is located. If daylight savings time is used within the time zone, then this value can
change based on whether or not daylight savings is in effect. For example, if the IP address is
located within the Pacific time zone in the United States, this will return "PDT" when daylight
savings is in effect and "PST" when it is not.

If the time zone code cannot be determined for this location, a value such as "UTC+9" may be
returned, indicating the number of hours ahead or behind UTC.

Data Type
String

See Also
LocalTime Property, Timezone Property, TzOffset Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Web Location Control Methods  

 

Method Description

Initialize Initialize the control and validate the runtime license key

Reset Reset the internal state of the control

Uninitialize Uninitialize the control and release any system resources that were allocated

Update Update the current location information for the local system

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set ipLocation = CreateObject("SocketTools.WebLocation.11")

nError = ipLocation.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any resources allocated by the
control will be released.

See Also
Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method resets the internal state of the control and releases system resources
allocated for this class instance. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Update Method  

 

Update the current location information for the local system.

Syntax
object.Update

Parameters
None.

Return Value
A value of True is returned if the current location was updated successfully. A value of False
indicates that the current location could not be determined. The LastError property can be used
to identify the specific cause of the failure.

Remarks
This method causes the control to query the location service to obtain current information about
the physical location of the computer system based on its external IP address. The location data is
cached and additional queries are only performed if it detects the external IP address for the local
system has changed.

See Also
LastUpdate Property, Timeout Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Web Location Control Events  

 Event Description

OnError This event is generated when a control error occurs
 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Web Storage Control

Application storage and data management services.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name WebStorageCtl.WebStorage

File Name CSWEBX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.WebStorage.11

ClassID 28DA32F6-1F2F-43C8-8C13-FDD28245F771

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Overview
The Web Storage control enables an application to securely store and manage data remotely.

This control uses SocketTools Web Services and will only function if there is an active Internet
connection and the local system is capable of establishing a secure connection to our servers.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to



ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Web Storage Control Properties  

 

Property Description

AccountId Gets a value that specifies the storage account ID

AppId Gets the application identifier associated with the storage container

IsBlocked Determine if a blocking storage operation is in progress

IsConnected Determine if the application is connected to the storage server

IsInitialized Determine if the control has been initialized

LastError Gets and sets the last error that occurred on the control

LastErrorString Returns a description of the last error to occur

ObjectAttributes Gets the attributes for the current object

ObjectContent Gets the content type for the current object

ObjectCreated Gets the date and time the current object was created

ObjectDigest Gets the SHA-256 digest value for the current object

ObjectId Gets the unique identifier for the current object

ObjectLabel Gets the label for the current object

ObjectLimit Gets the maximum number of objects that may be created

ObjectModified Gets the date and time the current object was last modified

ObjectSize Gets the size of the current object in bytes

StorageFree Gets the total number of bytes available to store new objects

StorageId Gets a unique identifier for the current storage container

StorageLimit Gets the maximum number of bytes of storage available

StorageObjects Gets the current number of objects stored for your account

StorageType Gets the current storage container type identifier

StorageUsed Gets the current number of bytes of storage used for your account

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

TransferBytes Gets the number of bytes transferred from the storage server

TransferRate Gets the current data transfer rate in bytes per second

TransferTime Gets the number of seconds elapsed for the current data transfer

Version Return the current version of the object

 



 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AccountId Property  

 

Gets a value that specifies the storage account ID associated with the development license.

Syntax
object.AccountId

Remarks
This property is a string that uniquely identifies the web services account that is associated with the
session. The account ID corresponds with your product serial number and runtime license key, but
it is not identical to either of those values.

If you are using an evaluation license, the account ID is temporary and only valid
during the evaluation period. After the evaluation period has expired, the account ID
is revoked and objects stored using this ID will be deleted. It is not recommended
that you store critical application data using an evaluation license.

Data Type
String

See Also
AppId Property, ObjectId Property, StorageId Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AppId Property  

 

Gets the application identifier associated with the storage container.

Syntax
object.AppId

Remarks
This property returns the current application ID. The application ID is a string that uniquely
identifies the application and can only contain letters, numbers, the period and the underscore
character. The default value for this property is SocketTools.Storage.Default.

You can register a unique identifier for your application using the RegisterId method.

Data Type
String

See Also
ObjectId Property, RegisterId Method, ValidateId Method, UnregisterId Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  

file:///C|/Projects/cstools11/pdf/websvc/control/method.unregisterid.html


 IsBlocked Property  

 

Determine if a blocking storage operation is in progress.

Syntax
object.IsBlocked

Remarks
The IsBlocked property is used to determine if a storage operation is currently in progress. For
example, this property will return True if checked within an OnProgress event handler when the
GetFile or PutFile method has been called.

Data Type
Boolean

See Also
GetData Method, GetFile Method, PutData Method, PutFile Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the application is connected to the storage server.

Syntax
object.IsConnected

Remarks
The IsConnected property is used to determine if the application is connected to the storage
server. This property will return False if the Open method has not been called to open a storage
container, or if the connection to the server has been terminated. A value of True indicates that
the storage container has been opened and there is a valid connection to the server.

The client does not maintain a continuous, persistent connection with the storage server. The
connection may be closed and reopened internally as needed. If the client session has been idle
for a period of time, this property can return False. If the LastError property returns
stErrorNotConnected it means the client session is valid, however it not currently connected to
the storage server. The next call to store or retrieve an object will the cause the client to reconnect
automatically.

Data Type
Boolean

See Also
LastError Property, Close Method, Open Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ObjectAttributes Property  

 

Gets the attributes for the current object.

Syntax
object.ObjectAttributes

Remarks
This property returns an integer value that specifies the attributes for the current storage object.
The object attributes are comprised of one or more bitflags.

Value Constant Description

0 webObjectDefault Default object attributes. This value is used to indicate
the object can be modified, or that the attributes for a
previously existing object should not be changed.

1 webObjectNormal A normal object that that can be read and modified by
the application. This is the default attribute for new
objects that are created by the application.

2 webObjectReadOnly A read-only object that can only be read by the
application. Attempts to modify or replace the contents
of the object will fail. Read-only objects can be deleted.

4 webObjectHidden A hidden object. Objects with this attribute are not
returned when enumerated using the FindFirst and
FindNext methods. The object can only be accessed
directly when specifying its label.

Data Type
Integer (Int32)

See Also
Exists Method, FindFirst Method, FindNext Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ObjectContent Property  

 

Gets the content type for the current object.

Syntax
object.ObjectContent

Remarks
This property returns a string which specifies the MIME content type for the current storage object.
The content type is typically determined by the object label and evaluating the contents of the
object. It is also possible for the application to explicitly specify the content type of the object
when it is created.

The object content type will always be in the format type/subtype where the type specifies a
common media type (e.g.: text, audio, video, etc.) and subtype specifies the specific content. The
most common content type for text files is text/plain. If the content type is unknown, the default
content type is application/octet-stream.

Text objects may also optionally include the character encoding as part of the content type. For
example, if an object contains UTF-8 encoded text, the content type may be returned as
text/plain; charset=utf-8. If your application is parsing the content types, you must check if a
character encoding was also included in the value. Text objects that do not specify an encoding
either contain ASCII or text which uses the system code page. Unicode text will always be stored
using UTF-8 encoding.

Data Type
String

See Also
Exists Method, PutData Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ObjectCreated Property  

 

Gets the date and time the current object was created.

Syntax
object.ObjectCreated

Remarks
This property returns a string which specifies the date and time the current object was created.
The format of the date and time string is determined by the system configuration and current
locale.

Data Type
String

See Also
ObjectModified Property, Exists Method, GetData Method, GetFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ObjectDigest Property  

 

Gets the SHA-256 digest value for the current object.

Syntax
object.ObjectDigest

Remarks
This property returns a string value which specifies the digest of the object contents, computed
using an SHA-256 hash. The digest value is always represented as a string of hexadecimal
numbers that is exactly 64 characters long. It is important to note that even a zero-length object
will have a digest, which is the standard SHA-256 NULL hash value.

Data Type
String

See Also
ObjectId Property, ObjectContent Property, ObjectSize Property, Exists Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ObjectId Property  

 

Gets the unique identifier for the current object.

Syntax
object.ObjectId

Remarks
This property returns a unique identifier associated with the current object. Object IDs are
guaranteed to be unique for each storage object that is created by the application.

Data Type
String

See Also
ObjectContent Property, ObjectDigest Property, ObjectLabel Property, Exists Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ObjectLabel Property  

 

Gets the label for the current object.

Syntax
object.ObjectLabel

Remarks
This property returns a string which specifies the label assigned to the current object by the
application. Object labels are case-sensitive and must be unique for each object. An application
uses labels to reference an object with a human-recognizable name, rather than referencing them
by their object ID.

Object labels are similar to Windows file names, except they are case-sensitive. The maximum
length of a label string is 511 characters. Leading and trailing whitespace (spaces, tabs, linebreaks,
etc.) are ignored in label names.

Illegal characters include ASCII and Unicode control characters 0 through 31, single quotes (39),
double quotes (34), less than symbol (60), greater than symbol (62), pipe (124), asterisk (42) and
question mark (63). It is not possible to embed null characters in the label name.

Label names may contain forward slash (47) characters and backslash (92) characters, however it is
important to note that objects are not stored in a hierarchical structure. An application can create
its own folder-like structure to the labels it creates, but this structure is not imposed or enforced by
the control.

Labels can contain Unicode characters which are internally encoded as UTF-8.

Data Type
String

See Also
ObjectContent Property, ObjectDigest Property, ObjectId Property, Exists Method, ValidateLabel
Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ObjectLimit Property  

 

Gets the maximum number of objects that may be created.

Syntax
object.ObjectLimit

Remarks
This property returns an integer value which specifies the maximum number of storage objects
that may be created. In addition to the limit on the total amount of storage that may be used,
there is a limit on the total number of objects that may be created by all applications.

Data Type
Integer (Int32)

See Also
StorageFree Property, StorageLimit Property, StorageObjects Property StorageUsed Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ObjectCreated Property  

 

Gets the date and time the current object was last modified.

Syntax
object.ObjectModified

Remarks
This property returns a string which specifies the date and time the current object was last
modified. The format of the date and time string is determined by the system configuration and
current locale.

Data Type
String

See Also
ObjectCreated Property, Exists Method, GetData Method, GetFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ObjectSize Property  

 

Gets the size of the current object in bytes.

Syntax
object.ObjectSize

Remarks
This property returns a value that specifies the size of the current storage object in bytes.

Data Type
Integer (Int32)

See Also
ObjectLimit Property StorageFree Property, StorageLimit Property, StorageUsed Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StorageFree Property  

 

Gets the total number of bytes available to store new objects.

Syntax
object.StorageFree

Remarks
This property returns a value which specifies the number of bytes available for the storage of new
objects. This value reflects the total amount of available storage across all applications registered
with the development account. If this value is zero, your storage account has reached its storage
limit.

If your storage quota has been exceeded, either because the total number of objects or the total
bytes of storage has reached their limit, your applications will be unable to create new objects.
Your application can continue to access existing objects, regardless of your current quota limits.

To free storage space, use the Delete method to delete individual storage objects that are no
longer needed by your application, or use the DeleteAll method to delete all objects in the
current container.

Data Type
Double

See Also
ObjectLimit Property, StorageLimit Property, StorageObjects Property, StorageUsed Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StorageId Property  

 

Gets a unique identifier for the current storage container.

Syntax
object.StorageId

Remarks
This property returns a string which identifies the current storage container opened with the Open
method. The storage ID is associated with your development license and is guaranteed to be a
unique value. If no storage container has been opened, this property will return a zero length
string.

Data Type
String

See Also
AppId Property, ObjectId Property, Open Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StorageLimit Property  

 

Gets the maximum number of bytes of storage available.

Syntax
object.StorageLimit

Remarks
This property returns a value which specifies the maximum number of bytes of data storage
available. This limit applies to all applications registered with the development account. In addition
to limits on the total number of bytes that can be stored, there are also limits on the total number
objects which may be created, and the individual size of each object.

Storage quota limits are assigned for each SocketTools development account. Accounts that are
created with an evaluation license have much lower quota limits than a standard account and
should be used for testing purposes only. After the evaluation period has ended, all objects stored
using the evaluation license will be deleted.

This value does not represent limits on the storage used by a specific application. Quotas limits
apply to all applications that are registered with the development account, which is identified with
the runtime license key passed to the Initialize method.

If your storage quota has been exceeded, either because the total number of objects or the total
bytes of storage has reached their limit, your applications will be unable to create new objects.
Your application can continue to access existing objects, regardless of your current quota limits.

To free storage space, use the Delete method to delete individual storage objects that are no
longer needed by your application, or use the DeleteAll method to delete all objects in the
current container.

Data Type
Double

See Also
ObjectLimit Property, StorageLimit Property, StorageObjects Property, StorageUsed Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StorageObjects Property  

 

Gets the current number of objects stored for your account.

Syntax
object.StorageObjects

Remarks
This property returns an integer value which specifies the number of storage objects allocated for
the account. This value may not exceed the total number of objects specified by the ObjectLimit
property.

Data Type
Integer (Int32)

See Also
ObjectLimit Property, StorageLimit Property, StorageUsed Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StorageType Property  

 

Gets the current storage container type identifier.

Syntax
object.StorageType

Remarks
This property returns an integer value which identifies the current storage container type. It may
be one of the following values. If no storage container is currently open, this property will return a
value of zero.

Value Constant Description

1 webStorageGlobal Global storage. Objects stored using this storage type
are available to all users. Any changes made to objects
using this storage type will affect all users of the
application. Unless there is a specific need to limit access
to the objects stored by the application to specific
domains, local machines or users, it is recommended
that you use this storage type when creating new
objects.

2 webStorageDomain Local domain storage. Objects stored using this storage
type are only available to users in the same local
domain, as defined by the domain name or workgroup
name assigned to the local system. If the domain or
workgroup name changes, objects previously stored
using this storage type will not be available to the
application.

3 webStorageMachine Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type
will not be available on that system if the boot disk is
reformatted.

4 webStorageUser Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user
account is created. If the user account is deleted, the
objects previously stored using this storage type will not
be available to the application.

The storage type specifies the type of container that objects will be stored in. You can think of the
storage containers as special folders which store individual objects. In most cases, we recommend
using webStorageGlobal which means that stored objects will be accessible to all users of your
application. However, you can limit access to the stored objects based on the local domain, local
machine ID or the current user SID.

 



If you specify anything other than global storage, objects can be orphaned if the system
configuration changes. For example, if webStorageMachine is specified, the objects that are
stored there can only be accessed from that computer system. If the system is reconfigured (for
example, the boot volume formatted and Windows is reinstalled) the unique identifier for that
system will change and the previous objects that were stored by your application can no longer be
accessed.

It is advisable is to store critical application data and configuration information using
webStorageGlobal and use other non-global storage containers for configuration information
that is unique to that system and/or user which is not critical and can be easily recreated.

Data Type
Integer

See Also
StorageId Property, Open Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 StorageUsed Property  

 

Gets the current number of bytes of storage used for your account.

Syntax
object.StorageUsed

Remarks
This property returns a value which specifies the total number of bytes of data allocated for all
storage objects. This value may not exceed the total number of bytes of storage available, which is
returned by the StorageLimit property.

This value does not represent the storage used by a specific application. This property returns the
amount of storage used by all applications that are registered with the development account,
which is identified with the runtime license key passed to the Initialize method.

Data Type
String

See Also
ObjectLimit Property, StorageFree Property, StorageLimit Property, StorageObjects Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TransferBytes Property  

 

Gets the number of bytes transferred from the storage server.

Syntax
object.TransferBytes

Remarks
The TransferBytes property returns the number of bytes that have been copied to or from the
storage server. If this property is read while a transfer is ongoing, the property returns the number
of bytes that have been copied up to that point. If read after a transfer has completed, the total
number of bytes copied is returned.

This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferRate Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferRate Property  

 

Gets the current data transfer rate in bytes per second.

Syntax
object.TransferRate

Remarks
The TransferRate property returns the rate at which the file data is being transferred, expressed in
bytes per second. If this property is read while a transfer is ongoing, it returns the current average
transfer rate.

If this property is read after the transfer has completed, it returns the final transfer rate which is
calculated as the total number of bytes transferred divided by the number of seconds to complete
the transfer. This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytes Property, TransferTime Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TransferTime Property  

 

Gets the number of seconds elapsed for the current data transfer.

Syntax
object.TransferTime

Remarks
The TransferTime property returns the number of seconds that have elapsed since the data
transfer started. If the property is read after the transfer has completed, it returns the total number
of seconds it took to transfer the object data.

 This property value is reset with every data transfer.

Data Type
Integer (Int32)

See Also
TransferBytes Property, TransferRate Property, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 webTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 webTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 webTraceWarning Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 webTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Web Storage Control Methods  

 

Method Description

Cancel Cancel the current storage operation

Close Close the open storage container

CompareData Compare the data in a buffer with a stored object

CompareFile Compare the data in a file with a stored object

Copy Copy the contents of a stored object to another container

Delete Delete a stored object from the container

DeleteAll Delete all stored objects from the current container

Exists Determine if a specific stored object exists in the container

FindFirst Find the first stored object that matches a label or content type

FindNext Find the next stored object that matches a label or content type

GetData Download the data in a stored object to a string or byte array buffer

GetFile Download a stored object to a file on the local system

Initialize Initialize the control and validate the runtime license key

Move Move a stored object to another container

Open Open a storage container

PutData Upload the data in a string or byte array buffer to the storage container

PutFile Upload a local file to the storage container

RegisterId Register a new application identifier with the storage service

Rename Change the label of an existing storage object

Reset Reset the internal state of the control

Uninitialize Uninitialize the control and release any system resources that were allocated

UnregisterId Unregister a previously registered application identifier

ValidateId Check an application identifier to ensure it is valid and exists

ValidateLabel Validate an object label to ensure it uses allowed characters

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current storage operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels the current storage operation in the current thread. This is typically
used inside an OnProgress event handler, causing the blocking method to return to the caller
with an error indicating that the current operation was canceled. If a storage operation is not
currently in progress, calling this method will have no effect.

See Also
GetData Method, GetFile Method, PutData Method, PutFile Method, Reset Method, OnProgress
Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Close Method  

 

Close the storage container.

Syntax
object.Close

Parameters
None.

Return Value
A value of True is returned if the storage container was opened. Otherwise, a value of False is
returned and the LastError property will return the specific cause of the failure.

Remarks
The Close method should be called after all operations using the storage container have
completed. The access token granted to the application will be released and the memory
allocated for the session cache will be freed.

See Also
Open Method, Reset Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CompareData Method  

 

Compare the data in a buffer with a stored object.

Syntax
object.CompareData( ObjectLabel, Buffer )

Parameters
ObjectLabel

A string which specifies the label of the object that should be compared against the contents of
the buffer.

Buffer

A string or byte array which contains the data that should be compared against the contents of
the object. If the buffer contains binary data (particularly data that contains embedded null
bytes) this parameter must be a byte array. String values should only be used for text
comparisons.

Return Value
A value of True is returned if the contents of the buffer matches the contents of the specified
object. Otherwise, a value of False is returned and the LastError property will return the specific
cause of the failure.

Remarks
The CompareData method performs a binary comparison of the data in the specified buffer with
the contents of the storage object on the server. The amount of data in the buffer must match the
size of the stored object exactly, or this method will fail. Partial comparisons are not supported by
this method.

If you need to compare the contents of a file with a stored object, use the CompareFile method.

See Also
CompareFile Method, GetData Method, PutData Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 CompareFile Method  

 

Compare the data in a file with a stored object.

Syntax
object.CompareFile( ObjectLabel, LocalFile )

Parameters
ObjectLabel

A string which specifies the label of the object that should be compared against the contents of
the buffer.

LocalFile

A string which specifies the name of the file to compare against the contents of the stored
object. If no path is specified in the file name, the current working directory will be used.

Return Value
A value of True is returned if the contents of the file matches the contents of the specified object.
Otherwise, a value of False is returned and the LastError property will return the specific cause of
the failure.

Remarks
The CompareFile method performs a binary comparison of the data in the file with the contents
of the storage object on the server. The contents of the file must be identical to the contents of
the stored object or the method will fail.

If you need to compare the contents of a file with a string or byte array, use the CompareData
method.

See Also
CompareData Method, GetData Method, PutData Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Copy Method  

 

Copy the contents of a stored object to another container.

Syntax
object.Copy( OldLabel, NewLabel [, StorageType] )

Parameters
OldLabel

A string which specifies the label of the object that should be copied.

NewLabel

A string which specifies the new label for the copied object.

StorageType

A numeric value that identifies the storage container type. One of the following values should
be specified. If this parameter is omitted, the object will be copied within the current container.

Value Constant Description

1 webStorageGlobal Global storage. Objects stored using this storage type
are available to all users. Any changes made to objects
using this storage type will affect all users of the
application. Unless there is a specific need to limit access
to the objects stored by the application to specific
domains, local machines or users, it is recommended
that you use this storage type when creating new
objects.

2 webStorageDomain Local domain storage. Objects stored using this storage
type are only available to users in the same local
domain, as defined by the domain name or workgroup
name assigned to the local system. If the domain or
workgroup name changes, objects previously stored
using this storage type will not be available to the
application.

3 webStorageMachine Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type
will not be available on that system if the boot disk is
reformatted.

4 webStorageUser Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user
account is created. If the user account is deleted, the
objects previously stored using this storage type will not
be available to the application.

 



Return Value
A value of True is returned if the object was copied. Otherwise, a value of False is returned and the
LastError property will return the specific cause of the failure.

Remarks
The Copy method is used to create a copy of an existing storage object. It may be used to
duplicate an object with a different label, or it may be used to copy the object to a new storage
container type. For example, it can copy an object originally created in the webStorageUser
container to a new object stored in the webStorageMachine container.

Copied objects are assigned their own unique ID and are not linked to one another. Any
subsequent changes made to the original object will not affect the copied object. Attempting to
copy an object to itself or another existing object will result in an error.

This method updates the current object. Various properties such as ObjectId and ObjectLabel
will reflect the values associated with the new, copied object and not the original object it was
copied from.

See Also
Delete Method, Move Method, Rename Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Delete Method  

 

Delete a stored object from the container.

Syntax
object.Delete( ObjectLabel )

Parameters
ObjectLabel

A string which specifies the label of the object that should be deleted.

Return Value
A value of True is returned if the object was deleted. Otherwise, a value of False is returned and
the LastError property will return the specific cause of the failure.

Remarks
The Delete method is used to delete a stored object from the container. This method
permanently deletes the storage object and its associated data from the server. Deleted objects
cannot be recovered by the application. To remove all objects stored in the container, use the
DeleteAll method.

See Also
Copy Method, DeleteAll Method, Move Method, Rename Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 DeleteAll Method  

 

Delete all stored objects in the container.

Syntax
object.DeleteAll

Parameters
None

Return Value
A value of True is returned if all objects were deleted from the current container. Otherwise, a
value of False is returned and the LastError property will return the specific cause of the failure.

Remarks
The storage container contains information for each of the objects that have been stored by the
application. Each of these objects are associated with the application ID and the storage type that
was specified when calling the Open method. The DeleteAll method instructs the server to
remove all objects in the continer, resetting it back to its initial state.

Exercise caution when using this method. The operation is immediate and the objects
that are stored in the container are permanently deleted. They cannot be recovered
by your application.

See Also
Copy Method, Delete Method, Move Method, Open Method, Rename Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Exists Method  

 

Determine if a specific stored object exists in the container.

Syntax
object.Exists( ObjectLabel )

Parameters
ObjectLabel

A string which specifies the label of the object.

Return Value
A value of True is returned if the object exists. Otherwise, a value of False is returned and the
LastError property will return the specific cause of the failure.

Remarks
The Exists method is used to check for the existence of a stored object in the current container. If
the object exists, various properties that return information about the current object, such as
ObjectId and ObjectSize will be updated to return the metadata associated with the object.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it
was created. The object label cannot contain wildcard characters.

To obtain information about how much storage your applications are using and the total number
of stored objects, use the StorageUsed and StorageObjects properties.

If you wish to enumerate all of the stored objects within the container, use the FindFirst and
FindNext methods.

See Also
ObjectId Property, ObjectModified Property, ObjectSize Property, StorageObjects Property,
StorageUsed Property, FindFirst Method, FindNext Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FindFirst Method  

 

Find the first stored object that matches a label or content type.

Syntax
object.FindFirst( [MatchLabel], [ContentType] )

Parameters
MatchLabel

A string which specifies the value to match against the object labels in the container. The string
may contain wildcard characters similar to those use with the Windows filesystem. A "?"
character matches any single character, and "*" matches any number of characters in the label.
If this parameter is omitted or an empty string, all objects in the container will be matched.

ContentType

A string which specifies the content type of the objects to be enumerated. If this parameter is
omitted or an empty string, the content type is ignored and all matching objects are returned. If
a content type is specified, it must be a valid MIME media content type designated using the
type/subtype nomenclature.

Return Value
A value of True is returned if a matching object exists. Otherwise, a value of False is returned and
the LastError property will return the specific cause of the failure.

Remarks
The FindFirst method returns information about the first object that matches a given label,
content type or both. It is used in conjunction with the FindNext method to enumerate all of the
matching objects in the storage container.

If a matching object exists, various properties that return information about the current object,
such as ObjectId and ObjectSize will be updated to return the metadata associated with the
object.

See Also
Exists Method, FindNext Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 FindNext Method  

 

Find the next stored object that matches a label or content type.

Syntax
object.FindNext

Parameters
None.

Return Value
A value of True is returned if a matching object exists. If there are no more matching objects, or an
error occurs, a value of False is returned and the LastError property will return the specific cause
of the failure. If the LastError property returns a value of zero, then no error occurred and there
are no additional matching objects.

Remarks
The FindNext method returns information about the next object that matches a given label,
content type or both. This method may only be called after the FindFirst method is called,
otherwise it will fail.

If a matching object exists, various properties that return information about the current object,
such as ObjectId and ObjectSize will be updated to return the metadata associated with the
object.

See Also
Exists Method, FindFirst Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetData Method  

 

Download the data in a stored object to a string or byte array buffer.

Syntax
object.GetData( ObjectLabel, Buffer, [Length] )

Parameters
ObjectLabel

A string which specifies the label of the object that should be retrieved from the server.

Buffer

This parameter specifies the buffer that will contain the object data when the method returns. If
the variable is a String type, then the data will be returned as a string of characters. This is the
most appropriate data type to use if the object only contains text. If the object contains binary
data, it is recommended that a Byte array variable be specified as the argument to this method.

Length

An optional integer argument that will contain the number of bytes copied into the buffer when
the method returns.

Return Value
A value of True is returned on success. If an error occurs, a value of False is returned and the
LastError property will return the specific cause of the failure..

Remarks
The GetData method transfers data from a stored object to the specified buffer. This method will
cause the current thread to block until the data transfer completes, a timeout occurs or the
transfer is canceled. During the transfer, the OnProgress event will fire periodically, enabling the
application to update any user interface objects such as a progress bar.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated
to reflect the values associated with the object that was downloaded from the server.

See Also
GetFile Method, PutData Method, PutFile Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 GetFile Method  

 

Download the data in a stored object to a local file.

Syntax
object.GetFile( LocalFile, ObjectLabel )

Parameters
LocalFile

A string which specifies the name of the local file that will be created or overwritten with the
contents of the storage object. If a path is not specified, the file will be created in the current
working directory.

ObjectLabel

A string which specifies specifies the label of the object that should be retrieved from the server.

Return Value
A value of True is returned on success. If an error occurs, a value of False is returned and the
LastError property will return the specific cause of the failure..

Remarks
The GetFile method downloads data from a stored object to a local file. This method will cause
the current thread to block until the data transfer completes, a timeout occurs or the transfer is
canceled. During the transfer, the OnProgress event will fire periodically, enabling the application
to update any user interface objects such as a progress bar.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated
to reflect the values associated with the object that was downloaded from the server.

See Also
GetData Method, PutData Method, PutFile Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set ipLocation = CreateObject("SocketTools.WebLocation.11")

nError = ipLocation.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Move Method  

 

Move a stored object to another container.

Syntax
object.Move( OldLabel, NewLabel [, StorageType] )

Parameters
OldLabel

A string which specifies the label of the object that should be moved.

NewLabel

A string which specifies the new label for the object being moved.

StorageType

A numeric value that identifies the storage container type. One of the following values should
be specified. If this parameter is omitted, the object will be moved within the current container.

Value Constant Description

1 webStorageGlobal Global storage. Objects stored using this storage type
are available to all users. Any changes made to objects
using this storage type will affect all users of the
application. Unless there is a specific need to limit access
to the objects stored by the application to specific
domains, local machines or users, it is recommended
that you use this storage type when creating new
objects.

2 webStorageDomain Local domain storage. Objects stored using this storage
type are only available to users in the same local
domain, as defined by the domain name or workgroup
name assigned to the local system. If the domain or
workgroup name changes, objects previously stored
using this storage type will not be available to the
application.

3 webStorageMachine Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type
will not be available on that system if the boot disk is
reformatted.

4 webStorageUser Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user
account is created. If the user account is deleted, the
objects previously stored using this storage type will not
be available to the application.

 



Return Value
A value of True is returned if the object was moved. Otherwise, a value of False is returned and the
LastError property will return the specific cause of the failure.

Remarks
The Move method is used to move an existing storage object to a new container. For example, it
can move an object originally created in the webStorageUser container to the
webStorageMachine container. Using this method to move an object within the same container
is effectively the same as calling the Rename method.

This method updates the current object. Various properties such as ObjectId and ObjectLabel
will reflect the values associated with the object which has been moved.

See Also
Copy Method, Delete Method, Rename Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Open Method  

 

Open a storage container.

Syntax
object.Open( [AppId], [StorageType], [Timeout] )

Parameters
AppId

A string which specifies the application ID for the storage container. The application ID is a
string that uniquely identifies the application and can only contain letters, numbers, the period
and the underscore character. If this parameter is omitted or an empty string, the default
identifier SocketTools.Storage.Default will be used.

StorageType

A numeric value that identifies the storage container type. One of the following values should
be specified. If this parameter is omitted, global storage will be used by default.

Value Constant Description

1 webStorageGlobal Global storage. Objects stored using this storage type
are available to all users. Any changes made to objects
using this storage type will affect all users of the
application. Unless there is a specific need to limit access
to the objects stored by the application to specific
domains, local machines or users, it is recommended
that you use this storage type when creating new
objects.

2 webStorageDomain Local domain storage. Objects stored using this storage
type are only available to users in the same local
domain, as defined by the domain name or workgroup
name assigned to the local system. If the domain or
workgroup name changes, objects previously stored
using this storage type will not be available to the
application.

3 webStorageMachine Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type
will not be available on that system if the boot disk is
reformatted.

4 webStorageUser Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user
account is created. If the user account is deleted, the
objects previously stored using this storage type will not
be available to the application.

 



Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Return Value
A value of True is returned if the storage container was opened. Otherwise, a value of False is
returned and the LastError property will return the specific cause of the failure.

Remarks
The Open method opens the specified storage container and requests an access token for the
application. This method that must be called prior to accessing any stored objects.

The application ID is a string that uniquely identifies the application requesting the access and
must have been previously registered with the server by calling the RegisterId method. If the
AppId parameter is omitted or an empty string, the a default internal ID will be used which is
allocated for each storage account. You can use this default ID if you wish to share data between
all of the applications you create.

The storage type specifies the type of container that objects will be stored in. In most cases, we
recommend using webStorageGlobal which means that stored objects will be accessible to all
users of your application. However, you can limit access to the stored objects based on the local
domain, local machine ID or the current user SID.

If you specify anything other than global storage, objects can be orphaned if the system
configuration changes. For example, if webStorageMachine is specified, the objects that are
stored there can only be accessed from that computer system. If the system is reconfigured (for
example, the boot volume formatted and Windows is reinstalled) the unique identifier for that
system will change and the previous objects that were stored by your application wil no longer be
accessible.

It is advisable is to store critical application data and configuration information in the
webStoragebGlobal container and use other non-global storage containers for configuration
information that is unique to that system and/or user which is not critical and can be easily
recreated.

See Also
AppId Property, StorageType Property, Timeout Property, Close Method, RegisterId Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutData Method  

 

Upload the data in a string or byte array buffer to the storage container.

Syntax
object.PutData( ObjectLabel, Buffer, [Length], [ContentType], [Attributes] )

Parameters
ObjectLabel

A string which specifies the label of the object that should be uploaded to the server. If an
object with the same label already exists, it will be replaced with the contents of the buffer.

Buffer

This parameter specifies the buffer that contains the object data to be stored. If the variable is a
String type, then the data will be stored as text. If the buffer contains binary data, the buffer
must be specified as a Byte array.

Length

An optional integer argument that specifies the number of bytes to be stored. If this parameter
is omitted, the length is determined by the length of the string or size of the byte array buffer
provided by the caller.

ContentType

An optional string argument that identifies the contents of the buffer being stored. If this
parameter is omitted, or specifies a zero-length string, the method will attempt to automatically
determine the content type based on the object label and the contents of the buffer.

Attributes

An optional integer argument which specifies the attributes associated with the storage object.
This value can be a combination of one or more of the following bitflags using a bitwise OR
operation. If this parameter is omitted, the default attribute webObjectNormal will be used.

Value Constant Description

1 webObjectNormal A normal object that that can be read and modified by
the application. This is the default attribute for new
objects that are created by the application.

2 webObjectReadOnly A read-only object that can only be read by the
application. Attempts to modify or replace the contents
of the object will fail. Read-only objects can be deleted.

4 webObjectHidden A hidden object. Objects with this attribute are not
returned when enumerated using the FindFirst and
FindNext methods. The object can only be accessed
directly when specifying its label.

Return Value
A value of True is returned on success. If an error occurs, a value of False is returned and the
LastError property will return the specific cause of the failure..

Remarks
The PutData method uploads the contents of a buffer to the current storage container. If an
object exists with the same label, it will be replaced. During the transfer, the OnProgress event will

 



fire periodically, enabling the application to update any user interface objects such as a progress
bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it
was created using this method. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with
the webObjectReadOnly attribute, this method will fail. To replace a read-only object, the
application must explicitly move, rename or delete the existing object.

If a content type is provided, it must specify a valid MIME media type and subtype. For example,
normal text has a content type of text/plain while XML-formatted text would have a content type
of text/xml. Data that contains unstructured binary data is typically identified as
application/octet-stream. If you do not specify a content type, an appropriate content type will
be determined automatically based on the label and the contents of the buffer.

If you wish to upload the contents of a file, use the PutFile method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated
to reflect the values associated with the object that was created or replaced on the server.

See Also
GetData Method, GetFile Method, PutFile Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 PutFile Method  

 

Upload a local file to the current storage container.

Syntax
object.PutFile( LocalFile, ObjectLabel, [ContentType], [Attributes] )

Parameters
LocalFile

A string which specifies the name of the local file that will be uploaded to the current storage
container. If a path is not specified, the file will be opened in the current working directory.

ObjectLabel

A string which specifies the label of the object that should be created. If an object with the same
label already exists, it will be replaced with the contents of the file.

ContentType

An optional string argument that identifies the contents of the file being stored. If this
parameter is omitted, or specifies a zero-length string, the method will attempt to automatically
determine the content type based on the file name and contents.

Attributes

An optional integer argument which specifies the attributes associated with the storage object.
This value can be a combination of one or more of the following bitflags using a bitwise OR
operation. If this parameter is omitted, the default attribute webObjectNormal will be used.

Value Constant Description

1 webObjectNormal A normal object that that can be read and modified by
the application. This is the default attribute for new
objects that are created by the application.

2 webObjectReadOnly A read-only object that can only be read by the
application. Attempts to modify or replace the contents
of the object will fail. Read-only objects can be deleted.

4 webObjectHidden A hidden object. Objects with this attribute are not
returned when enumerated using the FindFirst and
FindNext methods. The object can only be accessed
directly when specifying its label.

Return Value
A value of True is returned on success. If an error occurs, a value of False is returned and the
LastError property will return the specific cause of the failure..

Remarks
The PutFile method uploads the contents of a file to the current storage container. If an object
exists with the same label, it will be replaced. During the transfer, the OnProgress event will fire
periodically, enabling the application to update any user interface objects such as a progress bar.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it
was created using this method. The object label cannot contain wildcard characters.

 



If the label identifies an object that already exists in the container, and that object was created with
the webObjectReadOnly attribute, this method will fail. To replace a read-only object, the
application must explicitly move, rename or delete the existing object.

If a content type is provided, it must specify a valid MIME media type and subtype. For example,
normal text has a content type of text/plain while XML-formatted text would have a content type
of text/xml. Data that contains unstructured binary data is typically identified as
application/octet-stream. If you do not specify a content type, an appropriate content type will
be determined automatically based on the file name and contents.

If you wish to upload the contents of a string or byte array, use the PutData method.

When this method returns, various properties such as ObjectId and ObjectLabel will be updated
to reflect the values associated with the object that was created or replaced on the server.

See Also
GetData Method, GetFile Method, PutData Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RegisterId Method  

 

Register a new application identifier with the storage service.

Syntax
object.RegisterId ( AppId )

Parameters
AppId

A string which identifies the application requesting access. If the application ID contains illegal
characters, the method will fail. See the remarks below on the recommended method for
identifying your application.

Return Value
A value of True is returned if the application ID was registered successfully. Otherwise, a value of
False is returned and the LastError property will return the specific cause of the failure.

Remarks
The RegisterId method registers an application ID with the server which uniquely identifies the
application that is requesting access to the storage container. The ID must only consist of ASCII
letters, numbers, the period and underscore character. Whitespace characters and non-ASCII
Unicode characters are not permitted. The maximum length of an application ID string is 63
characters.

 It is recommended that you use a standard format for the application ID that consists of your
company name, application name and optionally a version number. For example:

MyCompany.MyApplication

MyCompany.MyApplication.1

It is important to note that with these two example IDs, although they are similar, they reference
two different applications. Objects stored using the first ID will not be accessible using the second
ID. If you want to store objects that should be shared between all versions of the application, it is
recommended that you use the first form, without the version number. If you want to store objects
that should only be accessible to a specific version of your application, then it is recommended
that you use the second form that includes the version number.

It is safe to call this method with an application ID that was previously registered. If the provided
application ID has already been registered, this method will succeed.

If you no longer wish to use an application ID you have previously registered, you can call the
UnregisterId method. Exercise caution when unregistering an application. This will cause all
objects stored using that ID to be deleted by the storage server. Once an application ID has been
unregistered, the operation is permanent. Calling UnregisterId and then RegisterId again using
the same ID will force the system to create new access tokens for your application. You will not be
able to regain access to the objects that were previously stored using that ID.

The application ID is intended to be an application defined human-readable string that uniquely
identifies your application. If you want to obtain the internal storage ID associated with your
application, get the value of the StorageId property. The storage ID is a fixed-length string of
letters and numbers guaranteed to be unique across all applications that you register.

It is not required for your application to create a unique application ID. Each storage account has a

 



default internal application ID named SocketTools.Storage.Default. This default ID is used if
an application-defined ID is not provided to the Open method. It is intended to identify storage
available to all applications that you create.

See Also
AppId Property, Open Method, UnregisterId Method, ValidateId Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Rename Method  

 

Change the label of an existing storage object.

Syntax
object.Rename( OldLabel, NewLabel )

Parameters
OldLabel

A string which specifies the label of the object that should be moved.

NewLabel

A string which specifies the new label for the object being moved. An object with this label
cannot already exist.

Return Value
A value of True is returned if the object was renamed. Otherwise, a value of False is returned and
the LastError property will return the specific cause of the failure.

Remarks
The Rename method is used to change the label of an existing storage object within the current
storage container. If you wish to move an object to a different container, use the Move method.

This method updates the current object. Various properties such as ObjectId and ObjectLabel
will reflect the values associated with the object which has been renamed.

See Also
Copy Method, Delete Method, Move Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 UnregisterId Method  

 

Unregister a previously registered application identifier.

Syntax
object.UnregisterId ( AppId )

Parameters
AppId

A string which specifies the application ID to be deleted. If the application ID is a zero-length
string or contains illegal characters, the method will fail.

Return Value
A value of True is returned if the application ID was deleted. Otherwise, a value of False is returned
and the LastError property will return the specific cause of the failure.

Remarks
The UnregisterId method deletes the internal storage identifier associated with the application ID
and revokes all access tokens that were granted for the application. This operation is immediate
and permanent.

Exercise caution when using this method. This will permanently delete all objects that
were stored for the specified application. Calling UnregisterId and then RegisterId
again using the same ID will force the system to create new access tokens for your
application. You will not be able to regain access to the objects that were previously
stored using that ID.

This method cannot be used to unregister the default storage application identifier
SocketTools.Storage.Default. If this ID is specified, the method will fail with an error
indicating that the ID is invalid.

See Also
AppId Property, Open Method, RegisterId Method, ValidateId Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ValidateId Method  

 

Check an application identifier to ensure it is valid and exists.

Syntax
object.ValidateId ( AppId )

Parameters
AppId

A string which specifies the application ID to be validated. If the application ID is a zero-length
string or contains illegal characters, the method will fail.

Return Value
A value of True is returned if the application ID is valid. Otherwise, a value of False is returned and
the LastError property will return the specific cause of the failure.

Remarks
The ValidateId method is used to determine if the specified application identifier is valid and has
been previously registered using the RegisterId method. The ID must only consist of ASCII letters,
numbers, the period and underscore character. Whitespace characters and non-ASCII Unicode
characters are not permitted. The maximum length of an application ID string is 63 characters.

See Also
AppId Property, Open Method, RegisterId Method, UnregisterId Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ValidateLabel Method  

 

Validate an object label to ensure it uses allowed characters.

Syntax
object.ValidateLabel ( ObjectLabel )

Parameters
ObjectLabel

A string which specifies the object label to be validated. This parameter cannot be a zero-length
string.

Return Value
A value of True is returned if the object label is valid. Otherwise, a value of False is returned and
the LastError property will return the specific cause of the failure.

Remarks
Object labels are similar to Windows file names, except they are case-sensitive. The maximum
length of a label string is 511 characters. Leading and trailing whitespace (spaces, tabs, linebreaks,
etc.) are ignored in label names.

Illegal characters include ASCII and Unicode control characters 0 through 31, single quotes (39),
double quotes (34), less than symbol (60), greater than symbol (62), pipe (124), asterisk (42) and
question mark (63). It is not possible to embed null characters in the label name.

Label names may contain forward slash (47) characters and backslash (92) characters, however it is
important to note that objects are not stored in a hierarchical structure. An application can create
its own folder-like structure to the labels it creates, but this structure is not imposed or enforced by
the control.

Labels can contain Unicode characters which are internally encoded as UTF-8.

See Also
ObjectLabel Property, Exists Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Web Storage Control Events  

 

Event Description

OnCancel This event is generated when a storage operation is canceled

OnDownload This event is generated when a stored object is downloaded

OnError This event is generated when a control error occurs

OnProgress This event is generated as a stored object is being transferred

OnTimeout This event is generated when a storage operation times out

OnUpload This event is generated when a stored object is uploaded

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 WebStorage Event  

 

The OnCancel event is generated when a storage operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a storage operation, such as sending or receiving data, is canceled
with the Cancel method.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDownload Event  

 

The OnDownload event is generated when a storage object has been downloaded.

Syntax
Sub object_OnDownload( [Index As Integer], ByVal ObjectLabel As Variant, ByVal ObjectSize
As Variant )

Remarks
The OnDownload event is generated when a stored object has been successfully downloaded
using either the GetData or GetFile methods. When this event occurs, the transfer has completed
successfully and the downloaded object becomes the current object for the session. Prior to this
event, the OnProgress event will occur periodically which provides information about the
progress of the data transfer.

The ObjectLabel argument contains the label of object that has been downloaded, and the
ObjectSize parameter contains the size of the downloaded object in bytes. Other values, such as
the object digest (hash) and content type, can be determined by getting the values of the relevant
properties.

See Also
GetData Method, GetFile Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control typically correspond to those returned by the
standard Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnProgress Event  

 

The OnProgress event is generated during data transfer.

Syntax
Sub object_OnProgress ( [Index As Integer], ByVal ObjectLabel As Variant, ByVal BytesTotal
As Variant, ByVal BytesCopied As Variant, ByVal Percent As Variant )

Remarks
The OnProgress event is generated during the transfer of data between the application and
storage server, indicating the amount of data exchanged. For transfers of large amounts of data,
this event can be used to update a progress bar or other user-interface control to provide the
user with some visual feedback. The arguments to this event are:

ObjectLabel

A string value that specifies the name of the object that is being uploaded or downloaded.

BytesTotal

A numeric value that specifies the total amount of data being transferred in bytes. This value
may be zero if the control cannot determine the total amount of data that will be copied. If the
total number of bytes is less than 2 GiB, the value will be a Long (32-bit) integer. For very large
transfers, it will be a Double floating-point value.

BytesCopied

A numeric value that specifies the number of bytes that have been transferred between the
client and server. If the number of bytes copied is less than 2 GiB, the value will be a Long (32-
bit) integer. For very large transfers, it will be a Double floating-point value.

Percent

The percentage of data that's been transferred, expressed as an integer value between 0 and
100, inclusive.

This event is only generated when data is transferred using the GetData, GetFile, PutData or
PutFile methods.

See Also
TransferBytes Property, TransferRate Property, TransferTime Property, GetData Method, GetFile
Method, PutData Method, PutFile Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a storage operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a storage operation, such as uploading or downloading
an object, times out.

See Also
Timeout Property, OnCancel Event, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnUpload Event  

 

The OnUpload event is generated when a storage object has been uploaded.

Syntax
Sub object_OnUpload( [Index As Integer], ByVal ObjectLabel As Variant, ByVal ObjectSize As
Variant )

Remarks
The OnUpload event is generated when a stored object has been successfully uploaded using
either the PutData or PutFile methods. When this event occurs, the transfer has completed
successfully and the downloaded object becomes the current object for the session. Prior to this
event, the OnProgress event will occur periodically which provides information about the
progress of the data transfer.

The ObjectLabel argument contains the label of object that has been downloaded, and the
ObjectSize parameter contains the size of the downloaded object in bytes. Other values, such as
the object digest (hash) and content type, can be determined by getting the values of the relevant
properties.

See Also
PutData Method, PutFile Method, OnProgress Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



Whois Protocol Control

Request registration information for an Internet domain name.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name WhoisClientCtl.WhoisClient

File Name CSWHOX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.WhoisClient.11

ClassID 5FBB30C5-BEEB-45C0-965F-B989E543BC56

Threading Model Apartment

Help File CST11CTL.CHM

Dependencies None

Standards RFC 954

Overview
The Whois protocol control provides an interface for requesting registration information for an
Internet domain name. When a domain name is registered, the organization that registers the
domain must provide certain contact information along with technical information such as the
primary name servers for that domain. The control provides an interface for requesting that
information and returning it to the program so that it can be displayed or processed. This control
would be most commonly used to query the Whois server at whois.internic.net to obtain
information about a specific Internet domain name or an administrative contact at that domain.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution



When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Whois Protocol Control Properties  

 

Property Description

AutoResolve Determines if host names and IP addresses are automatically resolved

Blocking Gets and sets the blocking state of the control

HostAddress Gets and sets the IP address of the server

HostName Gets and sets the name of the server

IsBlocked Return if the control is blocked performing an operation

IsConnected Determine if the control is connected to a server

IsInitialized Determine if the control has been initialized

IsReadable Return if data can be read from the server without blocking

Keyword Specify the keyword to search for

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error to occur

RemotePort Gets and sets the port number for a remote connection

SearchType Specify the type of query to be performed by the server

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

Version Return the current version of the object

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 AutoResolve Property  

 

Determines if host names and IP addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False } ]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note that setting the HostName or HostAddress property may cause the current thread to
block, sometimes for several seconds, until the name or address is resolved. To prevent this
behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Blocking Property  

 

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False } ]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action, such as sending or receiving data, will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking, such as attempting to read data
when none has been written, an error is generated. Events such as OnConnect, OnDisconnect,
OnRead and OnWrite are only fired if the connection is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property, IsReadable Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostAddress Property  

 

Gets and sets the IP address of the server.

Syntax
object.HostAddress [= ipaddress ]

Remarks
The HostAddress property can be used to set the IP address for a server that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 HostName Property  

 

Gets and sets the name of the server.

Syntax
object.HostName [= hostname ]

Remarks
The HostName property should be set to the name of the server that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect the IP
address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsBlocked Property  

 

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless if the specified control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsConnected Property  

 

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of true if the control is connected with a
server, otherwise the property has a value of false.

Data Type
Boolean

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsInitialized Property  

 

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 IsReadable Property  

 

Return if data can be read from the server without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the server without blocking. For
non-blocking connections, this property can be checked before the application attempts to read
the data, preventing an error.

Data Type
Boolean

See Also
IsConnected Property, Read Method, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Keyword Property  

 

Specify the keyword to search for.

Syntax
object.Keyword [= value ]

Remarks
The Keyword property specifies the value used when querying the server. The keyword may refer
to a handle, a user name or a mailbox name. Setting this property provides the default keyword
for the Search method.

Keywords may contain special characters that instruct the server how to match the value. These
values are outlined in RFC 954, the standards document that describes the WHOIS/NICNAME
protocol. These forms are typically recognized:

Example Description

value Search for value as either a user name or a handle

value... Search for value that matches anything up to that point

!value Search for a handle that matches the given value

last, first Search for the specified name

user@ Search for mailboxes with the given user name

@host Search for mailboxes on the specified host

user@host Search for mailboxes for the user on the specified host

If the keyword uses any of these special forms, the SearchType property must be set to
whoisSearchAny, which tells the control not to modify the keyword value when submitting the
query to the server. Note that all keyword forms may not be supported by a given server, and
additional types of searches may be supported.

Data Type
String

See Also
SearchType Property, Connect Method, Search Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastError Property  

 

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value ]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero to clear the error or a valid error code for
the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 LastErrorString Property  

 

Return a description of the last error to occur.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a description of the last error that occurred. This can be
used to display a meaningful error message to a user, rather than just the numeric value returned
by the LastError property.

Data Type
String

See Also
LastError Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 RemotePort Property  

 

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portnumber ]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the server.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 SearchType Property  

 

Specify the type of query to be performed by the server.

Syntax
object.SearchType [= value ]

Remarks
The SearchType property specifies the default type of query to be performed by the server using
the Search method. The following table lists the types of searches that may be performed:

Value Constant Description

1 whoisSearchAny Search for any value that matches the given keyword
value

2 whoisSearchHandle Search for a handle that matches the given keyword
value

3 whoisSearchName Search for a user name that matches the given keyword
value

4 whoisSearchMailbox Search for a user mailbox that matches the given
keyword value

If you wish to perform a more complex query using the syntax outlined in RFC 954, specify a
search type of whoisSearchAny and then provide the search string value that you want to submit.

Data Type
Integer (Int32)

See Also
Keyword Property, Connect Method, Search Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 ThrowError Property  

 

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

WhoisClient1.ThrowError = False
nError = WhoisClient1.Connect(strHostName)

If nError > 0 Then
    MsgBox WhoisClient1.LastErrorString, vbExclamation
    Exit Sub
Endif

The following example handles errors by throwing them to the container:

On Error Resume Next: Err.Clear

WhoisClient1.ThrowError = True
WhoisClient1.Connect strHostName

If Err.Number <> 0
    MsgBox Err.Description, vbExclamation
    Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, LastErrorString Property, OnError Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Timeout Property  

 

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds ]

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and
the control returns an error.

Note that the Timeout property also determines the amount of time the control will spend
attempting to connect to a server. If a connection is not established within the given time period,
the connection attempt will fail.

Data Type
Integer (Int32)

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Trace Property  

 

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False } ]

Remarks
The Trace property is used to enable or disable the logging of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Note that only those function calls made by the SocketTools networking controls will be logged.
Calls made directly to the Windows Sockets API, or calls made by other controls, will not be
logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 TraceFile Property  

 

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename ]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named cstrace.log is created in the system's temporary directory. If no temporary directory exists,
then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 105020 0000 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 
VB6 105020 0015 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035] 
VB6 111535 0000 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column is the local time in hours, minutes and seconds. The third column is
the elapsed time in milliseconds since the previous function call. The fourth column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the
function being called, the arguments passed to the function and the function's return value. If a
warning or error is reported, the error code is appended to the record (the value is placed inside
brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  





 TraceFlags Property  

 

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= traceflags ]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 whoisTraceInfo All function calls are written to the trace file, including
information about successful calls made to the
networking library. This is the default value.

1 whoisTraceError Only those function calls which fail are recorded in the
trace file. Functions which are successful or only return
values which indicate a warning are not logged.

2 whoisTraceWarning Only those function calls which fail, or return values
which indicate a warning, are recorded in the trace file.
Successful function calls are not logged.

4 whoisTraceHexDump All functions calls are written to the trace file, plus all the
data that is sent or received is displayed in both ASCII
and hexadecimal format. This is useful for examining the
actual byte stream that is exchanged between the
application and the server.

Since function logging is enabled per-process, the trace flags are shared by all instances of the
controls being used. If multiple controls have tracing enabled, the TraceFlags property should be
set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and an error indicating that the operation
would block is returned, only a warning is logged since the application simply needs to attempt to
write the data at a later time.

Data Type
Integer (Int32)

See Also
Trace Property, TraceFile Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Version Property  

 

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Whois Protocol Control Methods  

 

Method Description

Cancel Cancels the current blocking network operation

Connect Establish a connection with a server

Disconnect Terminate the connection with a server

Initialize Initialize the control and validate the runtime license key

Read Return data read from the server

Reset Reset the internal state of the control

Search Search for the specified record

Uninitialize Uninitialize the control and release any system resources that were allocated

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Cancel Method  

 

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Disconnect Method, Reset Method, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Connect Method  

 

Establish a connection with a server.

Syntax
object.Connect( [RemoteHost], [RemotePort], [Timeout], [Options] )

Parameters
RemoteHost

A string which specifies the host name or IP address of the server. If this argument is not
specified, it defaults to the value of the HostAddress property if it is defined. Otherwise, it
defaults to the value of the HostName property.

RemotePort

A number which specifies the port to connect to on the server. If this argument is not specified,
it defaults to the value of the RemotePort property. A value of zero indicates that the default
port number for this service should be used to establish the connection.

Timeout

The number of seconds that the client will wait for a response before failing the operation. If this
argument is not specified, the value of the Timeout property will be used as the default.

Options

A reserved parameter. This argument should either be omitted, or always be zero.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

See Also
HostAddress Property, HostName Property, RemotePort Property, Disconnect Method,
OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Disconnect Method  

 

Terminate the connection with a server.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
IsConnected Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Initialize Method  

 

Initialize the control and validate the runtime license key.

Syntax
object.Initialize( [LicenseKey] )

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set whoisClient = CreateObject("SocketTools.WhoisClient.11")

nError = whoisClient.Initialize(strLicenseKey) 
If nError > 0 Then
    MsgBox "Unable to initialize SocketTools component"
    End
End If

See Also
IsInitialized Property, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Read Method  

 

Return data read from the server.

Syntax
object.Read( Buffer, [Length] )

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. If the data returned by the server contains UTF-8 encoded text, it will
automatically be converted to standard UTF-16 Unicode text. If you wish to read the data
without conversion, provide a Byte array as the buffer. This parameter must be passed by
reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the server is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been read from the server, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will wait until data is returned by the server
or the connection is closed.

See Also
IsConnected Property, IsReadable Property, OnRead Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Reset Method  

 

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Search Method  

 

Search for a record using the specified keyword.

Syntax
object.Search( [Keyword], [SearchType] )

Parameters
Keyword

An optional string which specifies the keyword to search for. Typically this is the name of a
domain, user handle or an email address. If this argument is omitted, the value of the Keyword
property is used as the default value.

SearchType

An optional integer value which specifies the type of search to perform. If this argument is
omitted, the value of the SearchType property is used as the default value. One of the
following search types may be specified:

Value Constant Description

1 whoisSearchAny Search for any value that matches the given keyword
value

2 whoisSearchHandle Search for a handle that matches the given keyword
value

3 whoisSearchName Search for a user name that matches the given keyword
value

4 whoisSearchMailbox Search for a user mailbox that matches the given
keyword value

Return Value
A value of zero is returned if the method succeeds. Otherwise, a non-zero error code is returned
which indicates the cause of the failure.

Remarks
The Search method submits the specified keyword and type of search to the server. The data
returned by the server can be read using the Read method. Note that the text returned by a UNIX
based server may only contain linefeeds at the end of each line of text, rather than the standard
carriage return/linefeed used on Windows systems.

Example
The following example demonstrates how to use the Search method:

Dim strBuffer As String, strResults As String
Dim nRead As Long, nError As Long

' Connect to the InterNIC server and submit a search for the
' Internet Engineering Task Force (IETF) domain
nError = WhoisClient1.Connect("whois.internic.net")
If nError = 0 Then
   nError = WhoisClient1.Search("ietf.org", whoisSearchAny)
End If

 



' If an error occurs, display a message box and exit
If nError > 0 Then
    MsgBox WhoisClient1.LastErrorString, vbExclamation
    Exit Sub
End If

' Read the data returned by the server and store it in
' a string buffer named strResults
Do
    nRead = WhoisClient1.Read(strBuffer, 2048)
    If nRead < 1 Then Exit Do
    strResults = strResults + strBuffer
Loop

' If there was an error reading the data, then report
' it to the user
If nRead = -1 Then
    MsgBox WhoisClient1.LastErrorString, vbExclamation
End If

' Disconnect from the server
WhoisClient1.Disconnect

See Also
Keyword Property, SearchType Property, Connect Method, Read Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Uninitialize Method  

 

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 Whois Protocol Control Events  

 

Event Description

OnCancel This event is generated when a blocking operation is canceled

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnRead This event is generated when data is available to be read

OnTimeout This event is generated when a blocking operation times out

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnCancel Event  

 

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. To assist in determining which operation was canceled,
consult the State property.

See Also
Cancel Method, OnError Event, OnTimeout Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnConnect Event  

 

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ( [Index As Integer] )

Remarks
The OnConnect event is generated when a connection is made with a server as a result of a
Connect method call. This event is only triggered when the Blocking property is set to False.

See Also
Blocking Property, Connect Method, OnDisconnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnDisconnect Event  

 

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ( [Index As Integer] )

Remarks
The OnDisconnect event is generated when the connection is terminated by the server. This
event is only triggered when the Blocking property is set to False.

When the OnDisconnect event fires, it is possible that there may still be buffered data available to
read from the server. Before disconnecting from the server, the application should attempt to read
any remaining data until the Read method returns a value of zero, or returns an error indicating
that the operation would block.

See Also
Blocking Property, IsConnected Property, IsReadable Property, Connect Method, Disconnect
Method, Read Method, OnConnect Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnError Event  

 

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ( [Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant )

Remarks
This event is generated when an error occurs during a control action. Errors not generated by the
control itself, such as errors related to the programming language or general component errors,
do not trigger this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnRead Event  

 

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ([Index As Integer] )

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only triggered when the Blocking
property is set to False.

See Also
IsReadable Property, Read Method, Search Method

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  



 OnTimeout Event  

 

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ( [Index As Integer] )

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property. This event is only triggered when the Blocking property is
set to True.

See Also
Timeout Property, OnCancel Event

 

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.  




